1
|
Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance. FORESTS 2022. [DOI: 10.3390/f13040551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect and responses to drought stress were analyzed in Quercus ilex L. seedlings using a nontargeted metabolomic approach, implementing the approaches of previous studies in which other -omics platforms, transcriptomics, and proteomics were employed. This work aimed to characterize the Q. ilex leaf metabolome, determining possible mechanisms and molecular markers of drought tolerance and identifying putative bioactive compounds. Six-month-old seedling leaves subjected to drought stress imposed by water withholding under high-temperature and irradiance conditions were collected when leaf fluorescence decreased by 20% (day 17) and 45% (day 24) relative to irrigated seedlings. A total of 3934 compounds were resolved, with 616 being variable and 342 identified, which belonged to five chemical families. Out of the identified compounds, 33 were variable, mostly corresponding to amino acids, carboxylic acids, benzenoids, flavonoids and isoprenoids. Epigallocatechin, ellagic acid, pulegone, indole-3-acrylic acid and dihydrozeatin-O-glucoside were up-accumulated under drought conditions at both sampling times. An integrated multi-omics analysis of phenolic compounds and related enzymes was performed, revealing that some enzymes involved in the flavonoid pathways (chalcone synthase, anthocyanidin synthase and anthocyanidin reductase) were up-accumulated at day 24 in non-irrigated seedlings. Some putative markers of tolerance to drought in Q. ilex are proposed for assisting breeding programs based on the selection of elite genotypes.
Collapse
|
2
|
The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging wine is a usual practice in winemaking, as the wine quality improves due to the compounds extracted from wood barrels or chips, cubes, blocks, or staves used. The wood species used are traditionally oak, namely from Quercus petraea, Q. alba, or Q. robur species. In the last years, the increasing request for oak wood has caused a significant increase in environmental and production costs. Therefore, heartwood from several alternative species has been considered a potential wood source for winemaking and aging. Thus, the main purpose of this review is the application of these alternative wood species on wine production and to discuss the advantages and disadvantages of its use compared with the traditional wood species, namely oak wood. In addition, a brief chemical characterization of several wood species with possible application in enology is also discussed in this review.
Collapse
|
3
|
Senobari Z, Karimi G, Jamialahmadi K. Ellagitannins, promising pharmacological agents for the treatment of cancer stem cells. Phytother Res 2021; 36:231-242. [PMID: 34697838 DOI: 10.1002/ptr.7307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Human tumors comprise subpopulations of cells called cancer stem cells (CSCs) that possess stemness properties. CSCs can initiate tumors and cause recurrence, metastasis and are also responsible for chemo- and radio-resistance. CSCs may use signaling pathways similar to normal stem cells, including Notch, JAK/STAT, Wnt and Hedgehog pathways. Ellagitannins (ETs) are a broad group of substances with chemopreventive and anticancer activities. The antitumor activity of ETs and their derivatives are mainly related to their antiinflammatory capacity. They are therefore able to modulate secretory growth factors and pro-inflammatory mediators such as IL-6, TGF-β, TNF-α, IL-1β and IFN-γ. Evidence suggests that ETs display their anticancer effect by targeting CSCs and disrupting stem cell signaling. However, there are still few studies in this field. Therefore, high-quality studies are needed to firmly establish the clinical efficacy of the ETs on CSCs. This paper reviews the structures, sources and pharmacokinetics of ETs. It also focuses on the function of ETs and their effects on CSCs-related cytokines and the relationship between ETs and signaling pathways in CSCs.
Collapse
Affiliation(s)
- Zohre Senobari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Castro-Vázquez L, Lozano MV, Rodríguez-Robledo V, González-Fuentes J, Marcos P, Villaseca N, Arroyo-Jiménez MM, Santander-Ortega MJ. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules 2021; 26:molecules26195928. [PMID: 34641471 PMCID: PMC8512928 DOI: 10.3390/molecules26195928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.
Collapse
Affiliation(s)
- Lucía Castro-Vázquez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| | - María Victoria Lozano
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Virginia Rodríguez-Robledo
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Joaquín González-Fuentes
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Pilar Marcos
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Noemí Villaseca
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Maria Mar Arroyo-Jiménez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Manuel J. Santander-Ortega
- Pharmaceutical Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| |
Collapse
|
5
|
Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. FORESTS 2020. [DOI: 10.3390/f11090904] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Quercus genus provides a large amount of biomaterial with many applications in fields like pharmaceutics, cosmetics, and foodstuff areas. Due to the worldwide dissemination of the genus, many species were used for centuries in traditional healing methods or in the wine maturing process. This review aims to bring together the results about phytoconstituents from oak extracts and their biological applicability as antioxidants, antimicrobial, anticancer, etc. The literature data used in this paper were collected via PubMed, Scopus, and Science Direct (2010–June 2020). The inclusion criteria were papers published in English, with information about phytoconstituents from Quercus species (leaves, bark and seeds/acorns) and biological activities such as antioxidant, antibacterial, antiobesity, anti-acne vulgaris, antifungal, anticancer, antiviral, antileishmanial, antidiabetic, anti-inflammatory. The exclusion criteria were the research of other parts of the Quercus species (e.g., galls, wood, and twigs); lack of information about phytochemistry and biological activities; non-existent Quercus species reported by the authors. The most studied Quercus species, in terms of identified biomolecules and biological activity, are Q. brantii, Q. infectoria and Q. robur. The Quercus species have been reported to contain several phytoconstituents. The main bioactive phytochemicals are phenolic compounds, volatile organic compounds, sterols, aliphatic alcohols and fatty acids. The, Quercus species are intensely studied due to their antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, provided by their phytochemical composition. The general conclusion is that oak extracts can be exploited for their biological activity and can be used in research fields, such as pharmaceutical, nutraceutical and medical.
Collapse
|
7
|
|
8
|
Determination of the Phenolic Profile and Antioxidant Activity of Leaves and Fruits of SpanishQuercus coccifera. J CHEM-NY 2018. [DOI: 10.1155/2018/2573270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the phytochemical composition and antioxidant activity of methanol extracts of leaves and fruits (acorns) ofQuercus coccifera(kermes oak). Forty-one compounds were characterized using high-performance liquid chromatography with electrospray multistage mass spectrometry (HPLC-ESI-MSn) with an ion trap mass spectrometer. A high percentage of the detected compounds were gallic acid derivatives, although some saccharides and flavonoids were also present. This phytochemical pattern is typical inQuercusspecies, which are rich in gallotannins. These compounds are partially responsible for the cardioprotective effects observed in different food samples containing them. We evaluated the antioxidant activity by ABTS and DPPH assays. In both cases, high antioxidant activity was observed, being higher in acorns than in leaves. The high antioxidant potential of the extracts, which is related to the high total phenolic content, indicates the potential benefit of the use of this species as a source of bioactive compounds.
Collapse
|
9
|
Antioxidant Properties of Polyphenolic Extracts from Quercus Laurina, Quercus Crassifolia, and Quercus Scytophylla Bark. Antioxidants (Basel) 2018; 7:antiox7070081. [PMID: 29949924 PMCID: PMC6071044 DOI: 10.3390/antiox7070081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023] Open
Abstract
The objective of this work was to determine the concentration of total phenols, total flavonoids, hydroxycinnamic acids, and proanthocyanidins present in crude extracts of Quercus laurina, Q. crassifolia, and Q. scytophylla bark. They were extracted by ethanol (90%) maceration and hot water. The antioxidant capacity was determined by the ability to capture OH•, O₂•−, ROO•, H₂O₂, NO•, and HClO. The hot water crude extract of Q. crassifolia was chosen to be concentrated and purified due to its higher extraction yield (20.04%), concentration of phenol compounds (747 mg gallic acid equivalent (GAE)/g, 25.4 mg quercetin equivalent (QE)/g, 235 mg ChAE/g, 25.7 mg chlorogenic acid equivalents (ChAE)/g), and antioxidant capacity (expressed as half maximal effective concentration (EC50, µg/mL): OH• = 918, O2•− = 80.5, ROO• = 577, H₂O₂ = 597, NO• ≥ 4000, HClO = 740). In a second stage, Q. crassifolia extracted with hot water was treated with ethyl acetate, concentrating the phenol compounds (860 mg GAE/g, 43.6 mg QE/g, 362 ChAE/g, 9.4 cyanidin chloride equivalents (CChE)/g) and improving the scavenging capacity (OH• = 467, O2•− = 58.1, ROO• = 716, H₂O₂ = 22.0, NO• ≥ 4000, HClO = 108). Q. crassifolia had the highest polyphenolic concentration and the better capacity for scavenging reactive species, being a favorable candidate to be considered in the development of new products.
Collapse
|
10
|
García-Villalba R, Espín JC, Tomás-Barberán FA, Rocha-Guzmán NE. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.07.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Miranda I, Sousa V, Ferreira J, Pereira H. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS One 2017; 12:e0179268. [PMID: 28614371 PMCID: PMC5470685 DOI: 10.1371/journal.pone.0179268] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/27/2017] [Indexed: 12/31/2022] Open
Abstract
Heartwood and sapwood of Quercus faginea were evaluated in relation to summative chemical composition and non-polar and polar extracts composition, including an assessment of antioxidant properties (DPPH and FRAP). Twenty trees from two sites in Portugal were analysed. Heartwood had approximately two times more solvent extractible compounds than sapwood (on average 19.0% and 9.5%). The lipophilic extractible compounds were below 1%, and most of them were polar e.g. ethanol-soluble compounds corresponded to 65% of total extractives in heartwood and 43% in sapwood. Lignin content was similar in sapwood and heartwood (28.1% and 28.6% of extractive-free wood respectively) as well as the sugar composition. Site did not influence the chemical composition. The lipophilic extractible compounds from both sapwood and heartwood included mainly saturated fatty acids (23.0% and 36.9% respectively) and aromatic compounds were also abundant in sapwood (22.9%). The ethanol-water extractibles had a high content of phenolic substances (558.0 and 319.4 mg GAE/g extract, respectively of heartwood and sapwood). The polyphenolic composition was similar in heartwood and sapwood with higher content of ellagitannins (168.9 and 153.5 mg tannic acid/g of extract in sapwood and heartwood respectively) and very low content of condensed tannins. The antioxidant activity was very high with IC50 of 2.6 μg/ml and 3.3 μg/ml for sapwood and heartwood respectively, as compared to standard antioxidants (IC50 of 3.8 μg/ml for Trolox). The ferric reducing ability was 2.8 and 2.0 mMol Trolox equivalents/g extract of heartwood and sapwood respectively. The variability between trees was low and no differences between the two sites were found. Q. faginea showed a very good potential for cooperage and other applications for which a source of compounds with antioxidant properties is desirable.
Collapse
Affiliation(s)
- Isabel Miranda
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Vicelina Sousa
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Ferreira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|