1
|
Przybylska-Balcerek A, Kurasiak-Popowska D, Graczyk M, Szczepańska-Alvarez A, Rzyska K, Stuper-Szablewska K. Biochemical Properties of Bioactive Compounds in the Oil from Polish Varieties of Camelina sativa Cultivated in 2019-2022. Chem Biodivers 2024; 21:e202400523. [PMID: 38814629 DOI: 10.1002/cbdv.202400523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
Cold-pressed Camelina oil is a traditional oil registered as a traditional food in Poland. Camelina oil has health-promoting properties and high oxidative stability. This may be due to the presence of various bioactive antioxidant compounds such as carotenoids, sterols and polyphenols. Bioactive compounds content in Camelina oil depends mainly on the varieties and on the conditions under which the crop was grown therefore the aim of the research was to analyse antioxidant bioactive compounds in oil from different cultivars of Camelina sativa seeds and to determine their relationship with oil parameters.
Collapse
Affiliation(s)
- Anna Przybylska-Balcerek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, ul. Dojazd 11, 60-632, Poznań, Poland
| | - Małgorzata Graczyk
- Department of Mathematical and Statistical Methods, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Anna Szczepańska-Alvarez
- Department of Mathematical and Statistical Methods, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Katarzyna Rzyska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
2
|
Xu Y, Koroma AA, Weise SE, Fu X, Sharkey TD, Shachar-Hill Y. Daylength variation affects growth, photosynthesis, leaf metabolism, partitioning, and metabolic fluxes. PLANT PHYSIOLOGY 2023; 194:475-490. [PMID: 37726946 PMCID: PMC10756764 DOI: 10.1093/plphys/kiad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Daylength, a seasonal and latitudinal variable, exerts a substantial impact on plant growth. However, the relationship between daylength and growth is nonproportional, suggesting the existence of adaptive mechanisms. Thus, our study aimed to comprehensively investigate the adaptive strategies employed by plants in response to daylength variation. We grew false flax (Camelina sativa) plants, a model oilseed crop, under long-day (LD) and short-day (SD) conditions and used growth measurements, gas exchange measurements, and isotopic labeling techniques, including 13C, 14C, and 2H2O, to determine responses to different daylengths. Our findings revealed that daylength influences various growth parameters, photosynthetic physiology, carbon partitioning, metabolic fluxes, and metabolite levels. SD plants employed diverse mechanisms to compensate for reduced CO2 fixation in the shorter photoperiod. These mechanisms included enhanced photosynthetic rates and reduced respiration in the light (RL), leading to increased shoot investment. Additionally, SD plants exhibited reduced rates of the glucose 6-phosphate (G6P) shunt and greater partitioning of sugars into starch, thereby sustaining carbon availability during the longer night. Isotopic labeling results further demonstrated substantial alterations in the partitioning of amino acids and TCA cycle intermediates between rapidly and slowly turning over pools. Overall, the results point to multiple developmental, physiological, and metabolic ways in which plants adapt to different daylengths to maintain growth.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Abubakarr A Koroma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | - Sean E Weise
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Mandim F, Petropoulos SA, Santos-Buelga C, Ferreira IC, Barros L. Chemical composition of cardoon (Cynara cardunculus L. var. altilis) petioles as affected by plant growth stage. Food Res Int 2022; 156:111330. [DOI: 10.1016/j.foodres.2022.111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022]
|
4
|
Kurasiak-Popowska D, Graczyk M, Przybylska-Balcerek A, Stuper-Szablewska K, Szwajkowska-Michałek L. An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113364. [PMID: 35684302 PMCID: PMC9181862 DOI: 10.3390/molecules27113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
Camelina oil obtained from the seeds of Camelina sativa exhibits strong antioxidative properties. This study was based on four years of field experiments conducted on 63 genotypes of spring and 11 genotypes of winter camelina. The aim of the study was to determine the variability in the content of the selected bioactive compounds, depending on the weather conditions during the cultivation, the functional form, and genotype. The cultivation form of the genotypes analysed in our study did not exhibit significant differences in the quantitative profiles of the tested phenolic acids and flavonoids. Sinapic acid was the most abundant of all phenolic acids under analysis (617–668 mg/kg), while quercetin was the main flavonoid (91–161 mg/kg). Camelina has great potential not only for the food industry but also for researchers attempting to breed an oil plant with the stable biosynthesis of bioactive compounds to ensure oxidative protection of obtained fat.
Collapse
Affiliation(s)
- Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, ul. Dojazd 11, 60-632 Poznań, Poland;
| | - Małgorzata Graczyk
- Department of Mathematical and Statistical Methods, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Anna Przybylska-Balcerek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625 Poznań, Poland; (A.P.-B.); (K.S.-S.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625 Poznań, Poland; (A.P.-B.); (K.S.-S.)
| | - Lidia Szwajkowska-Michałek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625 Poznań, Poland; (A.P.-B.); (K.S.-S.)
- Correspondence:
| |
Collapse
|
5
|
Gholamhoseini M. Optimizing irrigation and nitrogen fertilization of Iranian sesame cultivars for grain yield and oil quality. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang SH, Chen J, Yang W, Hua M, Ma YP. Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species. Sci Rep 2021; 11:23605. [PMID: 34880377 PMCID: PMC8655003 DOI: 10.1038/s41598-021-03080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
Malania oleifera (Olacaceae), a tree species endemic to Southwest China, has seed oils enriched with nervonic acid and is therefore good source of this chemical. Because of this, there are promising industrial perspective in the artificial cultivation and use of this species. Understanding the variability in the fruit characters among individuals forms the basis or resource prospection. In the current investigation, fifty-three mature fruiting trees were sampled from two locations with divergent climates (Guangnan and Funing). Morphological characterization of fruits (fruit and stone weight, fruit transverse and longitudinal diameter, stone transverse and longitudinal diameter) was conducted, and the concentration of seed oil and its fatty acid composition were also analyzed in all individuals. Differences in all the morphological characters studied were more significant among individual trees than between different geographic localities, even though these had different climates. Eleven fatty acids were identified contributing between 91.39 and 96.34% of the lipids, and the major components were nervonic acid (38.93–47.24%), octadecenoic acid (26.79–32.08%), docosenoic acid (10.94–17.24%). The seed oil content (proportion of oil in seed kernel) and the proportion of nervonic acid were both higher in Funing, which has a higher average climatic temperature than Guangnan. The concentrations of nervonic acid and octadecenoic acid with the low coefficients of variation in the seed oil of M. oleifera were relatively stable in contrast to the other fatty acids. There were significant positive correlations between fruit morphological characters, but the amount of seed oil and the concentrations of its components were not correlated with any morphological character. This study provides an understanding of morphological variation in wild M. oleifera individuals. Wild individuals with excellent fruit traits could be selected and would make promising candidates for commercial cultivation.
Collapse
Affiliation(s)
- Si-Hai Wang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China. .,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China.
| | - Jian Chen
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Wei Yang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Mei Hua
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
7
|
Jarvis BA, Romsdahl TB, McGinn MG, Nazarenus TJ, Cahoon EB, Chapman KD, Sedbrook JC. CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress ( Thlaspi arvense L.). FRONTIERS IN PLANT SCIENCE 2021; 12:652319. [PMID: 33968108 PMCID: PMC8100250 DOI: 10.3389/fpls.2021.652319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs.
Collapse
Affiliation(s)
- Brice A. Jarvis
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Trevor B. Romsdahl
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Michaela G. McGinn
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Tara J. Nazarenus
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Edgar B. Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|