1
|
Hu G, Yu Q, Zhang Y, Zheng X, Gao S, Hao J. Development of two novel ELISAs based on Prussian blue nanoparticles for ultrasensitive detection of norfloxacin in milk. Food Chem 2025; 463:141206. [PMID: 39288459 DOI: 10.1016/j.foodchem.2024.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The development of traditional enzyme-linked immunosorbent assay (ELISA) systems for the detection of small-molecule residues in foods is limited because of the poor stability of biological enzymes and the lower sensitivity of absorption-based signals. Herein, two ELISAs based on Prussian blue nanoparticles (PBNPs) were developed to establish ultrasensitive and stable methods for detecting norfloxacin (NOR) in milk. The results show that the detection limit (IC15) of NOR was 0.77 μg L-1 and the sensitivity (IC50) was 18.28 μg L-1 in the standard solution using the PBNPs-based nano-ELISA. When the fluorescence quenching ELISA based on PBNPs was used, the detection limit was 0.06 μg L-1 and the sensitivity was 4.21 μg L-1 in the standard solution. The recoveries and precision were good, as confirmed by analysis of real milk samples. The results were consistent with those of commercial ELISA kits, indicating the high accuracy of these two methods.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Qingxiu Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Yiqin Zhang
- Shijiazhuang Customs District P. R. China, Shijiazhuang, Hebei 050061, PR China
| | - Xuechao Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
2
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| | - Rong Jing
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
3
|
Qian X, Zhang H, Zheng M, Li C, Wang J, Huang H, Deng K. A dual-mode strategy based on β-galactosidase and target-induced DNA polymerase protection for transcription factor detection using colorimetry and a glucose meter. Analyst 2023; 148:6078-6086. [PMID: 37909394 DOI: 10.1039/d3an01414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this work, we report a novel dual-mode method for the highly specific and sensitive detection of transcription factors (TFs) via the integration of Klenow polymerase protection induced by target-specific recognition, cascade-signal amplification using the hybridization chain reaction (HCR) and CRISPR/Cas12a system, and dual-signal transduction mediated by β-galactosidase (β-gal) and two substrates. A dual-mode signal-sensing interface was constructed by immobilizing the oligo DNA probe (P1) tethered β-gal in a 96-well plate. A hairpin H1 with the ability to initiate HCRs was designed to contain the TF binding site. The binding between the TF and H1 protected the H1 from being extended by the Klenow fragment. After thermal denaturation, the reserved H1 launched the HCR and the HCR products activated CRISPR/Cas12a to cleave P1 and reduce the β-gal on the sensing interface, and thus the contents of the TFs and the corresponding signals mediated by the catalysis of β-gal showed a correlation. This work was the first attempt at utilizing β-gal for dual-signal transduction. It is a pioneering study to utilize the HCR-CRISPR/Cas12a system for dual-mode TF sensors. It revealed that DNA polymerase protection through the binding of TF and DNA could be applied as a new pattern to develop TF sensors.
Collapse
Affiliation(s)
- Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Heng Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingyu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Chunxiang Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinglun Wang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
4
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
5
|
Liu H, Xie L, Wang Y, Liu Y, Fu R, Cui Y, Zhao Q, Wang C, Jiao B, He Y. Construction of a portable immunosensor for the sensitive detection of carbendazim in agricultural products using a personal glucose meter. Food Chem 2023; 407:135161. [PMID: 36502732 DOI: 10.1016/j.foodchem.2022.135161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Portable and sensitive detection of carbendazim (CBD) is highly desirable for food safety and environmental protection. Herein, a portable immunosensor for the sensitive detection of CBD is proposed based on alkaline phosphatase (ALP)-labeled and secondary antibody-modified gold nanoparticles (AuNPs). The quantification is based on ALP catalyzing the dephosphorylation of glucose-1-phosphate disodium salt to generate glucose, thus converting the concentration of CBD into glucose, thereby realizing the portable detection of CBD by personal glucose meter. Benefiting from signal amplification strategy that integrates the large specific surface area of AuNPs, the enzymatic reactions of terminal deoxynucleotidyl transferase and ALP, a low detection limit of 0.37 ng/mL for CBD is achieved. When this portable method is used to analyze citrus fruit, canned citrus, and cabbage, good-consistency results are obtained with the UPLC-MS/MS method. The good performance demonstrates the great potential of this portable method for CBD monitoring in resource-poor settings.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Yiwen Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Yanlin Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Ruijie Fu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China
| | - Chengqiu Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing 400712, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| |
Collapse
|
6
|
Wen MY, Fu L, Dong GY. Two Cd(II)-MOFs containing pyridylbenzimidazole ligands as fluorescence sensors for sensing enrofloxacin, nitrofurazone and Fe3+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
He F, Wang H, Du P, Li T, Wang W, Tan T, Liu Y, Ma Y, Wang Y, El-Aty A. Personal Glucose Meters Coupled with Signal Amplification Technologies for Quantitative Detection of Non-Glucose Targets: Recent Progress and Challenges in Food Safety Hazards Analysis. J Pharm Anal 2023; 13:223-238. [PMID: 37102109 PMCID: PMC10123950 DOI: 10.1016/j.jpha.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
Collapse
|
8
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|