1
|
Zhang Y, Lei S, Zou W, Wang L, Yan J, Zhang X, Zhang W, Yang Q. Research progress on detection methods for food allergens. J Food Compost Anal 2025; 137:106906. [DOI: 10.1016/j.jfca.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Sheu SC, Wang YJ, Huang PC, Lien YY, Lee MS. Authentication of olive oil in commercial products using specific, sensitive, and rapid loop-mediated isothermal amplification. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1834-1840. [PMID: 37187977 PMCID: PMC10169996 DOI: 10.1007/s13197-023-05726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Olive oil is an important and popularly used plant oil in the daily diet or chemical industry. Due to its biological benefits on human health and higher selling prices, adulteration of olive oil for commercial fraud by other plant oils is becoming a serious issue. In this study, a specific, sensitive and rapid loop-mediated isothermal amplification (LAMP) was first developed for the detection of Olea europaea DNA for olive oil authentication. The oleosin gene was used for the primer design of the LAMP assay. After primer validation, the results showed that the LAMP primers were specific and rapid to isothermally authenticate the oleosin gene of Olea europaea within 1 h at 62 °C and had no cross-reaction with other DNA of plant oils. The sensitivity of LAMP was 1 ng of genomic DNA in olive oil, and only 1% olive oil in the sample was requisite during DNA amplification. Additionally, positive detection by LAMP in all the collected commercial olive oil products was practically performed but not in PCR assays. In conclusion, herein, the established LAMP assay with specificity could not only be capable for rapid identification but also applicable for olive oil authentication for precluding adulteration in plant oil products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05726-y.
Collapse
Affiliation(s)
- Shyang-Chwen Sheu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Ying-Jie Wang
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Pao-Cheng Huang
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
3
|
Xu J, Ye Y, Ji J, Sun J, Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit Rev Food Sci Nutr 2021; 62:6887-6907. [PMID: 33830835 DOI: 10.1080/10408398.2021.1907736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
4
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, Kevadiya BD, S. Thakor A. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. BIOLOGY 2020; 9:E182. [PMID: 32707972 PMCID: PMC7464797 DOI: 10.3390/biology9080182] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
The rampant spread of COVID-19 and the worldwide prevalence of infected cases demand a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. The most common molecular tests approved by regulatory bodies across the world for COVID-19 diagnosis are based on Polymerase Chain Reaction (PCR). While PCR-based tests are highly sensitive, specific, and remarkably reliable, they have many limitations ranging from the requirement of sophisticated laboratories, need of skilled personnel, use of complex protocol, long wait times for results, and an overall high cost per test. These limitations have inspired researchers to search for alternative diagnostic methods that are fast, economical, and executable in low-resource laboratory settings. The discovery of Loop-mediated isothermal Amplification (LAMP) has provided a reliable substitute platform for the accurate detection of low copy number nucleic acids in the diagnosis of several viral diseases, including epidemics like Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). At present, a cocktail of LAMP assay reagents along with reverse transcriptase enzyme (Reverse Transcription LAMP, RT-LAMP) can be a robust solution for the rapid and cost-effective diagnosis for COVID-19, particularly in developing, and low-income countries. In summary, the development of RT-LAMP based diagnostic tools in a paper/strip format or the integration of this method into a microfluidic platform such as a Lab-on-a-chip may revolutionize the concept of PoCT for COVID-19 diagnosis. This review discusses the principle, technology and past research underpinning the success for using this method for diagnosing MERS and SARS, in addition to ongoing research, and the prominent prospect of RT-LAMP in the context of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar
| | - Yasuyoshi Mori
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Tsugunori Notomi
- Eiken Chemical Co., Ltd., Research and Development Division, Taito-ku 110-8408, Japan; (Y.M.); (T.N.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (B.D.K.); (A.S.T.)
| |
Collapse
|