1
|
Pino-Ramos LL, Gómez-Plaza E, Olate-Olave VR, Laurie VF, Bautista-Ortín AB. Protein extracts from amaranth and quinoa as novel fining agents for red wines. Food Chem 2024; 448:139055. [PMID: 38554587 DOI: 10.1016/j.foodchem.2024.139055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
Due to allergenic concerns, only pea, potato, and wheat proteins have been approved as alternatives for replacing animal-based fining agents in wines. In pursuit of other substitutes, this work aimed to determine the fining ability of amaranth (Amaranthus caudatus L.) proteins (AP) in red wine, compared to quinoa (Chenopodium quinoa Willd.) (QP) and a commercial pea protein. Phenolic and volatile composition, as well as color characteristics, were analyzed. AP was as effective as QP at decreasing condensed tannins, with AP at 50 g/hL being the most effective treatment (25.6% reduction). QP and AP produced a minor or no statistical change in the total anthocyanins and wine color intensity. They reduced the total ester concentration, but the total alcohols remained unchanged. The outcomes of AP and QP were similar, and sometimes better than the pea proteins, thus suggesting that they could be promising options for the development of novel fining agents.
Collapse
Affiliation(s)
- Liudis L Pino-Ramos
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 3460000 Talca, Chile
| | - Encarna Gómez-Plaza
- Departamento de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Verónica R Olate-Olave
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 3460000 Talca, Chile
| | - V Felipe Laurie
- Laboratorio de enología, Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 3460000 Talca, Chile.
| | - Ana Belen Bautista-Ortín
- Departamento de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain.
| |
Collapse
|
2
|
Alves RM, de Abreu VAC, Oliveira RP, Almeida JVDA, de Oliveira MDM, Silva SR, Paschoal AR, de Almeida SS, de Souza PAF, Ferro JA, Miranda VFO, Figueira A, Domingues DS, Varani AM. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience 2024; 13:giae027. [PMID: 38837946 PMCID: PMC11152179 DOI: 10.1093/gigascience/giae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.
Collapse
Affiliation(s)
| | - Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Rafaely Pantoja Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - João Victor dos Anjos Almeida
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Mauro de Medeiros de Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Saura R Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Alexandre R Paschoal
- Departamento de Ciência da Computação (DACOM), Grupo de e Bioinformática e Reconhecimento de Padrões (bioinfo-cp), Universidade Tecnológica Federal do Paraná (UTFPR), 80230-901 Cornélio Procópio, PR, Brazil
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, OX110QX Didcot, UK
| | - Sintia S de Almeida
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Pedro A F de Souza
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jesus A Ferro
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor F O Miranda
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13416-000 Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900 Piracicaba, SP, Brazil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
3
|
Dias L, Milheiro J, Ribeiro M, Fernandes C, Neves N, Filipe-Ribeiro L, Cosme F, Nunes FM. Fast and Simple UPLC-Q-TOF MS Method for Determination of Bitter Flavan-3-ols and Oligomeric Proanthocyanidins: Impact of Vegetable Protein Fining Agents on Red Wine Composition. Foods 2023; 12:3313. [PMID: 37685245 PMCID: PMC10486807 DOI: 10.3390/foods12173313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wine phenolic compounds, particularly proanthocyanidins (PAs), play a significant role in wine sensory characteristics, specifically bitterness and astringency. Although not consensual, flavan-3-ols and oligomeric PAs are generally considered the primary contributors to wine bitterness. Patatin, a vegetable protein fining agent, has been explored as an alternative to animal and synthetic fining agents for reducing wine bitterness. However, contradictory results exist regarding its effectiveness in removing flavan-3-ols and oligomeric PAs in red wines. In this work, a UPLC-Q-TOF MS/MS method was optimized and validated for accurately measuring flavan-3-ols, as well as dimeric and trimeric PAs, in red wines. The MS/MS analysis of flavan-3-ols, in addition to the typical fragmentation described in the literature, revealed an intense mass fragment resulting from the loss of C3O2 and C3O2 + H2O from the parent ion. It was observed that flavan-3-ols and PAs undergo oxidation during sample preparation, which was reversed by the addition of 5 g/L of ascorbic acid. The method demonstrated good linearity range (2 mg/L to 20 mg/L), detection limit (0.3 mg/L to 0.7 mg/L), quantification limit (0.8 mg/L to 2.2 mg/L), precision (repeatability 2.2% to 7.3%), and accuracy (recovery 98.5% to 100.5%). The application of patatin at different doses (5 g/L to 30 g/L) in two different red wine matrices did not reduce the levels of monomeric, dimeric, and trimeric PAs in red wines. However, similar behaviors were observed for pea protein and gelatin. Therefore, wine fining trials and efficiency measurements of the treatments in each matrix are strongly advised.
Collapse
Affiliation(s)
- Lara Dias
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Juliana Milheiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Nuno Neves
- Sogrape Vinhos S.A., 4430-809 Avintes, Portugal; (C.F.); (N.N.)
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Xu J, Li Y, Kaur L, Singh J, Zeng F. Functional Food Based on Potato. Foods 2023; 12:foods12112145. [PMID: 37297391 DOI: 10.3390/foods12112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Potato (Solanum tuberosum L.) has gradually become a stable food worldwide since it can be a practical nutritional supplement and antioxidant as well as an energy provider for human beings. Financially and nutritionally, the cultivation and utility of potatoes is worthy of attention from the world. Exploring the functionality and maximizing the utilization of its component parts as well as developing new products based on the potato is still an ongoing issue. To maximize the benefits of potato and induce new high-value products while avoiding unfavorable properties of the crop has been a growing trend in food and medical areas. This review intends to summarize the factors that influence changes in the key functional components of potatoes and to discuss the focus of referenced literature which may require further research efforts. Next, it summarizes the application of the latest commercial products and potential value of components existing in potato. In particular, there are several main tasks for future potato research: preparing starchy foods for special groups of people and developing fiber-rich products to supply dietary fiber intake, manufacturing bio-friendly and specific design films/coatings in the packaging industry, extracting bioactive proteins and potato protease inhibitors with high biological activity, and continuing to build and examine the health benefits of new commercial products based on potato protein. Notably, preservation methods play a key role in the phytochemical content left in foods, and potato performs superiorly to many common vegetables when meeting the demands of daily mineral intake and alleviating mineral deficiencies.
Collapse
Affiliation(s)
- Jian Xu
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Li
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lovedeep Kaur
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Jaspreet Singh
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Pino-Ramos LL, Peña-Martínez PA, Laurie VF. Quinoa protein extract: an effective alternative for the fining of wine phenolics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6320-6327. [PMID: 35531787 DOI: 10.1002/jsfa.11982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea, wheat, and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of quinoa (Chenopodium quinoa Willd.) protein extracts (QP), compared to commercial fining agents, on red wines. RESULTS The trials compared the performance of QP (30 and 50 g/hL), two potato protein extracts and gelatin, at two different contact times (48 and 96 h), using Petit Verdot, Malbec, and Cabernet Sauvignon wines. Turbidity, total phenolics, precipitable tannins, catechins, and color characteristics were determined. QP reduced the turbidity of all wines in a similar way to commercial fining agents. Both doses of QP significantly reduced tannins and other phenolic measures, including color intensity reductions, in a similar way to commercial fining agents. CONCLUSION QP behaved as an effective fining agent that deserves further studies in order to improve its performance and advance its characterization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Paula A Peña-Martínez
- Doctorado en Ciencias Agrarias, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - V Felipe Laurie
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Bongiorno D, Avellone G, Napoli A, Mazzotti F, Piazzese D, Censi V, Indelicato S. Determination of trace levels of organic fining agents in wines: Latest and relevant findings. Front Chem 2022; 10:944021. [PMID: 35991603 PMCID: PMC9388762 DOI: 10.3389/fchem.2022.944021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The production of red wine plays a key role in the local and international economies of several nations. During the winemaking process, to clarify the final product, before bottling, and to remove undesired substances (proteins, phenols, and tannins), fining agents are commonly added to wines. These substances have different origins (animal and vegetable proteins or mineral compounds), and they show a potential risk for the health of allergic subjects. For these reasons, the residues of fining agents, constituted by exogenous proteins based on gluten, egg, and milk proteins, should not be present in the final product and their trace residues should be quantified with accuracy. In the last decade, several analytical approaches have been developed for their quantitative determination using different sample treatment protocols and analytical techniques. These methods are based on liquid chromatography coupled with mass spectrometry or enzyme-linked immunosorbent assays (ELISAs). Recently, biosensors have been proposed as a potential alternative to immunoassay approaches, allowing rapid, cheap, and simple multi-residue detection. This short review aimed to report the most recent and relevant findings in the field.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
| | - Giuseppe Avellone
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria Arcavacata di Rende, Calabria, Italy
| | - Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria Arcavacata di Rende, Calabria, Italy
| | - Daniela Piazzese
- Dipartmento di Scienze della Terra e del Mare—Università degli Studi di Palermo—via Archirafi, Palermo, Italy
| | - Valentina Censi
- Dipartmento di Scienze della Terra e del Mare—Università degli Studi di Palermo—via Archirafi, Palermo, Italy
| | - Serena Indelicato
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)—Università degli Studi di Palermo—via Archirafi,Palermo,Italy
- *Correspondence: Serena Indelicato,
| |
Collapse
|
7
|
Characterization on the impact of different clarifiers on the white wine colloids using Asymmetrical Flow Field-Flow Fractionation. Food Chem 2022; 381:132123. [DOI: 10.1016/j.foodchem.2022.132123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
|
8
|
Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules 2022; 27:molecules27051671. [PMID: 35268772 PMCID: PMC8911674 DOI: 10.3390/molecules27051671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Consumers are increasingly looking for foods, including wine, that are free of animal-derived proteins. This study seeks to evaluate patatin, a new, plant-based and allergen-free fining agent, by comparing it with the fining agents polyvinipolypyrrolidone, bovine serum albumin, and methylcellulose. Specifically, its effects on the phenolic profile of enological tannins were analyzed with four spectrophotometric assays: OD 280 nm, Folin−Ciocâlteu, Adams−Harbertson, and methylcellulose. In addition, changes in the polyphenol composition of Sangiovese red wine were determined by UV-Vis spectrophotometry and HPLC with adsorption trials, and the solid−liquid interaction in a wine solution was modeled by both Langmuir and Freundlich equations. Our findings highlight the occurrence of systematic proportional error between the selected spectrophotometric assays. As a result, direct comparisons of protein precipitation assays can be made only among results obtained with the same spectrophotometric method. However, it is clear that patatin has an impact on the phenolic profile of Sangiovese red wine: it removes simple phenolics (gallic acid, (+)-catechin, (−)-epicatechin, epicatechin gallate, syringic acid, fertaric acid, coutaric acid, and rutin) as well as both oligomeric and polymeric tannins to different extents. In concentrations of less than 1 g/L, the patatin isotherm showed a linear relation between the equilibrium concentration and the quantity absorbed, obeying the Freundlich model reasonably well (KF 1.46; 1/n 1.07; R2 0.996 with 1/n > 1). Thus, the adsorption process is strongly dependent on the fining dosage.
Collapse
|
9
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Rinaldi A, Gonzalez A, Moio L, Gambuti A. Commercial Mannoproteins Improve the Mouthfeel and Colour of Wines Obtained by Excessive Tannin Extraction. Molecules 2021; 26:molecules26144133. [PMID: 34299408 PMCID: PMC8303419 DOI: 10.3390/molecules26144133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
In the production of red wines, the pressing of marcs and extended maceration techniques can increase the extraction of phenolic compounds, often imparting high bitterness and astringency to finished wines. Among various oenological products, mannoproteins have been shown to improve the mouthfeel of red wines. In this work, extended maceration (E), marc-pressed (P), and free-run (F) Sangiovese wines were aged for six months in contact with three different commercial mannoprotein-rich yeast extracts (MP, MS, and MF) at a concentration of 20 g/hL. Phenolic compounds were measured in treated and control wines, and sensory characteristics related to the astringency, aroma, and colour of the wines were studied. A multivariate analysis revealed that mannoproteins had a different effect depending on the anthocyanin/tannin (A/T) ratio of the wine. When tannins are strongly present (extended maceration wines with A/T = 0.2), the MP conferred mouthcoating and soft and velvety sensations, as well as colour stability to the wine. At A/T = 0.3, as in marc-pressed wines, both MF and MP improved the mouthfeel and colour of Sangiovese. However, in free-run wine, where the A/T ratio is 0.5, the formation of polymeric pigments was allowed by all treatments and correlated with silk, velvet, and mouthcoat subqualities. A decrease in bitterness was also obtained. Commercial mannoproteins may represent a way to improve the mouthfeel and colour of very tannic wines.
Collapse
Affiliation(s)
- Alessandra Rinaldi
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
- Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
- Correspondence:
| | - Alliette Gonzalez
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| | - Luigi Moio
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| | - Angelita Gambuti
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| |
Collapse
|
11
|
Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most potato proteins are fractions of albumin and globulin, soluble in water and in water and salt solutions, respectively; these are patatin glycoproteins, with a pIs in the range of 4.8–5.2. This group of proteins is typical of potato and they are referred to as patatin or tuberin. Around 30–50% of soluble potato proteins comprise numerous fractions of protease inhibitors with a molecular weight in the range of 7–21 kDa; they are often heat-resistant, showing a wide spectrum of health-promoting effects. The nutritional value of proteins is related to the content of amino acids, their mutual proportions and digestibility. Natural proteins of the patatin fraction are characterized by favorable functional properties, including foam formation and stabilization, fat emulsification or gelling. Native potato proteins may also exhibit beneficial non-food properties, such as antimicrobial or antitumor, as well as antioxidant and antiradical. Depending on the method of isolation and the applied factors, such as pH, ionic strength and temperature, the directions of using potato protein preparations will be different.
Collapse
|
12
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
13
|
Patatin primary structural properties and effects on lipid metabolism. Food Chem 2020; 344:128661. [PMID: 33272761 DOI: 10.1016/j.foodchem.2020.128661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/17/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Patatin, the major protein found in potatoes, was purified and shows several isoforms. The essential amino acid content of patatin was ashighas 76%, indicating that it is a valuable protein source. Patatin was an O-linked glycoprotein that contained fucose monosaccharides, as well as mannose, rhamnose, glucose, galactose, xylose, and arabinose. Patatin had a fucosylated glycan structural feature, which strongly bound AAL (Aleuria aurantia Leukoagglutinin), a known fucose binding lectin. Moreover, thelipid metabolism regulatory effects of patatin on the fat catabolism, fat absorption, and inhibition of lipase activity were measured after high-fat feeding of zebrafish larvae. Results revealed that 37.0 μg/mL patatin promoted 23% lipid decomposition metabolism. Meanwhile patatin could inhibite lipase activity and fat absorption, whose effects accounted for half that of a positive control drug. Our findings suggest that patatin, a fucosylated glycoprotein, could potentially be used as a naturalactiveconstituent with anti-obesity effects.
Collapse
|
14
|
Gordillo B, Chamizo-González F, González-Miret ML, Heredia FJ. Impact of alternative protein fining agents on the phenolic composition and color of Syrah red wines from warm climate. Food Chem 2020; 342:128297. [PMID: 33508900 DOI: 10.1016/j.foodchem.2020.128297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Currently, the wine industry has an increasing interest in developing alternative solutions to traditional animal proteins fining agents. In this study, the impact of different protein fining agents on the turbidity, phenolic composition and color of 2-month and 12-month Syrah red wines was assessed. Wines fined with egg albumin and plant-based proteins from potato, pea, and grape seed as recent alternative, were compared to unfined control wines. Changes on turbidity, phenolic composition and color (by Differential Colorimetry) showed that animal and plant proteins differed in their clarifying efficiency and ability to interact with colorless phenolics and anthocyanins, depending on the age of wine, with important consequences on color quality and stability. Plant proteins showed lower effectiveness to reduce wine turbidity than egg albumin but modified in different way the phenolic composition, inducing lower color differences with respect to control wine and similar stability, especially potato and grape seed proteins.
Collapse
Affiliation(s)
- Belén Gordillo
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - M Lourdes González-Miret
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Francisco J Heredia
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
15
|
Chang CY, Jin JD, Chang HL, Huang KC, Chiang YF, Hsia SM. Physicochemical and Antioxidative Characteristics of Potato Protein Isolate Hydrolysate. Molecules 2020; 25:molecules25194450. [PMID: 32998236 PMCID: PMC7583958 DOI: 10.3390/molecules25194450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
This study investigated the physicochemical characteristics of potato protein isolate hydrolysate (PPIH) and its antioxidant activity. Potato protein isolate (PPI) was hydrolyzed into PPIH by the proteases bromelain, Neutrase, and Flavourzyme. Compared with PPI, the resulting PPIH had a lower molecular weight (MW, from 103.5 to 422.7 Da) and smaller particle size (<50 nm), as well as a higher solubility rate (>70%) under acidic conditions (pH 3–6). PPIH presented good solubility (73%) across the tested pH range of 3–6. As the pH was increased, the zeta potential of PPIH decreased from −7.4 to −21.6. Using the 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical-scavenging assay, we determined that the half-maximal effective concentration (EC50) values of ascorbic acid, PPIH, and PPI were 0.01, 0.89, and >2.33 mg/mL, respectively. Furthermore, PPIH (50 μg/mL) protected C2C12 cells from H2O2 oxidation significantly better than PPI (10.5% higher viability rate; p < 0.01). These findings demonstrated the possible use of PPIH as an antioxidant in medical applications.
Collapse
Affiliation(s)
- Chiung-Yueh Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.C.); (K.-C.H.); (Y.-F.C.)
| | - Jinn-Der Jin
- GeneFerm Biotechnology Co., Ltd., Tainan 741, Taiwan; (J.-D.J.); (H.-L.C.)
| | - Hsiao-Li Chang
- GeneFerm Biotechnology Co., Ltd., Tainan 741, Taiwan; (J.-D.J.); (H.-L.C.)
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.C.); (K.-C.H.); (Y.-F.C.)
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.C.); (K.-C.H.); (Y.-F.C.)
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.C.); (K.-C.H.); (Y.-F.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661
| |
Collapse
|
16
|
Masking the Perceived Astringency of Proanthocyanidins in Beverages Using Oxidized Starch Hydrogel Microencapsulation. Foods 2020; 9:foods9060756. [PMID: 32521628 PMCID: PMC7353531 DOI: 10.3390/foods9060756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Proanthocyanidins (PAs) are responsible for several health benefits of many fruits, but they could cause a generally disliked sensation of astringency. Traditional deastringency methods remove bioactive ingredients, resulting in the loss of valuable nutrients and associated health benefits. This work aimed to microencapsulate PAs from grape seeds using oxidized starch hydrogel (OSH) and mask its perceived astringency in beverages while maintaining its bioavailability. The maximum PA uptake capabilities of OSH, as well as the binding site and primary binding force between these two components, were determined. The resulting PA-OSH complex was stable under in vitro digestion, with only 1.6% of PA being released in the salivary digestion, and it has an intestine-specific release property. The reaction of PA with α-amylase in artificial saliva was substantially reduced by OSH microencapsulation, leading to 41.5% less precipitation of the salivary proteins. The sensory evaluation results showed that the microencapsulation was able to mask the astringency of PA-fortified water, as the perceived threshold of astringency increased by 3.85 times. These results proved that OSH could be used as a novel food additive to reduce the astringency of beverage products due to its hydrogel properties and ability to encapsulate phenolic compounds.
Collapse
|
17
|
Wang C, Chang T, Zhang D, Ma C, Chen S, Li H. Preparation and characterization of potato protein-based microcapsules with an emphasis on the mechanism of interaction among the main components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2866-2872. [PMID: 31960976 DOI: 10.1002/jsfa.10277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Potato protein (PP) has promising potential for utilization in food applications due to its high nutritive value and functional properties. Grapeseed oil (GO) is rich in unsaturated fatty acids and antioxidant active ingredients. However, its application is limited because of low stability and high volatility. In order to overcome such problems, PP-based microcapsules encapsulating GO were produced by complex coacervation, and characterized using optical, thermodynamic and spectroscopic analyses. RESULTS Results indicated that a ratio of GO/PP of 1:2 led to the best encapsulation effect with the maximum microencapsulation efficiency and yield. Intact and nearly spherical microcapsules were observed from scanning electron microscopy images. Results of thermogravimetry demonstrated that thermal resistance was increased in the microencapsulated GO, indicating that PP-based microcapsules could be a good way to protect the thermal stability of GO. Fourier transform infrared spectra indicated that hydrogen bonding and covalent crosslinking might occur among wall materials, but a physical interaction between GO and wall materials. CONCLUSIONS PP can be successfully used to encapsulate GO when combined with chitosan, indicating that PP-based microcapsules have potential for application in encapsulating liquid oils with functional properties. A schematic diagram of possible interactions was constructed to better understand the mechanism of formation of the microcapsules. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Tong Chang
- Zibo Center for Disease Control and Prevention, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- Laoling Xisen Potato Industry Group Co. Ltd, Laoling, China
| |
Collapse
|
18
|
Phenolic Composition Influences the Effectiveness of Fining Agents in Vegan-Friendly Red Wine Production. Molecules 2019; 25:molecules25010120. [PMID: 31905624 PMCID: PMC6983225 DOI: 10.3390/molecules25010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/02/2023] Open
Abstract
Plant proteins have been proposed as an alternative to animal-origin proteins in the wine industry because they are allergen-free and vegan-friendly. The aim of this study was to evaluate the effectiveness of plant proteins as fining agents on red wines with different phenolic composition. Two formulations for commercially available vegetal proteins (potato and pea origin) were assessed at two doses to modulate the fining treatment to the wine phenolic profile. The results evidenced that fining agents derived from plants have different levels of effectiveness on the removal of phenolic compounds depending on the origin, the formulation used, dose applied, and also wine characteristics. On Nebbiolo wine, the study was particularly significant due to its phenolic composition. One pea-based fining agent had an effect comparable to gelatin (animal origin) on the removal of polymeric flavanols with a minor loss of anthocyanins and therefore better preserving the wine color in terms of intensity and hue. For Primitivo, Montepulciano, and Syrah wines, even though there was a formulation-dependent effect, vegetal proteins gave more balanced reductions in terms of target phenolic compounds contributing to astringency and color perception.
Collapse
|
19
|
Kang W, Muhlack RA, Bindon KA, Smith PA, Niimi J, Bastian SE. Potato Protein Fining of Phenolic Compounds in Red Wine: A Study of the Kinetics and the Impact of Wine Matrix Components and Physical Factors. Molecules 2019; 24:molecules24244578. [PMID: 31847298 PMCID: PMC6943501 DOI: 10.3390/molecules24244578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Producing wines within an acceptable range of astringency is important for quality and consumer acceptance. Astringency can be modified by fining during the winemaking process and the use of vegetable proteins (especially potato proteins) as fining agents has gained increasing interest due to consumers’ requirements. The research presented was the first to investigate the effect of a potato protein dose on the kinetics of tannin and phenolic removal compared to gelatin for two unfined Cabernet Sauvignon wines. To further understand the results, the influence of the wine matrix and fining parameters (including pH, ethanol concentration, sugar concentration, temperature, and agitation) were tested according to a fractional 25-1 factorial design on one of the Cabernet Sauvignon wines using potato proteins. The results from the factorial design indicate that potato protein fining was significantly influenced by wine pH, ethanol concentration, fining temperature as well as an interaction (pH × ethanol) but not by sugar content or agitation. Insights into the steps required for the optimisation of fining were gained from the study, revealing that potato protein fining efficiency could be increased by treating wines at higher temperatures (20 °C, rather than the conventional 10–15 °C), and at both a lower pH and/or alcohol concentration.
Collapse
Affiliation(s)
- Wenyu Kang
- School of Agriculture, Food & Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (W.K.); (R.A.M.); (J.N.)
| | - Richard A. Muhlack
- School of Agriculture, Food & Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (W.K.); (R.A.M.); (J.N.)
| | - Keren A. Bindon
- The Australian Wine Research Institute, Hartley Grove, Urrbrae, Adelaide, SA 5064, Australia;
| | - Paul A. Smith
- Wine Australia, Industry House, Corner Hackney and Botanic Roads, Adelaide, SA 5000, Australia;
| | - Jun Niimi
- School of Agriculture, Food & Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (W.K.); (R.A.M.); (J.N.)
| | - Susan E.P. Bastian
- School of Agriculture, Food & Wine, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; (W.K.); (R.A.M.); (J.N.)
- Correspondence: ; Tel.: +61-8-83136647
| |
Collapse
|
20
|
Gaspar LM, Machado A, Coutinho R, Sousa S, Santos R, Xavier A, Figueiredo M, Teixeira MDF, Centeno F, Simões J. Development of Potential Yeast Protein Extracts for Red Wine Clarification and Stabilization. Front Microbiol 2019; 10:2310. [PMID: 31649649 PMCID: PMC6794431 DOI: 10.3389/fmicb.2019.02310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022] Open
Abstract
Recently, new technologies have been combined to improve quality and sensorial diversity of wine. Several fining agents were developed to induce flocculation and sedimentation of particulate matter in wine, enhancing its clarification, and stabilization. The fining agents most commonly used are animal proteins, such as milk casein or egg albumin. However, its use is being related to food intolerance. To overcome this issue, alternative sources should be explored for use in industrial processes. In previous studies performed by our consortium, the potential of yeast protein extracts (YPE) in white wine clarification, stabilization, and curative processes was identified. Thus, the main objective of the present work is to select YPE with the potential to develop fining agents for red wine, without health risk to consumers. Therefore, five yeast strains were selected from a diversified collection of oenological yeasts, in order to produce protein extracts. Along with the fining trials, a vinification assay was performed to evaluate the maceration effect of the obtained YPE. The previously selected yeast strains were also screened for the production of the usual enzymatic activities found in commercial maceration preparations, namely polygalacturonase, cellulase, protease, and ß-glucosidase activities, in order to evaluate its potential effect on wine. Our results indicate that YPE, particularly BCVII 1, BCVII 2, and BCVII 5 were able to promote a significant brilliance increase, along with a turbidity reduction and final color improvement. In the vinification assay, BCVII 2 stands out with better results for color intensity and phenolic compounds content improvement. In what refers to enzymatic activities, BCVII 2 shows advantage over the other YPEs, due to its protease and β-glucosidase activity. We demonstrate that the selected YPEs, with emphasis on BCVII 2, may represent an efficient alternative to the commonly used fining products.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Xavier
- PROENOL – Indústria Biotecnológica, Lda., Canelas, Portugal
| | | | | | - Filipe Centeno
- PROENOL – Indústria Biotecnológica, Lda., Canelas, Portugal
| | - João Simões
- Genomics Unit, Biocant, Cantanhede, Portugal
| |
Collapse
|
21
|
Fu Y, Liu W, Soladoye OP. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Fu
- College of Food Science Southwest University No. 2 Tiansheng Road Beibei District Chongqing 400715 China
| | - Wan‐Ning Liu
- College of Food Science Northeast Agricultural University No. 600 Changjiang Road Xiangfang District Harbin 150030 China
| | - Olugbenga P. Soladoye
- Food Processing Development Centre Ministry of Agriculture and Forestry Government of Alberta Leduc AB T9E 7C5 Canada
| |
Collapse
|
22
|
Ficagna E, Gava A, Rossato SB, Rombaldi CV, Zavareze EDR. Application of soy protein isolate in the fining of red wine. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2019. [DOI: 10.1051/ctv/20193401048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Soy protein isolate was evaluated as a potential fining agent as an alternative to the predominant protein commercial fining agents (ovalbumin, porcine gelatin, and pea protein isolate). Two red wines (cv. ‘Merlot’ and cv. ‘Lambrusco Maestri’) were finned, bottled, and analyzed for phenolic content, color, turbidity, and sensory profile. Independent of the protein used, fining promoted a reduction in a majority of the phenolic compound, a slight (but significant) reduction of chromatic properties, and a decrease in the turbidity of the wines. A decrease in astringency, persistence, bitterness, and wine body, as well as an increase in brightness, clarity, and acidity, was also observed in all treatments. The application of soy protein isolates yielded similar results to those obtained with other commercial fining agents, both in the physicochemical and the sensory measures, which favors its usage as an alternative to the traditional fining agents of animal-protein origin.
Collapse
|
23
|
Abstract
Fining treatments involve the addition of a substance or a mixture to wine, and are generally carried out in order to clarify, stabilize or modify the wine’s organoleptic characteristics. Usually these fining agents will bind the target compound(s) to form insoluble aggregates that are subsequently removed from the wine. The main reasons to perform wine fining treatments are to carry out wine clarification, stabilization and to remove phenolic compounds imparting unwanted sensory characteristics on the wine, which is an operation that often relies on the use of animal proteins, such as casein, gelatin, egg and fish proteins. However, due to the allergenic potential of these animal proteins, there is an increasing interest in developing alternative solutions including the use of fining proteins extracted from plants (e.g., proteins from cereals, grape seeds, potatoes, legumes, etc.), and non-proteinaceous plant-based substances (e.g., cell wall polysaccharides and pomace materials). In this article, the state of the art alternative fining agents of plant origins are reviewed for the first time, including considerations of their organoleptic and technological effects on wine, and of the allergenic risks that they can pose for consumers.
Collapse
|
24
|
Glusac J, Davidesko-Vardi I, Isaschar-Ovdat S, Kukavica B, Fishman A. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Jiménez-Martínez MD, Bautista-Ortín AB, Gil-Muñoz R, Gómez-Plaza E. Fining with purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic composition. Food Chem 2018; 271:570-576. [PMID: 30236717 DOI: 10.1016/j.foodchem.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/22/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Abstract
Fining, which involves the addition of adsorptive material in order to reduce or eliminate certain unwanted components, is a common winemaking practice. Fining agents affect the wine phenolic compounds, some of which may be reduced. When this reduction is experimented by the tannins, a positive effect may result by decreasing astringency in the wine, although a decrease in the wine color may also take place when the anthocyanins are involved, affecting its quality. Recently, grape cell wall material has been tested as a potential fining agent in wines, since it shows a high affinity for tannins so that its use could reduce wine astringency. In this work, the use of purified grape pomace as fining agent is proposed and the effect of different doses and contact times on wine chromatic characteristics was investigated as well as how differences in the composition of the purified pomace could alter the phenolic composition of a red wine. The results showed that a Monastrell purified grape pomace dose of 6 mg/ml and a contact time of 5 days could be suitable for decreasing the wine tannin content without producing great changes in the wine chromatic characteristics. When comparing the effect of purified pomaces from four grape varieties, some differences in their capacity to interact with the wine tannins and anthocyanins were found, however, the results confirm that the purified grape pomace, a byproduct of the enology industry could be a new interesting fining material.
Collapse
Affiliation(s)
- M Dolores Jiménez-Martínez
- Food Science and Technology Department, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - A Belén Bautista-Ortín
- Food Science and Technology Department, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - Rocío Gil-Muñoz
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Jumilla, Murcia, Spain
| | - Encarna Gómez-Plaza
- Food Science and Technology Department, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain.
| |
Collapse
|
26
|
Granato TM, Ferranti P, Iametti S, Bonomi F. Affinity and selectivity of plant proteins for red wine components relevant to color and aroma traits. Food Chem 2018; 256:235-243. [DOI: 10.1016/j.foodchem.2018.02.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
|
27
|
Milheiro J, Filipe-Ribeiro L, Vilela A, Cosme F, Nunes FM. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Crit Rev Food Sci Nutr 2017; 59:1367-1391. [DOI: 10.1080/10408398.2017.1408563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Juliana Milheiro
- Chemistry Research Centre - Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre - Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre - Vila Real (CQ-VR), Biology and Environment Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre - Vila Real (CQ-VR), Biology and Environment Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre - Vila Real (CQ-VR), Chemistry Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal
| |
Collapse
|
28
|
Glusac J, Isaschar-Ovdat S, Kukavica B, Fishman A. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Res Int 2017; 100:407-415. [DOI: 10.1016/j.foodres.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 12/29/2022]
|
29
|
Zhang D, Mu T, Sun H. Calorimetric, rheological, and structural properties of potato protein and potato starch composites and gels. STARCH-STARKE 2017. [DOI: 10.1002/star.201600329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Duqin Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Xi Beiwang, Haidian District Beijing P. R. China
- Key Laboratory of Agro-products Processing; Ministry of Agriculture; Xi Beiwang, Haidian District Beijing P. R. China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Xi Beiwang, Haidian District Beijing P. R. China
- Key Laboratory of Agro-products Processing; Ministry of Agriculture; Xi Beiwang, Haidian District Beijing P. R. China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Xi Beiwang, Haidian District Beijing P. R. China
- Key Laboratory of Agro-products Processing; Ministry of Agriculture; Xi Beiwang, Haidian District Beijing P. R. China
| |
Collapse
|
30
|
Maury C, Sarni-Manchado P, Poinsaut P, Cheynier V, Moutounet M. Influence of polysaccharides and glycerol on proanthocyanidin precipitation by protein fining agents. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Gambuti A, Rinaldi A, Romano R, Manzo N, Moio L. Performance of a protein extracted from potatoes for fining of white musts. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Fu Y, Wu W, Zhu M, Xiao Z. In Silico
Assessment of the Potential of Patatin as a Precursor of Bioactive Peptides. J Food Biochem 2015. [DOI: 10.1111/jfbc.12213] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Fu
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
- Department of Food Science; Aarhus University; Blichers Allé 20, Postbox 50 Tjele 8830 Denmark
| | - Wei Wu
- College of Food Science and Nutritional Engineering; China Agricultural University; 17 Qinghua East Road, Haidian District Beijing 100083 China
| | - Minpeng Zhu
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
| | - Zhigang Xiao
- College of Grain Science and Technology; Shenyang Normal University; 253 Huanghe North Street, Huanggu District Shenyang 110034 China
| |
Collapse
|
33
|
Foaming properties of potato (Solanum tuberosum) proteins: A study by the gas sparging method. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Spelbrink REJ, Lensing H, Egmond MR, Giuseppin MLF. Potato Patatin Generates Short-Chain Fatty Acids from Milk Fat that Contribute to Flavour Development in Cheese Ripening. Appl Biochem Biotechnol 2015; 176:231-43. [PMID: 25809992 PMCID: PMC4439436 DOI: 10.1007/s12010-015-1569-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/12/2015] [Indexed: 10/24/2022]
Abstract
The potato lipase, patatin, has long been thought of as essentially inactive towards triacylglycerols. Recently, technology has been developed to isolate potato proteins in native form as food ingredients at industrial scale. Characterisation of native patatin obtained in this way revealed that this enzyme activity towards triacylglycerols has been underestimated. This enables the application of patatin in cheese ripening, which is described in this study. When patatin is added to milk during cheese making, the lipase preferentially releases short-chain fatty acids that contribute to cheese flavour in a dose-dependent manner. Fortuitously, the lipase activity is found mainly in the curd. The release of the short-chain fatty acids matches the activity profile of patatin towards homotriacylglycerols of defined chain length. Residual patatin in the whey fraction can be inactivated effectively by heat treatment that follows Arrhenius kinetics. The results are discussed in terms of cheese making, patatin substrate preference and implications for the use of patatin more generally in food emulsions.
Collapse
|
35
|
Fernandes JP, Neto R, Centeno F, De Fátima Teixeira M, Gomes AC. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization. Front Chem 2015; 3:20. [PMID: 25853122 PMCID: PMC4364169 DOI: 10.3389/fchem.2015.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022] Open
Abstract
Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76–89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011.
Collapse
Affiliation(s)
| | | | - Filipe Centeno
- PROENOL - Indústria Biotecnológica, Lda. Canelas, Portugal
| | | | | |
Collapse
|
36
|
Rinaldi A, Iturmendi N, Gambuti A, Jourdes M, Teissedre PL, Moio L. Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva. Electrophoresis 2015; 35:1735-41. [PMID: 25025096 DOI: 10.1002/elps.201300622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Saliva is a biological fluid with a multifunctional role that makes it interesting in terms of research and diagnostic possibilities. In food research, human saliva represented a useful tool by which we measure the tactile sensation elicited by polyphenol-rich beverages called astringency. A method based on SDS-PAGE analysis of saliva before and after the binding reaction with wine polyphenols has been successfully used in previous studies for measuring wine astringency by means of the saliva precipitation index. In this work, chip electrophoresis was used alternatively to SDS-PAGE and results were compared. Chip electrophoresis provides a very good reproducibility for wine and grape astringency. Moreover, this approach is much faster than the conventional SDS-PAGE method requiring several hours for an analysis. Another advantage over traditional gel is lower sample and reagent volume requirements, as well as the lower and less toxic wastes, contributing benefits to health and environment. The application of this novel method allowed, using the principal component analysis, to distinguish grapes and wines according to the saliva precipitation index and structural characteristics determined by the phoroglucinolysis analysis.
Collapse
|
37
|
|
38
|
Fining white wine with plant proteins: effects of fining on proanthocyanidins and aroma components. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2108-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Guerrero RF, Smith P, Bindon KA. Application of insoluble fibers in the fining of wine phenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4424-4432. [PMID: 23565656 DOI: 10.1021/jf400172f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.
Collapse
Affiliation(s)
- Raúl F Guerrero
- The Australian Wine Research Institute, Hartley Grove, Urrbrae 5064, Adelaide, Australia
| | | | | |
Collapse
|