1
|
Dai J, Zhang Y, Gao T, Lin Y, Tang Y, Jiang Z, Zhu Y, Li L, Ni H. A comparative study of two α-L-rhamnosidases with high sequence identity. Int J Biol Macromol 2024; 277:134174. [PMID: 39084418 DOI: 10.1016/j.ijbiomac.2024.134174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The GH78 α-L-rhamnosidase from Aspergillus tubingensis (AT-Rha) was proved to be a new clade of Aspergillus α-L-rhamnosidases in the previous study. A putative α-L-rhamnosidase from A. kawachii IFO 4308 (AK-Rha) has 92 % identity in amino acid sequence with AT-Rha. In this study, AK-Rha was expressed in P. pastoris and characterized. Similar to AT-rRha, the recombinant AK-Rha (AK-rRha) showed a narrow substrate specificity to naringin. Interestingly, the enzyme activity of AK-rRha was 0.816 U/mg toward naringin, significantly lower than 125.142 U/mg of AT-rRha. Their large differences in catalytic efficiency was mainly due to their differences in kcat values between AK-rRha (0.67 s-1) and AT-rRha (4.89 × 104 s-1). The molecular dynamics simulation exhibited that the overall conformation of AK-Rha was rigid and that of AT-Rha was flexible; the Loop Y-L located above the catalytic domain formed different steric hindrances to naringin, and interacted with the flavonoid matrices at different strengths. The polar solvation energy analysis implied that the glycosidic bond was more easily hydrolysed in AT-Rha. The comparative study verified that the main feature of AK-Rha and AT-Rha represented Aspergillus α-L-rhamnosidase was the narrow substrate specificity toward naringin, and provided an insight of the relationships between their catalytic abilities and structures.
Collapse
Affiliation(s)
- Jiayuan Dai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yichun Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ting Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yiling Tang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| |
Collapse
|
2
|
Luo CM, Ke LF, Huang XY, Zhuang XY, Guo ZW, Xiao Q, Chen J, Chen FQ, Yang QM, Ru Y, Weng HF, Xiao AF, Zhang YH. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb Technol 2024; 175:110410. [PMID: 38340378 DOI: 10.1016/j.enzmictec.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.
Collapse
Affiliation(s)
- Chen-Mu Luo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li-Fan Ke
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiang-Yu Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Yan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Ze-Wang Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiu-Ming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| | - Yong-Hui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| |
Collapse
|
3
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Peng C, Li R, Ni H, Li LJ, Li QB. The effects of α‐L‐rhamnosidase, β‐D‐glucosidase, and their combination on the quality of orange juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Peng
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Rui Li
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Hui Ni
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Li Jun Li
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Qing Biao Li
- College of Food and Biological Engineering Jimei University Xiamen China
| |
Collapse
|
5
|
Zhang F, You S, Huang T, Wang JZ, Zhu LL, Wang B, Ye WS, Herman RA, Luo H, Wang J. Dual promoter strategy enhances co-expression of α-L-rhamnosidase and enhanced fluorescent protein for whole-cell catalysis and bioresource valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137865. [PMID: 32192973 DOI: 10.1016/j.scitotenv.2020.137865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Developing circular economy is the only way to improve the efficiency of resource utilization. Whole-cell catalysis is an effective method to recycle enzymes, improve catalytic efficiency, and reduce production costs. The enzyme, α-L-rhamnosidase has considerable application prospects in the field of biocatalysis as it can hydrolyze a variety of α-L rhamnoses. In the present study, the genes for α-L-rhamnosidase (rhaB1) and enhanced fluorescent protein (EGFP) were co-expressed using a bi-promoter expression vector pRSFDuet1 and their enzymatic properties were evaluated. To our knowledge, this study has established an effective rhamnosidase-fluorescent indicator and whole-cell catalytic system for the first time. Moreover, we analyzed the change in the activity of the crude rhaB1-EGFP as well as its whole-cell during the biocatalysis process using fluorescence intensity. Recombinant rhaB1-EGFP as a product which contains rhaB1 and EGFP showed higher thermal stability, pH stability, and conversion efficiency than rhaB1, and its optimum temperature for rutin catalysis was ideal for industrial applications. Moreover, under the optimal conditions of a rutin concentration of 0.05 g/L, pH of 6.0, temperature of 40 °C, a yield of 92.5% was obtained. Furthermore, we demonstrated the relationship between the fluorescence intensity and enzyme activity. This study established a highly efficient whole-cell catalytic system whose activity can be evaluated by fluorescence intensity, providing a reference for enzyme recycling.
Collapse
Affiliation(s)
- Fan Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Shuai You
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China
| | - Ting Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jin-Zheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Lin-Lin Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Bo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Wang-Sheng Ye
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Heng Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212018, PR China; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang 212018, PR China.
| |
Collapse
|
6
|
Shakour ZTA, Fayek NM, Farag MA. How do biocatalysis and biotransformation affect Citrus dietary flavonoids chemistry and bioactivity? A review. Crit Rev Biotechnol 2020; 40:689-714. [DOI: 10.1080/07388551.2020.1753648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zeinab T. Abdel Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Nesrin M. Fayek
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
7
|
Bodakowska-Boczniewicz J, Garncarek Z. Immobilization of Naringinase from Penicillium decumbens on Chitosan Microspheres for Debittering Grapefruit Juice. Molecules 2019; 24:E4234. [PMID: 31766403 PMCID: PMC6930494 DOI: 10.3390/molecules24234234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023] Open
Abstract
Naringinase is an enzyme complex which exhibits α-l-rhamnosidase and β-d-glucosidase activity. This enzymatic complex catalyzes the hydrolysis of naringin (4',5,7-trihydroxy flavanone 7-rhamnoglucoside), the main bittering component in grapefruit. Reduction of the level of this substance during the processing of juice has been the focus of many studies. The aim of the study was the immobilization of naringinase on chitosan microspheres activated with glutaraldehyde and, finally, the use of such immobilized enzyme for debittering grapefruit juice. The effect of naringinase concentration and characterization of the immobilized enzyme compared to the soluble enzyme were investigated. The maximum activity was observed at optimum pH 4.0 for both free and immobilized naringinase. However, the optimum temperature was shifted from 70 to 40 °C upon immobilization. The KM value of the immobilized naringinase was higher than that of soluble naringinase. The immobilization did not change the thermal stability of the enzyme. The immobilized naringinase had good operational stability. This preparation retained 88.1 ± 2.8% of its initial activity after ten runs of naringin hydrolysis from fresh grapefruit juice. The results indicate that naringinase immobilized on chitosan has potential applicability for debittering and improving the sensory properties of grapefruit juices.
Collapse
Affiliation(s)
| | - Zbigniew Garncarek
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
| |
Collapse
|
8
|
Wang D, Zheng P, Chen P. Production of a Recombinant α-l-Rhamnosidase from Aspergillus niger CCTCC M 2018240 in Pichia pastoris. Appl Biochem Biotechnol 2019; 189:1020-1037. [DOI: 10.1007/s12010-019-03020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
9
|
A spectrophotometric method for high-throughput screening of α-l-rhamnosidase activity on rutin coupled with a β-d-glucosidase assay. 3 Biotech 2019; 9:227. [PMID: 31139542 DOI: 10.1007/s13205-019-1753-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
Abstract
α-l-Rhamnosidase may biotransform rutin into isoquercetin with better bioavailability and bioactivity. To date, the high-throughput screening for the activity of α-l-rhamnosidases on rutin could not be achieved. Herein, based on the spectral differences between rutin and its aglycone quercetin in alkaline pH 10.0, we have developed a novel and simple spectrophotometric method for high-throughput screening of α-l-rhamnosidase activity on rutin by combining with a highly active β-d-glucosidase. Quercetin showed the maximum absorbance at 320 nm in alkaline pH 10.0, and could be considered as the characteristic peak of quercetin because rutin had low absorption at 320 nm. Meanwhile, rutin exhibited the maximum absorption at 400 nm and quercetin showed low absorption at 400 nm in pH 10.0. With this novel spectrophotometric method, the relative abilities of nine different α-l-rhamnosidases on rutin had been evaluated by monitoring the absorption values of the reaction mixture in alkaline pH 10.0 at 320 nm and 400 nm, and the trend in the activity on rutin was consistent with that obtained by HPLC. Moreover, the library from site-directed saturation mutagenesis at the residue Val338 in the α-l-rhamnosidase BtRha78A from Bacteroides thetaiotaomicron was constructed for high-throughput screening by this novel spectrophotometric method, and the mutant V338S with improved activity on rutin was obtained. The conversion rate of the mutant V338S on rutin increased by 21.7% and 16.8% than wild type when using whole cells and purified enzymes, respectively. Our findings demonstrated that this novel spectrophotometric method coupled with the β-d-glucosidase assay might be applied for high-throughput screening of different α-l-rhamnosidases and a great number of mutants from semi-rational design and directed evolution for α-l-rhamnosidase.
Collapse
|
10
|
Ni H, Zhang T, Guo X, Hu Y, Xiao A, Jiang Z, Li L, Li Q. Comparison between irradiating and autoclaving citrus wastes as substrate for solid-state fermentation by Aspergillus aculeatus. Lett Appl Microbiol 2019; 69:71-78. [PMID: 31038763 DOI: 10.1111/lam.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022]
Abstract
Agricultural or food processing wastes cause serious environmental burden and economic losses. Solid-state fermentation using these wastes is an attractive option to valorize these wastes. However, conventional autoclaving of substrate may degrade nutrients and generate toxins. Unsterilization of the substrate will cause undesired microbial contamination. Therefore, we compared irradiation with autoclaving to treat citrus wastes as substrate for solid-state fermentation by Aspergillus aculeatus. By comparing microbial growth, enzymes tested and medium consumption, irradiated substrate had higher biomass and extracellular protein, more sugar consumption and higher enzyme production than those with autoclaved substrate. Irradiation prevented the generation of cell-inhibiting components such as 5-hydroxymethylfurfural (5-HMF) whereas preserved the flavonoids well that are often enzyme inducers. These findings suggest that irradiation of agricultural and food processing wastes as substrate has advantages over autoclaving for solid-state fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proposes irradiation as an alternative to sterilize agricultural residues rich in nutrients and thermosensitive compounds, such as citrus wastes for fungal solid-state fermentation and production of enzymes.
Collapse
Affiliation(s)
- H Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - T Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - X Guo
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Y Hu
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - A Xiao
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | - Z Jiang
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - L Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Q Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
11
|
Slámová K, Kapešová J, Valentová K. "Sweet Flavonoids": Glycosidase-Catalyzed Modifications. Int J Mol Sci 2018; 19:E2126. [PMID: 30037103 PMCID: PMC6073497 DOI: 10.3390/ijms19072126] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023] Open
Abstract
Natural flavonoids, especially in their glycosylated forms, are the most abundant phenolic compounds found in plants, fruit, and vegetables. They exhibit a large variety of beneficial physiological effects, which makes them generally interesting in a broad spectrum of scientific areas. In this review, we focus on recent advances in the modifications of the glycosidic parts of various flavonoids employing glycosidases, covering both selective trimming of the sugar moieties and glycosylation of flavonoid aglycones by natural and mutant glycosidases. Glycosylation of flavonoids strongly enhances their water solubility and thus increases their bioavailability. Antioxidant and most biological activities are usually less pronounced in glycosides, but some specific bioactivities are enhanced. The presence of l-rhamnose (6-deoxy-α-l-mannopyranose) in rhamnosides, rutinosides (rutin, hesperidin) and neohesperidosides (naringin) plays an important role in properties of flavonoid glycosides, which can be considered as "pro-drugs". The natural hydrolytic activity of glycosidases is widely employed in biotechnological deglycosylation processes producing respective aglycones or partially deglycosylated flavonoids. Moreover, deglycosylation is quite commonly used in the food industry aiming at the improvement of sensoric properties of beverages such as debittering of citrus juices or enhancement of wine aromas. Therefore, natural and mutant glycosidases are excellent tools for modifications of flavonoid glycosides.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Jana Kapešová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
12
|
Antón-Millán N, García-Tojal J, Marty-Roda M, Garroni S, Cuesta-López S, Tamayo-Ramos JA. Influence of Three Commercial Graphene Derivatives on the Catalytic Properties of a Lactobacillus plantarum α-l-Rhamnosidase When Used as Immobilization Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18170-18182. [PMID: 29732878 DOI: 10.1021/acsami.7b18844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modification of carbon nanomaterials with biological molecules paves the way toward their use in biomedical and biotechnological applications, such as next-generation biocatalytic processes, development of biosensors, implantable electronic devices, or drug delivery. In this study, different commercial graphene derivatives, namely, monolayer graphene oxide (GO), graphene oxide nanocolloids (GOCs), and polycarboxylate-functionalized graphene nanoplatelets (GNs), were compared as biomolecule carrier matrices. Detailed spectroscopic analyses showed that GO and GOC were similar in composition and functional group content and very different from GN, whereas divergent morphological characteristics were observed for each nanomaterial through microscopy analyses. The commercial α-l-rhamnosidase RhaB1 from the probiotic bacterium Lactobacillus plantarum, selected as a model biomolecule for its relevant role in the pharma and food industries, was directly immobilized on the different materials. The binding efficiency and biochemical properties of RhaB1-GO, RhaB1-GOC, and RhaB1-GN composites were analyzed. RhaB1-GO and RhaB1-GOC showed high binding efficiency, whereas the enzyme loading on GN, not tested in previous enzyme immobilization studies, was low. The enzyme showed contrasting changes when immobilized on the different material supports. The effect of pH on the activity of the three RhaB1-immobilized versions was similar to that observed for the free enzyme, whereas the activity-temperature profiles and the response to the presence of inhibitors varied significantly between the RhaB1 versions. In addition, the apparent Km for the immobilized and soluble enzymes did not change. Finally, the free RhaB1 and the immobilized enzyme in GOC showed the best storage and reutilization stability, keeping most of their initial activity after 8 weeks of storage at 4 °C and 10 reutilization cycles, respectively. This study shows, for the first time, that distinct commercial graphene derivatives can influence differently the catalytic properties of an enzyme during its immobilization.
Collapse
Affiliation(s)
- Noemí Antón-Millán
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | | | - Marta Marty-Roda
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Sebastiano Garroni
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Santiago Cuesta-López
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Juan Antonio Tamayo-Ramos
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| |
Collapse
|
13
|
Lei L, Huang B, Liu A, Lu YJ, Zhou JL, Zhang J, Wong WL. Enzymatic production of natural sweetener trilobatin from citrus flavanone naringin using immobilised α-l
-rhamnosidase as the catalyst. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Lei
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| | - Baohua Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
- Goldenpomelo Biotechnology Co. Ltd.; Meizhou 514021 China
| | - Aolu Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| | - Yu-Jing Lu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
- Goldenpomelo Biotechnology Co. Ltd.; Meizhou 514021 China
| | - Jin-Lin Zhou
- Goldenpomelo Biotechnology Co. Ltd.; Meizhou 514021 China
| | - Jinjin Zhang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| | - Wing-Leung Wong
- School of Chemical and Environmental Engineering; International Healthcare Innovation Institute (Jiangmen); Wuyi University; Jiangmen 529020 China
- Centre for Education in Environmental Sustainability; The Education University of Hong Kong; 10 Lo Ping Road Tai Po Hong Kong China
| |
Collapse
|
14
|
Li B, Ji Y, Li Y, Ding G. Characterization of a glycoside hydrolase family 78 α-l-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech 2018; 8:120. [PMID: 29430381 PMCID: PMC5805665 DOI: 10.1007/s13205-018-1139-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/29/2018] [Indexed: 11/27/2022] Open
Abstract
A putative glycoside hydrolase family 78 α-l-rhamnosidase BtRha78A from Bacteroides thetaiotaomicron VPI-5482 was heterologously over-expressed in Escherichia coli. Enzymatic properties of recombinant BtRha78A were characterized in detail. Recombinant BtRha78A might efficiently hydrolyze p-nitrophenyl α-l-rhamnopyranoside. BtRha78A displayed the highest activity at 60 °C in pH 6.5. BtRha78A exhibited a good pH stability and relatively high thermostability. BtRha78A could be tolerant of a low concentration of alcohols. These attractive advantages made it a promising alternative biocatalyst for industrial applications. The catalytic general acid Asp335 and general base Glu595 of BtRha78A were confirmed by site-directed mutagenesis. Alanine scanning mutagenesis based on sequence alignment and structural analysis revealed that the conserved residues Asp330, Arg334, Trp339, Asp342, Tyr383, Trp440, and His620 were crucial for enzyme catalysis. Most functional residues located at the conserved general acid motif (Asp330-Asp342) and were completely conserved in the subfamily I Rha78s.
Collapse
Affiliation(s)
- Binchun Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yaru Ji
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yanqin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Guobin Ding
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
15
|
Cross-linked α-l-rhamnosidase aggregates with potential application in food industry. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2157-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|