1
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
2
|
Meyer VK, Chatelle CV, Weber W, Niessner R, Seidel M. Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines. Anal Bioanal Chem 2020; 412:3467-3476. [PMID: 31950237 PMCID: PMC7214489 DOI: 10.1007/s00216-019-02368-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022]
Abstract
For the first time, a flow-based regenerable chemiluminescence receptor assay is established that is eminently suited as screening method for the detection of widely used tetracyclines (TCs) in environmental and food samples. The complex functionality and high reactivity of TCs complicate the creation of immunogens which is currently the bottleneck for developing sensitive immunoassays. In this case, competitive bioreceptor assays for the analysis of small organic molecules are preferable and, moreover, flow-based regenerable bioassays are optimally suited for automated analysis applications. Therefore, the solution for rapid and sensitive analysis of TCs is the regenerable CL receptor assay with a covalently immobilized DNA oligonucleotide containing the specific operator sequence tetO to which the repressor protein TetR binds only in the absence of TCs. The TC measurements are performed on the CL microarray analysis platform MCR 3 within 30 min per sample. The LoD in spiked tap water was determined to be 0.1 μg L−1, and for 1 μg L−1 TET, recoveries of 77% ± 16% were obtained. Due to the stability of the immobilized DNA oligonucleotide and the resulting regenerability of the assay for various measurements, the new method is highly cost- and resource-efficient and ideally suited for the monitoring of environmental samples in the field. Graphical abstract ![]()
Collapse
Affiliation(s)
- Verena K Meyer
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377, Munich, Germany
| | - Claire V Chatelle
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377, Munich, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377, Munich, Germany.
| |
Collapse
|
3
|
Ahmed S, Ning J, Cheng G, Maan MK, Chen T, Ahmad I, Algharib SA, Yuan Z. Development and validation of an enzyme-linked receptor assay based on mutant protein I188K/S19C/G24C for 40 beta-lactams antibiotics detection in 13 food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Au HW, Tsang MW, So PK, Wong KY, Leung YC. Thermostable β-Lactamase Mutant with Its Active Site Conjugated with Fluorescein for Efficient β-Lactam Antibiotic Detection. ACS OMEGA 2019; 4:20493-20502. [PMID: 31858033 PMCID: PMC6906784 DOI: 10.1021/acsomega.9b02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/14/2019] [Indexed: 05/09/2023]
Abstract
Monitoring the β-lactam antibiotic level has been an important task in food industry and clinical practice. Here, we report the development of a fluorescent PenP β-lactamase, PenP-E166Cf/N170Q, for efficient β-lactam antibiotic detection. It was constructed by covalently attaching fluorescein onto the active-site entrance of a thermostable E166Cf/N170Q mutant of a Bacillus licheniformis PenP β-lactamase. It gave a fluorescence turn-on signal toward various β-lactam antibiotics, where the fluorescence enhancement was attributed to the acyl-enzyme complex formed between PenP-E166Cf/N170Q and the β-lactam antibiotic. It demonstrated enhanced signal stability over its parental PenP-E166Cf because of the suppressed hydrolytic activity by the N170Q mutation. Compared with our previously constructed PenPC-E166Cf biosensor, PenP-E166Cf/N170Q was more thermostable and advanced in detecting β-lactams in terms of response time, signal stability, and detection limit. Positive fluorescence signals generated by E166Cf/N170Q in response to the penicillin-containing milk and mouse serum illustrated the feasibility of the biosensor for antibiotic detection in real samples. Taken together, our findings suggest the potential application of PenP-E166Cf/N170Q in biosensing β-lactam antibiotics.
Collapse
Affiliation(s)
- Ho-Wah Au
- Department
of Applied Biology and Chemical Technology, State Key
Laboratory of Chemical Biology and Drug Discovery and Lo Ka Chung Research Centre for
Natural Anti-Cancer Drug Development, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Wah Tsang
- Department
of Applied Biology and Chemical Technology, State Key
Laboratory of Chemical Biology and Drug Discovery and Lo Ka Chung Research Centre for
Natural Anti-Cancer Drug Development, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pui-Kin So
- Department
of Applied Biology and Chemical Technology, State Key
Laboratory of Chemical Biology and Drug Discovery and Lo Ka Chung Research Centre for
Natural Anti-Cancer Drug Development, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- Department
of Applied Biology and Chemical Technology, State Key
Laboratory of Chemical Biology and Drug Discovery and Lo Ka Chung Research Centre for
Natural Anti-Cancer Drug Development, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- E-mail: (K.-Y.W.)
| | - Yun-Chung Leung
- Department
of Applied Biology and Chemical Technology, State Key
Laboratory of Chemical Biology and Drug Discovery and Lo Ka Chung Research Centre for
Natural Anti-Cancer Drug Development, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- E-mail: (Y.-C.L.)
| |
Collapse
|
5
|
Wang Y, Partridge A, Wu Y. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta 2019; 198:350-357. [DOI: 10.1016/j.talanta.2019.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
6
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
7
|
Kim S, Lee HJ. Gold Nanostar Enhanced Surface Plasmon Resonance Detection of an Antibiotic at Attomolar Concentrations via an Aptamer-Antibody Sandwich Assay. Anal Chem 2017; 89:6624-6630. [PMID: 28520392 DOI: 10.1021/acs.analchem.7b00779] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new sandwich assay for tetracycline (TC) involving a DNA aptamer and antibody pair is demonstrated in conjunction with gold nanostar (GNS) enhanced surface plasmon resonance (SPR) to achieve detection in the low attomolar range. GNS particles were covalently functionalized with the antibody probe (antiTC) and integrated into a surface sandwich assay in conjunction with a SPR gold chip modified with the TC-specific aptamer. After it was demonstrated that both affinity probes can bind simultaneously to TC, optimization of the assay was performed using either antiTC only or GNS-antiTC conjugates to interact with aptamer/TC complexes present on the chip surface. Target concentrations as low as 10 aM could be detected using GNS-antiTC's, which was >103 times greater in performance than when using antiTC only. In addition, good selectivity was achieved with respect to other tetracycline derivative antibiotics, such as oxytetracycline (OTC) and chlortetracycline (CTC), both which are structurally similar to TC. As a demonstration of trace antibiotic analysis in environmental samples, the GNS enhanced sandwich assay was applied to analyze TC added to aliquots of local river water and the results validated by comparing to conventional high-performance liquid chromatography (HPLC) analysis.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea
| |
Collapse
|
8
|
Ahmed S, Ning J, Cheng G, Ahmad I, Li J, Mingyue L, Qu W, Iqbal M, Shabbir MAB, Yuan Z. Receptor-based screening assays for the detection of antibiotics residues - A review. Talanta 2017; 166:176-186. [PMID: 28213220 DOI: 10.1016/j.talanta.2017.01.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/24/2022]
Abstract
Consumer and regulatory agencies have a high concern to antibiotic residues in food producing animals, so appropriate screening assays of fast, sensitive, low cost, and easy sample preparation for the identification of these residues are essential for the food-safety insurance. Great efforts in the development of a high-throughput antibiotic screening assay have been made in recent years. Concerning the screening of antibiotic residue, this review elaborate an overview on the availability, advancement and applicability of antibiotic receptor based screening assays for the safety assessment of antibiotics usage (i.e. radio receptor assay, enzyme labeling assays, colloidal gold receptor assay, enzyme colorimetry assay and biosensor assay). This manuscript also tries to shed a light on the selection, preparation and future perspective of receptor protein for antibiotic residue detection. These assays have been introduced for the screening of numerous food samples. Receptor based screening technology for antibiotic detection has high accuracy. It has been concluded that at the same time, it can detect a class of drugs for certain receptor, and realize the multi-residue detection. These assays offer fast, easy and precise detection of antibiotics.
Collapse
Affiliation(s)
- Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianan Ning
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Ijaz Ahmad
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China; The University of Agriculture Peshawar, Pakistan
| | - Jun Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Mingyue
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Qu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - M A B Shabbir
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Granados-Chinchilla F, Rodríguez C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1315497. [PMID: 28168081 PMCID: PMC5266830 DOI: 10.1155/2017/1315497] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 05/15/2023]
Abstract
Antibiotics are widely used as growth promoters in animal husbandry; among them, the tetracyclines are a chemical group of relevance, due to their wide use in agriculture, surpassing in quantities applied almost every other antibiotic family. Seeing the considerable amounts of tetracyclines used worldwide, monitoring of these antibiotics is paramount. Advances must be made in the analysis of antibiotics to assess correct usage and dosage of tetracyclines in food and feedstuffs and possible residues in pertinent environmental samples. The tetracyclines are still considered a clinically relevant group of antibiotics, though dissemination of tolerance and resistance determinants have limited their use. This review focuses on four different aspects: (i) tetracyclines, usage, dosages, and regulatory issues that govern their food-related application, with particular attention to the prohibitions and restrictions that several countries have enforced in recent years by agencies from both the United States and the European Union, (ii) analytical methods for tetracyclines, determination, and residues thereof in feedstuffs and related matrices with an emphasis on the most relevant and novel techniques, including both screening and confirmatory methods, (iii) tetracycline resistance and tetracycline-resistant bacteria in feedstuff, and (iv) environmental and health risks accompanying the use of tetracyclines in animal nutrition. In the last two cases, we discuss the more relevant undesirable effects that tetracyclines exert over bacterial communities and nontarget species including unwanted effects in farmers.
Collapse
Affiliation(s)
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Wei D, Wu S, Zhu Y. Magnetic solid phase extraction based on graphene oxide/nanoscale zero-valent iron for the determination of tetracyclines in water and milk by using HPLC-MS/MS. RSC Adv 2017. [DOI: 10.1039/c7ra08203g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A magnetic solid-phase extraction (MSPE) based on graphene oxide/nanoscale zero-valent iron (GO/nZVI) coupled with HPLC-MS/MS was proposed for the determination of trace tetracycline antibiotics (TCs) in water and milk.
Collapse
Affiliation(s)
- Dan Wei
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Shuchao Wu
- Zhejiang Institute of Geology and Mineral Resources
- Hangzhou
- China
| | - Yan Zhu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
11
|
Biosensors, antibiotics and food. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:153-85. [PMID: 25216955 DOI: 10.1007/978-3-662-43619-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.
Collapse
|
12
|
Quick and label-free detection for Coumaphos by using surface plasmon resonance biochip. PLoS One 2014; 9:e104689. [PMID: 25122502 PMCID: PMC4133234 DOI: 10.1371/journal.pone.0104689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/11/2014] [Indexed: 11/21/2022] Open
Abstract
Coumaphos is a common organophosphorus pesticide used in agricultural products. It is harmful to human health and has a strictly stipulated maximum residue limit (MRL) on fruits and vegetables. Currently existing methods for detection are complex in execution, require expensive tools and are time consuming and labor intensive. The surface plasmon resonance method has been widely used in biomedicine and many other fields. This study discusses a detection method based on surface plasmon resonance in organophosphorus pesticide residues. As an alternative solution, this study proposes a method to detect Coumaphos. The method, which is based on surface plasmon resonance (SPR) and immune reaction, belongs to the suppression method. A group of samples of Coumaphos was detected by this method. The concentrations of Coumaphos in the samples were 0 µg/L, 50 µg/L, 100 µg/L, 300 µg/L, 500 µg/L, 1000 µg/L, 3000 µg/L and 5000 µg/L, respectively. Through detecting a group of samples, the process of kinetic reactions was analyzed and the corresponding standard curve was obtained. The sensibility is less than 25 µg/L, conforming to the standard of the MRL of Coumaphos stipulated by China. This method is label-free, using an unpurified single antibody only and can continuously test at least 80 groups of samples continuously. It has high sensitivity and specificity. The required equipments are simple, environmental friendly and easy to control. So this method is promised for a large number of samples quick detection on spot and for application prospects.
Collapse
|
13
|
Menzel A, Gübeli RJ, Güder F, Weber W, Zacharias M. Detection of real-time dynamics of drug-target interactions by ultralong nanowalls. LAB ON A CHIP 2013; 13:4173-4179. [PMID: 23982183 DOI: 10.1039/c3lc50694k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Detecting drug-target interactions in real-time is a powerful approach for drug discovery and analytics. We show here for the first time the ultra fast electrical real-time detection and quantification of antibiotics using a novel biohybrid nanosensor. The biomolecular sensing is performed on ultralong (mm range) high aspect ratio nanowall (50 nm width) surfaces functionalized with operator DNA tetO which is specifically bound by the sensor protein TetR. This sensor protein is released from the operator DNA in a dose dependent manner by exposing the device functionalized with this bound DNA-protein complex to tetracycline antibiotics. As a result, the electrical conductance is accordingly modulated by these surface net charge changes. The switching mechanism of sensor proteins attached at the functionalized surfaces and releasing them again by antibiotics is demonstrated. With the here presented device the detection limit is below the limits of prevailing detection methods. Moreover, the study is extended to detect antibiotic residues in spiked organic milk from cows far below the maximum residual level of the European Union. In spiked milk samples a detection limit for tetracycline concentrations in the 100 fM level was achieved. The nanowall devices are fabricated by atomic layer deposition-based spacer lithography on full wafer scale which is a simple approach capable for mass production.
Collapse
Affiliation(s)
- Andreas Menzel
- Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Zheng D, Zhu X, Zhu X, Bo B, Yin Y, Li G. An electrochemical biosensor for the direct detection of oxytetracycline in mouse blood serum and urine. Analyst 2013; 138:1886-90. [PMID: 23381199 DOI: 10.1039/c3an36590e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxytetracycline (OTC), a broad-spectrum antibiotic, has been extensively used as a food additive for livestock. Its extensive use has greatly increased the risk of chronic drug abuse and has also increased the risk of the resulting diseases. Therefore, in light of this emerging situation, the detection of OTC in both food and livestock is very important to reduce the risks and for diagnosis purposes . In this work, we have proposed an electrochemical aptasensor to quantify OTC. The biosensor shows considerable sensitivity and selectivity, and it can be easily operated and regenerated. Furthermore, for the first time, we have shown that an electrochemical aptasensor can be directly used to detect OTC in mouse blood serum and urine. This biosensor has the potential to aid in the analysis of residual OTC levels, as well as providing more pharmacokinetic information in the future.
Collapse
Affiliation(s)
- Dianyuan Zheng
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | |
Collapse
|
15
|
Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal Chim Acta 2012; 737:29-36. [DOI: 10.1016/j.aca.2012.05.051] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 11/22/2022]
|
16
|
Bridle H, Kersaudy-Kerhoas M, Miller B, Gavriilidou D, Katzer F, Innes EA, Desmulliez MPY. Detection of Cryptosporidium in miniaturised fluidic devices. WATER RESEARCH 2012; 46:1641-1661. [PMID: 22305660 DOI: 10.1016/j.watres.2012.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 05/28/2023]
Abstract
Contamination of drinking water with the protozoan pathogen, Cryptosporidium, represents a serious risk to human health due to the low infectious dose and the resistance of this parasite to chlorine disinfection. Therefore, several countries have legislated for the frequent monitoring of drinking water for Cryptosporidium presence. Existing approved monitoring protocols are however time-consuming and do not provide essential information on the species, virulence or viability of detected oocysts. Rapid, more information-rich and automatable systems for Cryptosporidium detection are highly sought-after, and numerous miniaturised devices have been developed to address this need. This review article aims to summarise the state-of-the-art and compare the performance of these systems in terms of detection limit, ability to determine species, viability and performance in the presence of interferents. Finally, conclusions are drawn with regard to the most promising methods and directions of future research.
Collapse
Affiliation(s)
- Helen Bridle
- University of Edinburgh, King's Buildings, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
McGrath TF, Elliott CT, Fodey TL. Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 2012; 403:75-92. [PMID: 22278073 DOI: 10.1007/s00216-011-5685-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/17/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Increases in food production and the ever-present threat of food contamination from microbiological and chemical sources have led the food industry and regulators to pursue rapid, inexpensive methods of analysis to safeguard the health and safety of the consumer. Although sophisticated techniques such as chromatography and spectrometry provide more accurate and conclusive results, screening tests allow a much higher throughput of samples at a lower cost and with less operator training, so larger numbers of samples can be analysed. Biosensors combine a biological recognition element (enzyme, antibody, receptor) with a transducer to produce a measurable signal proportional to the extent of interaction between the recognition element and the analyte. The different uses of the biosensing instrumentation available today are extremely varied, with food analysis as an emerging and growing application. The advantages offered by biosensors over other screening methods such as radioimmunoassay, enzyme-linked immunosorbent assay, fluorescence immunoassay and luminescence immunoassay, with respect to food analysis, include automation, improved reproducibility, speed of analysis and real-time analysis. This article will provide a brief footing in history before reviewing the latest developments in biosensor applications for analysis of food contaminants (January 2007 to December 2010), focusing on the detection of pathogens, toxins, pesticides and veterinary drug residues by biosensors, with emphasis on articles showing data in food matrices. The main areas of development common to these groups of contaminants include multiplexing, the ability to simultaneously analyse a sample for more than one contaminant and portability. Biosensors currently have an important role in food safety; further advances in the technology, reagents and sample handling will surely reinforce this position.
Collapse
Affiliation(s)
- T F McGrath
- ASSET Technology Centre, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | |
Collapse
|
18
|
|
19
|
Sanvicens N, Mannelli I, Salvador JP, Valera E, Marco MP. Biosensors for pharmaceuticals based on novel technology. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Huet AC, Delahaut P, Fodey T, Haughey SA, Elliott C, Weigel S. Advances in biosensor-based analysis for antimicrobial residues in foods. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Tetracycline sensing using novel doxycycline derivatives immobilized on different surface plasmon resonance biosensor surfaces. Bioanalysis 2010; 2:217-27. [DOI: 10.4155/bio.09.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: This article aims to explore novel doxycycline derivatives for analyzing low concentrations of tetracyclines in biological matrices and food in competitive assays. Results: Surface plasmon resonance (SPR) was employed in an indirect competitive format using a bacterial tetracycline-dependent regulatory protein as receptor. Three doxycycline derivatives were synthesized and covalently bound to the surface of four different sensor chips. Parameters that influence the immobilization of the doxycycline derivatives and subsequent binding of the receptor protein were studied. Conclusion: The novel doxycycline derivatives were successfully used as competitors in an indirect SPR assay.
Collapse
|
22
|
Petz M. Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. MONATSHEFTE FUR CHEMIE 2009. [DOI: 10.1007/s00706-009-0142-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108:462-93. [PMID: 18229953 DOI: 10.1021/cr068107d] [Citation(s) in RCA: 1808] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jirí Homola
- Institute of Photonics and Electronics ASCR, Chaberská 57, 182 51 Prague 8, Czech Republic.
| |
Collapse
|
25
|
|