1
|
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr Pharm Biotechnol 2024; 25:962-980. [PMID: 37264621 DOI: 10.2174/1389201024666230601141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Department of Agricultural Research, Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Tehran. Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Chi-Ching Lee
- Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Turkey
| | - Azadeh Rashidimehr
- Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Lorestan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
3
|
Plant polysaccharide itself as hydrogen bond donor in a deep eutectic system-based mechanochemical extraction method. Food Chem 2023; 399:133941. [DOI: 10.1016/j.foodchem.2022.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
|
4
|
Panebianco F, Rubiola S, Buttieri C, Di Ciccio PA, Chiesa F, Civera T. Understanding the Effect of Ozone on Listeria monocytogenes and Resident Microbiota of Gorgonzola Cheese Surface: A Culturomic Approach. Foods 2022; 11:2640. [PMID: 36076825 PMCID: PMC9455919 DOI: 10.3390/foods11172640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence of Listeria monocytogenes on Gorgonzola cheese surface was reported by many authors, with risks arising from the translocation of the pathogen inside the product during cutting procedures. Among the novel antimicrobial strategies, ozone may represent a useful tool against L. monocytogenes contamination on Gorgonzola cheese rind. In this study, the effect of gaseous ozone (2 and 4 ppm for 10 min) on L. monocytogenes and resident microbiota of Gorgonzola cheese rind stored at 4 °C for 63 days was evaluated. A culturomic approach, based on the use of six media and identification of colonies by MALDI-TOF MS, was used to analyse variations of resident populations. The decrease of L. monocytogenes was less pronounced in ozonised rinds with final loads of ~1 log CFU/g higher than controls. This behaviour coincided with a lower maximum population density of lactobacilli in treated samples at day 28. No significant differences were detected for the other microbial determinations and resident microbiota composition among treated and control samples. The dominant genera were Candida, Carnobacterium, Staphylococcus, Penicillium, Saccharomyces, Aerococcus, Yarrowia, and Enterococcus. Based on our results, ozone was ineffective against L. monocytogenes contamination on Gorgonzola rinds. The higher final L. monocytogenes loads in treated samples could be associated with a suppressive effect of ozone on lactobacilli, since these are antagonists of L. monocytogenes. Our outcomes suggest the potential use of culturomics to study the ecosystems of complex matrices, such as the surface of mould and blue-veined cheeses.
Collapse
Affiliation(s)
- Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Chiara Buttieri
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Pierluigi Aldo Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
5
|
Probiotic and Antioxidant Potential of the Lactobacillus Spp. Isolated from Artisanal Fermented Pickles. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The present study was based on bacterial isolation with probiotic potential from artisanal fermented pickles. A total of 36 bacterial strains were isolated from 50 different artisanal fermented pickle samples. Nine isolates with promising probiotic potential (PCR99, PCR100, PCR118, PCR119, PCR121, PCR125, PCR137, PCR140 and PCR141) were selected. The strains showed varied protease, amylase, lipase and cellulase patterns. The isolated strains displayed varied responses towards various antibiotic classes, i.e., PCR140 showed resistance to penicillin G, polymyxin B, Metronidazole and Streptomycin. PCR140 showed highest resistance to bile salt concentrations (0.3% and 0.5%) and acidic conditions (pH 3 and pH 4) when exposed to mimicked gastrointestinal conditions. The cell viability against enzymes produced in stomach and intestines showed different patterns as pepsin was in the range of 94.32–91.22%, pancreatic resistance 97.32–93.11% and lysozyme resistance was detected at 99.12–92.55%. Furthermore, the auto-aggregation capability of isolated strains was in the range of 46.11–33.33% and cell surface hydrophobicity was in the range of 36.55–31.33%. PCR 140 showed maximum antioxidant activity in lyophilized cells as well as probiotic potential. A phylogenetic analysis based on 16S rRNA gene sequencing confirmed that PCR140 (NMCC91) with higher in vitro probiotic and antioxidant potential belongs to the genus Lactobacillus with 97% similarity with Lacticaseibacillus paracasei. This work demonstrated that the isolate PCR 140 (NMCC91) is suitable for use in food and medical industries.
Collapse
|
6
|
Abouloifa H, Rokni Y, Hasnaoui I, Bellaouchi R, Gaamouche S, Ghabbour N, Karboune S, Ben Salah R, Brasca M, D'hallewin G, Saalaoui E, Asehraou A. Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent. Braz J Microbiol 2022; 53:1501-1513. [PMID: 35804284 PMCID: PMC9433471 DOI: 10.1007/s42770-022-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
Abstract
This work aimed to characterize the antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61, isolated from traditional fermented green olive, involved in their activity against fungi and bacteria responsible for food spoilage and poisonings. Their application as a biopreservative agent was also investigated. The culture of L. plantarum S61 showed substantial antifungal and antibacterial activity against yeasts (Rhodotorula glutinis and Candida pelliculosa), molds (Penicillium digitatum, Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae), and pathogenic bacteria (Listeria monocytogenes ATCC 19,117, Salmonella enterica subsp. enterica ATCC 14,028, Staphylococcus aureus subsp. aureus ATCC 6538, Pseudomonas aeruginosa ATCC 49,189), with inhibition zones > 10 mm. Likewise, the cell-free supernatant (CFS) of L. plantarum S61 showed an essential inhibitory effect against fungi and bacteria, with inhibition diameters of 12.25-22.05 mm and 16.95-17.25 mm, respectively. The CFS inhibited molds' biomass and mycelium growth, with inhibition ranges of 63.18-83.64% and 22.57-38.93%, respectively. The antifungal activity of the CFS was stable during 4 weeks of storage at 25 °C, while it gradually decreased during storage at 4 °C. Several antimicrobial compounds were evidenced in the CFS of L. plantarum S61, including organic acids, ethanol, hydrogen peroxide, diacetyl, proteins, and fatty acids. The protein fraction, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), demonstrated important antifungal activity, in relation to the fraction with molecular weight between 2 and 6 kDa. L. plantarum S61 and its CFS, tested in apple and orange fruit biopreservation, demonstrated their protective effect against P. digitatum spoilage. The CFS exhibited effectiveness in reducing Salmonella enterica subsp. enterica ATCC 14,028 in apple juice. L. plantarum S61 and/or its bioactive compounds CFS represent a promising strategy for biocontrol against pathogens and spoilage microorganisms in the agro-industry.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Research Unit of Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry-Physics and Biotechnology of Molecules and Materials, Faculty of Sciences and Techniques - Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco. .,Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.
| | - Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, Mghila, 23000, Beni Mellal, Morocco
| | - Ismail Hasnaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Sara Gaamouche
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B. P 1223, Taza, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, Via Celoria 2, 20133, Milan, Italy
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council of Italy, UOS Sassari, Traversa La Crucca, 3 Loc. Baldinca, 07040, Sassari, Italy
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| |
Collapse
|
7
|
Utilization of fermented and enzymatically hydrolyzed soy press cake as ingredient for meat analogues. Lebensm Wiss Technol 2022; 165:113736. [PMID: 35938059 PMCID: PMC9340857 DOI: 10.1016/j.lwt.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to improve the properties of soy press cake to be utilized as an ingredient of meat analogues. Soy press cakes were fermented with lactobacillus strains, and separately hydrolyzed by cellulase/xylanase mixture and α-amylase. Meat analogues were produced with 10% fermented or hydrolyzed soy press cakes. The effect of applied processes on protein oxidation, physical and functional properties of soy press cakes were analyzed, as well as sensory and textural properties of meat analogues. The results indicated that soy press cake was a suitable source of fibre and energy with low content of saturated fatty acids, and provided plant-based proteins and essential amino acids. The study demonstrated the potential of lactic acid fermentation, and enzymatic hydrolysis to improve water- and oil-holding capacity and reduce protein oxidation in soy press cakes. L. acidophilus 336 and cellulase/xylanase mixture were recommended for fermentation and hydrolysis of soy press cakes, respectively, regarding reduction of protein oxidation. Fermentation of soy press cakes with L. plantarum P1 improved the texture of meat analogues. Press cakes fermentation reduced bitterness, increased juiciness, and balanced the taste of meat analogues. Fermented soy press cake was recommended for the production of meat analogues. This research was the 1st application of fermented soy press cake in meat analogue. Fermentation and hydrolysis improved the functional properties of soy press cakes. Protein oxidation in soy press cakes was reduced after fermentation and hydrolysis. Fermented soy press cakes improved sensory quality of the meat analogues. L. plantarum P1 is recommended for the fermentation of soy press cakes.
Collapse
|
8
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
9
|
Ontiveros-Magadan M, Anderson RC, Ruiz-Barrera O, Arzola-Alvarez C, Salinas-Chavira J, Hume ME, Scholljegerdes EJ, Harvey RB, Nisbet DJ, Castillo-Castillo Y. Evaluation of antimicrobial compounds to inhibit growth of select Gram-positive pathogenic or antimicrobial resistant bacteria in air-exposed silage. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spoiled silages can harbor pathogenic and antimicrobial-resistant microbes. The potential of some antimicrobial additives to inhibit certain pathogenic and antimicrobial-resistant bacteria in air-exposed silage was measured using pure and mixed bacterial cultures. With pure cultures, laurate and monolaurin (5 mg·mL−1) caused decreases (P < 0.05) of 4 to >7 log10 colony-forming units (CFU)·mL−1 in Listeria monocytogenes and Enterococcus faecalis compared to controls. Ten-fold higher amounts of these inhibitors were needed to equivalently decrease staphylococci. 2-Nitropropanol (1 mg·mL−1) decreased (P < 0.05) E. faecalis and L. monocytogenes 2.9–3.8 and 2.4–7.2 log10 CFU·mL−1 after 6 and 24 h incubations, respectively. In air-exposed whole-plant corn silage the inhibitors caused decreases, although not necessarily significant, of 0.7–2.2 log10 CFU·mL−1 in L. monocytogenes, staphylococci and culturable aerobes after 24 h incubation, with modest yet significant (P < 0.05) inhibition (<0.1–0.3 log10 CFU·mL−1) of yeasts and molds. Tests for carry-over effects against ruminal microbes revealed laurate, monolaurin, and 2-nitropropanol inhibited methanogenesis by >50% (P < 0.05) after 24 h incubation and inhibited L. monocytogenes and enterococci. The antimicrobial activities exhibited by these compounds may yield opportunities to optimize their use to rescue spoiled silages.
Collapse
Affiliation(s)
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | | | | | | - Michael E. Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | - David J. Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food & Feed Safety Research Unit, College Station, Texas 77845, USA
| | | |
Collapse
|
10
|
Abstract
The aim of this work was to investigate the most promising natural antimicrobials effective for the growth suppression of Xanthomonas spp. bacteria. The research objects were Xanthomonas spp. strains isolated from tubers and stem of plants growing in Lithuania: Xanthomonas translucens NRCIB X6, X. arboricola NRCIB X7, NRCIB X8, NRCIB X9, and NRCIB X10; the supernatants of lactic acid bacteria Lactococcus lactis strains 140/2, 57, and 768/5, Lactobacillus helveticus strains 14, 148/3, R, and 3, Lb. reuteri 3 and 7, Streptococcus thermophilus 43, Enterococcus faecium 59-30 and 41-2; endophytic bacterial strains Bacillus, Pseudomonas, and Paenibacillus spp.; and essential oils of lavender (Lavandula angustifolia), grapefruit (Citrus paradisi), pine (Pinus sylvestris), thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis), peppermint (Mentha piperita), lemon (Citrus limetta), aqueous extracts of blueberries (Vaccinium myrtillus), and cranberries (Vaccinium vitis-idaea). The antimicrobial activity of tested substances was determined by agar diffusion method. Supernatants of Lb. reuteri strain 7 and Lb. helveticus strains 14, R, 3, and 148/3 were found to have a high antimicrobial activity against Xanthomonas spp. bacteria strains when compared to the positive control—1.0% copper sulfate (diameter of inhibition zones was 28.8 ± 0.7 mm). The diameter of inhibition zones of supernatants ranged from 23.3 ± 0.6 mm to 32.0 ± 0.1 mm. Thyme (2.0%) and lavender (2.0%) essential oils inhibited the growth of Xanthomonas spp. strains. The diameter of the inhibition zones was from 14.7 ± 0.8 mm to 22.8 ± 0.9 mm. The aqueous extracts of blueberries had a weak antimicrobial activity. The diameter of inhibition zones ranged from 11.0 ± 0.2 mm to 13.0 ± 0.2 mm.
Collapse
|
11
|
Ricci A, Bertani G, Maoloni A, Bernini V, Levante A, Neviani E, Lazzi C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021; 10:foods10051092. [PMID: 34069051 PMCID: PMC8156661 DOI: 10.3390/foods10051092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
To prevent foodborne diseases and extend shelf-life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. In addition to the prevention of foodborne diseases, another huge concern of our time is the recovery of agri-food byproducts. In compliance with these challenges, the aim of this work was to more deeply investigate the antimicrobial activity of extracts derived from fermented tomato, melon, and carrot byproducts, previously studied. All the fermented extracts had antimicrobial activity both in vitro and in foodstuff, showing even higher activity than commercial preservatives, tested for comparison against spoilage microorganisms and foodborne pathogens such as Salmonella spp., L. monocytogenes, and B. cereus. These promising results highlight an unstudied aspect for the production of innovative natural preservatives, exploitable to improve the safety and shelf-life of various categories of foodstuff.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Gaia Bertani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
- Correspondence:
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy; (A.R.); (G.B.); (A.L.); (E.N.); (C.L.)
- SITEIA.PARMA—Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Tecnopolo Pad. 33 Campus Universitario, 43124 Parma, Italy
| |
Collapse
|
12
|
Panebianco F, Giarratana F, Caridi A, Sidari R, De Bruno A, Giuffrida A. Lactic acid bacteria isolated from traditional Italian dairy products: activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Zhang Y, Xue R, He X, Cheng Q, Hartley W, Xue S. Effect of Acid Production by Penicillium oxalicum on Physicochemical Properties of Bauxite Residue. GEOMICROBIOLOGY JOURNAL 2020; 37:929-936. [DOI: 10.1080/01490451.2020.1801907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/22/2020] [Indexed: 06/18/2023]
Affiliation(s)
- Yifan Zhang
- School of Metallurgy and Environment, Central South University, Changsha, P.R. China
| | - Rui Xue
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xuan He
- School of Metallurgy and Environment, Central South University, Changsha, P.R. China
| | - Qingyu Cheng
- School of Metallurgy and Environment, Central South University, Changsha, P.R. China
| | - William Hartley
- Crop and Environment Sciences Department, Harper Adams University, Newport, UK
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, P.R. China
| |
Collapse
|
14
|
Muhialdin BJ, Kadum H, Fathallah S, Meor Hussin AS. Metabolomics profiling and antibacterial activity of fermented ginger paste extends the shelf life of chicken meat. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Guan C, Tao Z, Wang L, Zhao R, Chen X, Huang X, Su J, Lu Z, Chen X, Gu R. Isolation of novel Lactobacillus with lipolytic activity from the vinasse and their preliminary potential using as probiotics. AMB Express 2020; 10:91. [PMID: 32415368 PMCID: PMC7229107 DOI: 10.1186/s13568-020-01026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/08/2020] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus casei f1, L. paracasei f2 and L. paracasei f3 with lipolytic activity were isolated and identified from vinasses according to the morphological–physiological properties detection and 16S rDNA analysis. These three strains showed obvious lipase activities to olive oil and L. casei f1 performed highest enzyme activity of 17.8 U/mL. L. casei f1, L. paracasei f2 and L. paracasei f3 could lipolyze the blending oils, peanut oil and sesame oil with diverse degrading rates. The degrading rates to the preferred oils, L. casei f1 to blending oils, L. paracasei f2 to peanut oil and L. paracasei f3 to sesame oil, were 21.2%, 27.3% and 39.6%, respectively. The corresponding oil degrading rates increased as the cell growth and the highest degrading rates were obtained at the stationary phase with the viable count more than 7.5 LogCFU/mL. By GC–MS analysis, L. casei f1, L. paracasei f2 and L. paracasei f3 performed diverse lipolytic capacities to the 12 kinds of fat acids and all of them preferred to hydrolyze the linoleic acid with the degrading rate of 49.11%, 31.83% and 64.44%, respectively. These three strains showed considerable probiotic properties, displaying higher than 106 CFU/mL desirable viable count though the simulated gastrointestinal tract, as well as inhibiting six indicator bacteria. These results suggested that the three isolated strains could be considered as novel probiotic candidates and applied in the food industry.
Collapse
|
16
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|
17
|
A high-throughput system for screening high diacetyl-producing lactic acid bacteria in fermented milk in 96-well microplates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|