1
|
Yin Y, Hu M, Yang Z, Zhu J, Fang W. Salicylic acid promotes phenolic acid biosynthesis for the production of phenol acid-rich barley sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5350-5359. [PMID: 38329450 DOI: 10.1002/jsfa.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Phenolic acid exhibits a variety of well-known physiological functions. In this study, optimal germination conditions to ensure total phenolic acid enrichment in barley sprouts induced by salicylic acid treatment and its effects on sprout physiology and activity, as well as the gene expression of key enzymes for phenolic acid biosynthesis, were investigated. RESULTS When sprouts were treated with 1 mmol L-1 salicylic acid during germination and germinated at 25 °C for 4 days, the phenolic acid content was 1.82 times that of the control, reaching 1221.54 μg g-1 fresh weight. Salicylic acid significantly increased the activity of phenylalanine aminolase and cinnamic acid-4-hydroxylase and the gene expression of phenylalanine aminolase, cinnamic acid-3-hydroxylase, cinnamic acid-4-hydroxylase, 4-coumaric acid-coenzyme A, caffeic acid O-methyltransferase, and ferulate-5-hydroxylase in barley sprouts. However, salicylic acid treatment significantly increased malondialdehyde and H2O2 content, H2O2 and O2 - fluorescence intensity, as well as significantly decreasing sprout length and fresh weight. Salicylic acid treatment markedly increased the activity of peroxidase and catalase and the gene expression of peroxidase, catalase, and ascorbate peroxidase in barley sprouts. CONCLUSION Salicylic acid treatment during barley germination significantly promoted the enrichment of total phenolic acid by increasing the activities and gene expression levels of enzymes involved in the phenolic acid biosynthesis pathway. Salicylic acid induced the accumulation of reactive oxygen species, inhibited sprout growth, and activated the antioxidant system. This study provides a basis for the future development of functional foods using phenol acid-rich plants as raw materials. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meixia Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Nadeem F, Hanif MA, AlMasoud N, Alomar TS, Younis A. Efficient nanostructured materials to reduce nutrient leaching to overcome environmental contaminants. Sci Rep 2024; 14:4772. [PMID: 38413788 PMCID: PMC10899617 DOI: 10.1038/s41598-024-54049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Nutrient leaching is a major reason for fresh and ground water contamination. Menthol is the major bioactive ingredient of Mentha arvensis L. and one of the most traded products of global essential oil market. The indigenous production of menthol crystals in developing countries of the world can prove to be the backbone for local growers and poor farmers. Therefore, present research was designed to check the effects of nano-structured plant growth regulators (PGRs) (28-homobrassinolide and ethephon) with reduced leaching potentials on the essential oil and menthol (%) of Mentha arvensis L. The prepared nano-formulations were characterized by Fourier transform infrared (FTIR) spectroscopy, Laser induced breakdown spectroscopy (LIBS), Differential scanning colorimetry-thermal gravimetric analysis (DSC-TGA), Scanning electron microscopy (SEM), Atomic absorption spectrometry (AAS) and Zeta potential and Zeta size analysis. The menthol (%) was determined by modified spectrophotometric and gas chromatographic (GC) method. The highest essential oil (%) was obtained by the application of 28-homobrassinolide-Zn-NPs-L-II (0.92 ± 0.09%) and ethephon-Ca-NPs-L-III (0.91 ± 0.05%) as compared to the control (0.65 ± 0.03%) and blank (0.62 ± 0.09%). The highest menthol (%) was obtained by applying 28-homobrassinolide-Ca-NPs-L-I (80.06 ± 0.07%), 28-homobrassinolide-Ca-NPs-L-II (80.48 ± 0.09%) and 28-homobrassinolide-Ca-NPs-L-III (80.84 ± 0.11%) and ethephon-Ca-NPs-L-III (81.53 ± 0.17%) and ethephon-Zn-NPs-L-II (81.93 ± 0.26%) as compared to control (67.19 ± 0.14%) and blank (63.93 ± 0.17%).
Collapse
Affiliation(s)
- Farwa Nadeem
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Asif Hanif
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
3
|
Perchuk IN, Shelenga TV, Burlyaeva MO. The Effect of Illumination Patterns during Mung Bean Seed Germination on the Metabolite Composition of the Sprouts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3772. [PMID: 37960128 PMCID: PMC10649298 DOI: 10.3390/plants12213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Mung bean (Vigna radiata (L.) Wilczek) sprouts are popular over the world because of their taste, nutritional value, well-balanced biochemical composition, and other properties beneficial for human health. Germination conditions affect the composition of metabolites in mung bean sprouts, so a detailed study into its variability is required. This article presents the results of a comparison of the metabolite composition in the leaves of mung bean sprouts germinated first in the dark (DS) and then in the light (LS). Gas chromatography with mass spectrometry (GC-MS) made it possible to identify more than 100 compounds representing various groups of phytochemicals. Alcohols, amino acids, and saccharides predominated in the total amount of compounds. The analysis of metabolomic profiles exposed a fairly high intra- and intervarietal variability in the metabolite content. DS and LS differed in the qualitative and quantitative content of the identified compounds. The intravarietal variability was more pronounced in DS than in LS. DS demonstrated higher levels of saccharides, fatty acids, acylglycerols, and phenolic compounds, while amino acids were higher in LS. Changes were recorded in the quantitative content of metabolites participating in the response of plants to stressors-ornithine, proline, GABA, inositol derivatives, etc. The changes were probably induced by the stress experienced by the sprouts when they were transferred from shade to light. The analysis of variance and principal factor analysis showed the statistically significant effect of germination conditions on the content of individual compounds in leaves. The identified features of metabolite variability in mung bean genotypes grown under different conditions will contribute to more accurate selection of an illumination pattern to obtain sprouts with desirable biochemical compositions for use in various diets and products with high nutritional value.
Collapse
Affiliation(s)
- Irina N. Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| | | | - Marina. O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| |
Collapse
|
4
|
Peng W, Wang N, Wang S, Wang J, Bian Z. Effect of co-treatment of microwave and exogenous l-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2014-2022. [PMID: 36221181 DOI: 10.1002/jsfa.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/18/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tartary buckwheat is rich in flavonoids. The application of physical processing technology and exogenous materials treatment can effectively promote grain germination and the accumulation of bioactive secondary metabolites. The content of four flavonoids, the activities of key enzymes (phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), flavonol synthase (FLS)) and the expression of key enzyme genes (FtPAL, FtCHI, FtFLS1, FtFLS2) in Tartary buckwheat sprouts treated with microwave and l-phenylalanine (l-Phe) were investigated, and the relationship between them was analyzed to explore the mechanism of promoting flavonoid accumulation, and to provide a theoretical basis for the development of functional Tartary buckwheat sprout food. RESULTS Germination can promote the synthesis of flavonoids. The contents of chlorogenic acid and rutin in 7-day sprouts increased by 13 420.63% and 225.12% compared with seeds, respectively. Under the best treatment condition T3 (microwave 250 W, 90 s, 2.9 mmol L-1 L-Phe), the specific activities of PAL, CHI and FLS in 5-day-old sprouts increased by 47.84%, 53.04% and 28.02% compared with control check (CK), respectively; and the expression of FtPAL, FtCHI and FtFlS1 increased by 39.84%, 24.78% and 33.72% compared with CK, respectively. Correlation analysis showed that the content of flavonoids in Tartary buckwheat sprouts was significantly positively correlated with the specific activities of key enzymes (P < 0.01) and dynamically correlated with genes related to the synthesis of three enzymes. CONCLUSION It suggested that microwave and l-Phe treatment may promote the synthesis of flavonoids by promoting the expression of key enzymes genes in phenylpropane metabolism and controlling the activity of key enzymes in phenylpropane metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenping Peng
- Food Science and Engineering, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- Food Science and Engineering, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- Food Science and Engineering, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Xichang, China
| | - Zixiu Bian
- Food Science and Engineering, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
5
|
Lyu C, Zhang X, Huang L, Yuan X, Xue C, Chen X. Widely targeted metabolomics analysis characterizes the phenolic compounds profiles in mung bean sprouts under sucrose treatment. Food Chem 2022; 395:133601. [PMID: 35816988 DOI: 10.1016/j.foodchem.2022.133601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Phenolic compounds are one of the wholesome substances of mung bean sprouts, showing numerous health-promoting functions. Here, effects of sucrose on phenolic compounds profiles of mung bean sprouts were investigated. Results showed that the content and composition of phenolic compounds were significantly altered by 1‰ and 5‰ sucrose, respectively. The antioxidant capacity was significantly improved by sucrose. Based on metabolomics, 251 metabolites were detected, of which 106 were phenolic compounds. Correlation analysis showed 21 phenolics were positively correlated with antioxidant capacity. The changes in phenolic composition and antioxidant capacity after sucrose treatment were mainly due to the enrichment of phenolic biosynthesis pathways. Moreover, the gene expression and enzyme activity analysis of key phenolic biosynthetic genes contributed to elucidate the phenolic profile under sucrose treatment. In summary, mung bean sprouts are promising sources of dietary phenolic compounds and sucrose treatment is a good process to produce phenolic-rich mung bean sprouts.
Collapse
Affiliation(s)
- Chongyang Lyu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
6
|
Liu W, Zhang Z, Zhang T, Qiao Q, Hou X. Phenolic profiles and antioxidant activity in different organs of Sinopodophyllum hexandrum. FRONTIERS IN PLANT SCIENCE 2022; 13:1037582. [PMID: 36438133 PMCID: PMC9682152 DOI: 10.3389/fpls.2022.1037582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Sinopodophyllum hexandrum is a perennial anti-cancer medicinal plant as unique phytochemical composition podophyllotoxin, and it has special effects on the treatments of pneumonic, cervical and testicular cancers. Besides the podophyllotoxin, phenolic substances play a key role in the clinical practice. However, few reports were available in terms of the phenolic compositions and antioxidant activity. In this work, main phenolic compounds were quantified by RP-HPLC in seven organs from S. hexandrum. Simultaneously, the sodium borohydride/chloranil-based (SBC) method and the Folin-Ciocalteau colorimetric method were used to determine total flavonoids and total phenols contents, respectively. The antioxidant activity of the different organs was further assessed by three methods (DPPH method, ABTS method and FRAP method). Phenolic compositions/total flavonoids contents/total phenols contents/antioxidant activity was observed to have significant differences among different organs (P<0.05), but have a consistent changing rule viz. rhizome>root>fruit>flower>leaf>stem>petiole. Furthermore, a correlation analysis was employed and indicated that a positive correlation existed between phenolic compositions contents and antioxidant activity. Obviously, rhizome had high phenolic compositions contents and strong antioxidant activity with the low DPPHIC50 value of 23.52 μg/mL, high ABTS value of 1137.82 μmol equiv. Trolox/g and high FRAP value of 685.76 μmol equiv. Trolox/g. Therefore, rhizome is recommended as a preponderant medicinal part, and root is proposed as an alternative raw material resource for natural antioxidant agents in functional food, medicine and chemicals. This study can provide a new insight into the utilization extension of S. hexandrum resources.
Collapse
|
7
|
Kong F, Li Y, Zhang Y, Zeng Q, Guo X. Elucidation of the potential antioxidant compound and mechanism of mung bean using network pharmacology and in vitro anti-oxidative activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mung bean is rich in bioactive components, but the main compound and pharmacological mechanism in reducing oxidative and free radical damage are unclear. Network pharmacology and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activities were employed to uncover the antioxidant mechanism of potentially active compounds, considering the interactions between mung bean targets and oxidative and free radical damage. These key targets were analyzed by protein–protein interactions (PPIs), and key genes were used to find the biological pathway and therapeutic mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that five antioxidant components and 18 mung bean targets were screened. β-carotene and vitexin both played a crucial role in mung bean against oxidative and free radical damage, and the ABTS radical scavenging activities of β-carotene and vitexin were 94.84 and 87.79%, which were equivalent to those of vitamin C. Key targets may be AR, HSP90AA1, MYC, and CASP3 for mung bean to exert antioxidant activity. GO and KEGG indicated that mung bean may mainly act on thyroid hormone signaling pathway, estrogen signaling pathway, p53 signaling pathway, etc. In vitro antioxidant activity tests showed that the bioactive ingredients of mung beans had great antioxidant activity. Network pharmacology analysis also revealed the underlying molecular mechanisms of oxidative and free radical damage. This study provides new insights and evidence to explore the bioactive compounds and biological functions of food cereals and legumes, as well as a reference for the functional evaluation of food ingredients and the development of functional foods.
Collapse
|
8
|
Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Nutritional Improvement of Bean Sprouts by Using Chitooligosaccharide as an Elicitor in Germination of Soybean (Glycine max L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soybean sprouts are among the healthiest foods consumed in most Asian countries. Their nutritional content, especially bioactive compounds, may change according to the conditions of germination. The purpose of this study was to test the effect of chitooligosaccharide with different molecular weight and dosage on nutritional quality and enzymatic and antioxidant activities of soybean sprouts. The chitooligosaccharide elicitor strongly stimulated the accumulation of vitamin C, total phenolics, and total flavonoid. The stimulation effect was correlated with the molecular weight and concentration of chitooligosaccharide. With treatment of 0.01% of 1 kDa chitooligosaccharide, the nine phenolic constituents and six isoflavone compounds were significantly increased. The antioxidant capacity (DPPH radical and hydroxyl radical scavenging activity) and antioxidase activities (catalase and peroxidase) of soybean sprouts were also enhanced after treatment with chitooligosaccharide. The degree of chitooligosaccharide-induced elicitor activity increased as the molecular weight of chitooligosaccharide decreased. These results suggest that soaking soybean seeds in a solution of chitooligosaccharide, especially in 0.01% of 1 kDa chitooligosaccharide, may effectively improve the nutritional value and physiological function of soybean sprouts.
Collapse
|
10
|
Study of inhibition of germination of potato by ethylene. Heliyon 2021; 7:e06175. [PMID: 33644464 PMCID: PMC7887391 DOI: 10.1016/j.heliyon.2021.e06175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
In Canada, the potato (Solanum tuberosum) is by far the most cultivated vegetable and plays a major nutritional role. However, during storage, the potato can easily undergo germination. In this study we have shown the inhibition potential of ethylene as an anti-germinative agent acting especially on phenols. In both varieties assayed (Yukon Gold and Russet Burbank) in this study, the ethylene treatment led to a decrease in total phenol concentration of about 20%. The analysis of potato extracts showed the decrease of specific phenol concentrations which was dependant on the time and temperature of extraction. Our hypothese that the transformation of phenols into phenolic ethyl ethers via possible radical mechanism were then formulated and confirmed by LC and LC/MS.
Collapse
|
11
|
Wei Y, Wang X, Shao X, Xu F, Wang H. Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts. Food Sci Nutr 2019; 7:4037-4044. [PMID: 31890184 PMCID: PMC6924319 DOI: 10.1002/fsn3.1269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022] Open
Abstract
Mung bean seeds were soaked in 0.5 g/L of sucrose solution for 24 hr at 25°C and sprayed with this solution every 12 hr during the germination for 5 days. Our results showed that exogenous sucrose significantly increased vitamin C content throughout germination, and sucrose-treated sprouts had 23% more vitamin C (20.8 mg/100 g FW) than in control sprouts on day 5. This may be related to higher levels of glucose and l-galactono-1, 4-lactone dehydrogenase activity seen in the treated group versus the control. Total phenolic content and activities of superoxide dismutase, catalase, and ascorbate peroxidase were significantly higher in sucrose-treated mung bean sprouts than the controls, which contributed to the higher antioxidant activity in sucrose-treated sprouts. These results indicate that exogenous sucrose treatment increases the content of vitamin C and total phenolics, and enhances the antioxidant activity in mung bean sprouts. It suggests that exogenous sucrose treatment could be an effective technique for producing mung bean sprouts with more vitamin C and higher antioxidant capacity.
Collapse
Affiliation(s)
- Yingying Wei
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| | - Xingxing Wang
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| | - Xingfeng Shao
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| | - Feng Xu
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| | - Hongfei Wang
- College of Food and Pharmaceutical SciencesNingbo UniversityNingboChina
| |
Collapse
|
12
|
Jia Y, Ma Y, Zou P, Cheng G, Zhou J, Cai S. Effects of Different Oligochitosans on Isoflavone Metabolites, Antioxidant Activity, and Isoflavone Biosynthetic Genes in Soybean ( Glycine max) Seeds during Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4652-4661. [PMID: 30933513 DOI: 10.1021/acs.jafc.8b07300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five oligochitosans with increasing degrees of polymerization (DPs), i.e., from chitotriose to chitoheptaose, were examined to clarify the structure-bioactivity relationship between the DPs of oligochitosans and their effects on the isoflavone metabolites, total phenolic and flavonoid contents (TPC and TFC, respectively), and antioxidant activity of soybean ( Glycine max) seeds during germination. Oligochitosans of different DPs exhibited varying influences on the TPC, TFC, and antioxidant activities of soybean seeds. Chitohexaose exerted a strong effect and significantly increased the aforementioned parameters in soybean seeds 72 h after germination. Genistin, malonylgenistin, and genistein were the main isoflavones found, and the genistin and genistein contents were significantly enhanced by 67.32% and 131.38%, respectively, after chitohexaose treatment. Several critical genes involved in the isoflavone biosynthesis (i.e., PAL, CHS, CHI, IFS) of soybeans treated with and without chitohexaose were analyzed, and results suggested that chitohexaose application could dramatically stimulate the transcription of these genes.
Collapse
Affiliation(s)
- Yijia Jia
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Yanli Ma
- College of Food Science and Technology , Hebei Agricultural University , Baoding , Hebei Province 071001 , People's Republic of China
| | - Ping Zou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao , Shandong Province 266101 , People's Republic of China
| | - Guiguang Cheng
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Jiexin Zhou
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| |
Collapse
|
13
|
Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Dueñas M, Martínez-Villaluenga C, Limón RI, Peñas E, Frias J. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|