1
|
Di Bonito M, Bourien J, Tizzano M, Harrus AG, Puel JL, Avallone B, Nouvian R, Studer M. Abnormal outer hair cell efferent innervation in Hoxb1-dependent sensorineural hearing loss. PLoS Genet 2023; 19:e1010933. [PMID: 37738262 PMCID: PMC10516434 DOI: 10.1371/journal.pgen.1010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023] Open
Abstract
Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.
Collapse
Affiliation(s)
- Maria Di Bonito
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Jérôme Bourien
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Monica Tizzano
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Anne-Gabrielle Harrus
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Jean-Luc Puel
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Bice Avallone
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Regis Nouvian
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Michèle Studer
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| |
Collapse
|
2
|
Lee D, Lewis JD. Inter-Subject Variability in the Dependence of Medial-Olivocochlear Reflex Strength on Noise Bandwidth. Ear Hear 2023; 44:544-557. [PMID: 36477401 DOI: 10.1097/aud.0000000000001302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVES The objective of the study was to quantify inter-subject variability in the dependence of the medial-olivocochlear reflex (MOCR) on noise bandwidth. Of specific interest was whether inter-subject variability in MOCR dependence on bandwidth explained variability in the MOCR response elicited by wideband noise. DESIGN Thirty-two young adults with normal hearing participated in the study. Click-evoked otoacoustic emissions were measured in the ipsilateral ear with and without noise presented in the contralateral ear. Presentation of contralateral noise served to activate the MOCR. The MOCR was activated using five different noise stimuli with bandwidths ranging from 1- to 5-octaves wide (center frequency of 2 kHz; bandwidth incremented in 1-octave steps). Noise spectral levels (19.6 dB SPL/Hz) were held constant across all bandwidths. MOCR metrics included the normalized-percent change in the otoacoustic emission (OAE), the MOCR-induced OAE magnitude shift, and the MOCR-induced OAE phase shift. Linear mixed-effect models were fit to model the dependence of MOCR-induced OAE magnitude and phase changes on noise bandwidth. The use of a mixed-effect modeling approach allowed for the estimation of subject-specific model parameters that capture on- and off-frequency contributions to the MOCR effects. Regression analysis was performed to evaluate the predictive capacity of subject-specific model parameters on the MOCR response elicited by wideband noise. RESULTS All OAE-based MOCR metrics increased as the noise bandwidth increased from 1- to 5-octaves wide. The dependence of MOCR-induced OAE magnitude and phase shifts on activator bandwidth was well approximated using a linear model with intercept and slope terms. On average, MOCR-induced magnitude and phase shifts increased at a rate of 0.3 dB/octave and 0.01 cycles/octave, respectively, as bandwidth extended beyond the predicted region of OAE generation. A statistically significant random effect of subject was found for both the intercept and slope parameter of each model. Subject-specific slope estimates were statistically significant predictors of a repeated measure of the wideband MOCR response. A higher slope was predictive of larger wideband MOCR effects. CONCLUSIONS MOCR-induced changes to the OAE are greatest when the MOCR is elicited using wideband noise. Variability in the process of spectral integration within the MOCR pathway appears to explain, in part, inter-subject variability in OAE-based estimates of the MOCR response elicited by wideband noise.
Collapse
Affiliation(s)
- Donguk Lee
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | | |
Collapse
|
3
|
Cederholm JME, Parley KE, Perera CJ, von Jonquieres G, Pinyon JL, Julien JP, Ryugo DK, Ryan AF, Housley GD. Noise-induced hearing loss vulnerability in type III intermediate filament peripherin gene knockout mice. Front Neurol 2022; 13:962227. [PMID: 36226085 PMCID: PMC9549866 DOI: 10.3389/fneur.2022.962227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the post-natal mouse cochlea, type II spiral ganglion neurons (SGNs) innervating the electromotile outer hair cells (OHCs) of the ‘cochlear amplifier' selectively express the type III intermediate filament peripherin gene (Prph). Immunolabeling showed that Prph knockout (KO) mice exhibited disruption of this (outer spiral bundle) afferent innervation, while the radial fiber (type I SGN) innervation of the inner hair cells (~95% of the SGN population) was retained. Functionality of the medial olivocochlear (MOC) efferent innervation of the OHCs was confirmed in the PrphKO, based on suppression of distortion product otoacoustic emissions (DPOAEs) via direct electrical stimulation. However, “contralateral suppression” of the MOC reflex neural circuit, evident as a rapid reduction in cubic DPOAE when noise is presented to the opposite ear in wildtype mice, was substantially disrupted in the PrphKO. Auditory brainstem response (ABR) measurements demonstrated that hearing sensitivity (thresholds and growth-functions) were indistinguishable between wildtype and PrphKO mice. Despite this comparability in sound transduction and strength of the afferent signal to the central auditory pathways, high-intensity, broadband noise exposure (108 dB SPL, 1 h) produced permanent high frequency hearing loss (24–32 kHz) in PrphKO mice but not the wildtype mice, consistent with the attenuated contralateral suppression of the PrphKO. These data support the postulate that auditory neurons expressing Prph contribute to the sensory arm of the otoprotective MOC feedback circuit.
Collapse
Affiliation(s)
- Jennie M. E. Cederholm
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kristina E. Parley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Chamini J. Perera
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - David K. Ryugo
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, Australia
| | - Allen F. Ryan
- Departments of Surgery and Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Administration Medical Center, La Jolla, CA, United States
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Gary D. Housley
| |
Collapse
|
4
|
Ripley S, Xia L, Zhang Z, Aiken SJ, Wang J. Animal-to-Human Translation Difficulties and Problems With Proposed Coding-in-Noise Deficits in Noise-Induced Synaptopathy and Hidden Hearing Loss. Front Neurosci 2022; 16:893542. [PMID: 35720689 PMCID: PMC9199355 DOI: 10.3389/fnins.2022.893542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Noise induced synaptopathy (NIS) and hidden hearing loss (NIHHL) have been hot topic in hearing research since a massive synaptic loss was identified in CBA mice after a brief noise exposure that did not cause permanent threshold shift (PTS) in 2009. Based upon the amount of synaptic loss and the bias of it to synapses with a group of auditory nerve fibers (ANFs) with low spontaneous rate (LSR), coding-in-noise deficit (CIND) has been speculated as the major difficult of hearing in subjects with NIS and NIHHL. This speculation is based upon the idea that the coding of sound at high level against background noise relies mainly on the LSR ANFs. However, the translation from animal data to humans for NIS remains to be justified due to the difference in noise exposure between laboratory animals and human subjects in real life, the lack of morphological data and reliable functional methods to quantify or estimate the loss of the afferent synapses by noise. Moreover, there is no clear, robust data revealing the CIND even in animals with the synaptic loss but no PTS. In humans, both positive and negative reports are available. The difficulty in verifying CINDs has led a re-examination of the hypothesis that CIND is the major deficit associated with NIS and NIHHL, and the theoretical basis of this idea on the role of LSR ANFs. This review summarized the current status of research in NIS and NIHHL, with focus on the translational difficulty from animal data to human clinicals, the technical difficulties in quantifying NIS in humans, and the problems with the SR theory on signal coding. Temporal fluctuation profile model was discussed as a potential alternative for signal coding at high sound level against background noise, in association with the mechanisms of efferent control on the cochlea gain.
Collapse
Affiliation(s)
- Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Steve J. Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Cadenas LT, Cheng H, Weisz CJC. Synaptic plasticity of inhibitory synapses onto medial olivocochlear efferent neurons. J Physiol 2022; 600:2747-2763. [PMID: 35443073 PMCID: PMC9323901 DOI: 10.1113/jp282815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract The descending auditory system modulates the ascending system at every level. The final descending, or efferent, stage comprises lateral olivocochlear and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC‐mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB–MOC synapses exhibit short‐term depression, suggesting reduced MNTB–MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound‐evoked activity in MNTB neurons in vivo, MNTB–MOC synapses may be tonically depressed. To probe this, we characterized short‐term plasticity of MNTB–MOC synapses in mouse brain slices. We mimicked in vivo‐like temperature and extracellular calcium conditions, and in vivo‐like activity patterns of fast synaptic activation rates, sustained activation and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, postsynaptic currents in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo, MNTB inhibition of MOC neurons persists despite tonic synaptic depression. Key points Inhibitory synapses from the medial nucleus of the trapezoid body (MNTB) onto medial olivocochlear (MOC) neurons exhibit short‐term plasticity that is sensitive to calcium and temperature, with enhanced synaptic depression occurring at higher calcium concentrations and at room temperature. High rates of background synaptic activity that mimic the upper limits of spontaneous MNTB activity cause tonic synaptic depression of MNTB–MOC synapses that limits further synaptic inhibition. High rates of activity at MNTB–MOC synapses cause synaptic summation with concurrent depression to yield a response with an initial large amplitude that decays to a tonic inhibition.
Collapse
Affiliation(s)
- Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Ohata K, Kondo M, Ozono Y, Hanada Y, Sato T, Inohara H, Shimada S. Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system. FASEB J 2021; 35:e21486. [PMID: 33811700 DOI: 10.1096/fj.202002383r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 11/11/2022]
Abstract
The cochlear efferent feedback system plays important roles in auditory processing, including regulation of the dynamic range of hearing, and provides protection against acoustic trauma. These functions are performed through medial olivocochlear (MOC) neurons. However, the underlying cellular and molecular mechanisms are not fully understood. The serotonin type 3A (5-HT3A) receptor is widely expressed throughout the nervous system, which suggests important roles in various neural functions. However, involvement of the 5-HT3A receptor in the MOC system remains unclear. We used mice in this study and found that the 5-HT3A receptor was expressed in MOC neurons that innervated outer hair cells in the cochlea and was involved in the activation of MOC neurons by noise exposure. 5-HT3A receptor knockout impaired MOC functions, potentiated noise-induced hearing loss, and increased loss of ribbon synapses following noise exposure. Furthermore, 5-HT3 receptor agonist treatment alleviated the noise-induced hearing loss and loss of ribbon synapses, which enhanced cochlear protection provided by the MOC system. Our findings demonstrate that the 5-HT3A receptor plays fundamental roles in the MOC system and critically contributes to protection from noise-induced hearing impairment.
Collapse
Affiliation(s)
- Kazuya Ohata
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Yoshiyuki Ozono
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukiko Hanada
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
7
|
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nat Commun 2021; 12:2449. [PMID: 33907194 PMCID: PMC8079389 DOI: 10.1038/s41467-021-22796-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Maya Sanghvi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Yueyi Zhang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barbara Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel G Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Marrufo-Pérez MI, Johannesen PT, Lopez-Poveda EA. Correlation and Reliability of Behavioral and Otoacoustic-Emission Estimates of Contralateral Medial Olivocochlear Reflex Strength in Humans. Front Neurosci 2021; 15:640127. [PMID: 33664649 PMCID: PMC7921326 DOI: 10.3389/fnins.2021.640127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
The roles of the medial olivocochlear reflex (MOCR) in human hearing have been widely investigated but remain controversial. We reason that this may be because the effects of MOCR activation on cochlear mechanical responses can be assessed only indirectly in healthy humans, and the different methods used to assess those effects possibly yield different and/or unreliable estimates. One aim of this study was to investigate the correlation between three methods often employed to assess the strength of MOCR activation by contralateral acoustic stimulation (CAS). We measured tone detection thresholds (N = 28), click-evoked otoacoustic emission (CEOAE) input/output (I/O) curves (N = 18), and distortion-product otoacoustic emission (DPOAE) I/O curves (N = 18) for various test frequencies in the presence and the absence of CAS (broadband noise of 60 dB SPL). As expected, CAS worsened tone detection thresholds, suppressed CEOAEs and DPOAEs, and horizontally shifted CEOAE and DPOAE I/O curves to higher levels. However, the CAS effect on tone detection thresholds was not correlated with the horizontal shift of CEOAE or DPOAE I/O curves, and the CAS-induced CEOAE suppression was not correlated with DPOAE suppression. Only the horizontal shifts of CEOAE and DPOAE I/O functions were correlated with each other at 1.5, 2, and 3 kHz. A second aim was to investigate which of the methods is more reliable. The test–retest variability of the CAS effect was high overall but smallest for tone detection thresholds and CEOAEs, suggesting that their use should be prioritized over the use of DPOAEs. Many factors not related with the MOCR, including the limited parametric space studied, the low resolution of the I/O curves, and the reduced numbers of observations due to data exclusion likely contributed to the weak correlations and the large test–retest variability noted. These findings can help us understand the inconsistencies among past studies and improve our understanding of the functional significance of the MOCR.
Collapse
Affiliation(s)
- Miriam I Marrufo-Pérez
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Fischl MJ, Weisz CJC. In Vitro Wedge Slice Preparation for Mimicking In Vivo Neuronal Circuit Connectivity. J Vis Exp 2020. [PMID: 32894269 DOI: 10.3791/61664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vitro slice electrophysiology techniques measure single-cell activity with precise electrical and temporal resolution. Brain slices must be relatively thin to properly visualize and access neurons for patch-clamping or imaging, and in vitro examination of brain circuitry is limited to only what is physically present in the acute slice. To maintain the benefits of in vitro slice experimentation while preserving a larger portion of presynaptic nuclei, we developed a novel slice preparation. This "wedge slice" was designed for patch-clamp electrophysiology recordings to characterize the diverse monaural, sound-driven inputs to medial olivocochlear (MOC) neurons in the brainstem. These neurons receive their primary afferent excitatory and inhibitory inputs from neurons activated by stimuli in the contralateral ear and corresponding cochlear nucleus (CN). An asymmetrical brain slice was designed which is thickest in the rostro-caudal domain at the lateral edge of one hemisphere and then thins towards the lateral edge of the opposite hemisphere. This slice contains, on the thick side, the auditory nerve root conveying information about auditory stimuli to the brain, the intrinsic CN circuitry, and both the disynaptic excitatory and trisynaptic inhibitory afferent pathways that converge on contralateral MOC neurons. Recording is performed from MOC neurons on the thin side of the slice, where they are visualized using DIC optics for typical patch-clamp experiments. Direct stimulation of the auditory nerve is performed as it enters the auditory brainstem, allowing for intrinsic CN circuit activity and synaptic plasticity to occur at synapses upstream of MOC neurons. With this technique, one can mimic in vivo circuit activation as closely as possible within the slice. This wedge slice preparation is applicable to other brain circuits where circuit analyses would benefit from preservation of upstream connectivity and long-range inputs, in combination with the technical advantages of in vitro slice physiology.
Collapse
Affiliation(s)
- Matthew J Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH;
| |
Collapse
|
10
|
Torres Cadenas L, Fischl MJ, Weisz CJC. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 40:509-525. [PMID: 31719165 PMCID: PMC6961997 DOI: 10.1523/jneurosci.1288-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Medial olivocochlear (MOC) efferent neurons in the brainstem comprise the final stage of descending control of the mammalian peripheral auditory system through axon projections to the cochlea. MOC activity adjusts cochlear gain and frequency tuning, and protects the ear from acoustic trauma. The neuronal pathways that activate and modulate the MOC somata in the brainstem to drive these cochlear effects are poorly understood. Evidence suggests that MOC neurons are primarily excited by sound stimuli in a three-neuron activation loop from the auditory nerve via an intermediate neuron in the cochlear nucleus. Anatomical studies suggest that MOC neurons receive diverse synaptic inputs, but the functional effect of additional synaptic influences on MOC neuron responses is unknown. Here we use patch-clamp electrophysiological recordings from identified MOC neurons in brainstem slices from mice of either sex to demonstrate that in addition to excitatory glutamatergic synapses, MOC neurons receive inhibitory GABAergic and glycinergic synaptic inputs. These synapses are activated by electrical stimulation of axons near the medial nucleus of the trapezoid body (MNTB). Focal glutamate uncaging confirms MNTB neurons as a source of inhibitory synapses onto MOC neurons. MNTB neurons inhibit MOC action potentials, but this effect depresses with repeat activation. This work identifies a new pathway of connectivity between brainstem auditory neurons and indicates that MOC neurons are both excited and inhibited by sound stimuli received at the same ear. The pathway depression suggests that the effect of MNTB inhibition of MOC neurons diminishes over the course of a sustained sound.SIGNIFICANCE STATEMENT Medial olivocochlear (MOC) neurons are the final stage of descending control of the mammalian auditory system and exert influence on cochlear mechanics to modulate perception of acoustic stimuli. The brainstem pathways that drive MOC function are poorly understood. Here we show for the first time that MOC neurons are inhibited by neurons of the MNTB, which may suppress the effects of MOC activity on the cochlea.
Collapse
Affiliation(s)
- Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Matthew J Fischl
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Nogueira W, Krüger B, Büchner A, Lopez-Poveda E. Contralateral suppression of human hearing sensitivity in single-sided deaf cochlear implant users. Hear Res 2018; 373:121-129. [PMID: 29941311 DOI: 10.1016/j.heares.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Cochlear implants (CIs) are being implanted in people with unilateral hearing loss because they can improve speech intelligibility and sound source localization. Though designed to restore the afferent auditory stimulation, the CI possibly restores some efferent effects. The present study aimed at investigating this possibility. Five single-sided deaf CI users with less than 30 dB hearing loss up to 4 kHz in their acoustic ear participated in the study. Absolute thresholds for their acoustic ears were measured for pure tones of 500 and 4000 Hz with durations of 10 and 200 ms in the presence and in the absence of contralateral broadband electrical stimulation (CBES) delivered with the CI. The electrical stimulus consisted of pulse trains (symmetric biphasic pulses with phase duration 36 μs) on all 16 electrodes sequentially stimulated at a rate of 843 Hz. Its intensity was set to sound as loud as broadband noise at 50 or 60 dB SPL in the acoustic ear. Thresholds were measured using a three-interval, three-alternative, forced-choice procedure with a two-down, one-up adaptive rule to estimate the level for 71% correct in the psychometric function. Thresholds measured without the CBES were lower for the longer than for the shorter tones, and the difference was larger at 500 than at 4000 Hz. CBES equivalent to 50 or 60 dB SPL caused significant threshold elevation only for short (10 ms) and low frequency (500 Hz) acoustic tones of 1.2 and 2.2 dB. These increases appear smaller than previously reported for normal hearing listeners in related experiments. These results support the notion that for single-sided deaf CI users, the CI modulates hearing in the acoustic ear. The possible mechanisms that may be contributing this effect are discussed.
Collapse
Affiliation(s)
- Waldo Nogueira
- Medical University Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany.
| | - Benjamin Krüger
- Medical University Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Andreas Büchner
- Medical University Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany
| | | |
Collapse
|
12
|
Boothalingam S, Kurke J, Dhar S. Click-Evoked Auditory Efferent Activity: Rate and Level Effects. J Assoc Res Otolaryngol 2018; 19:421-434. [PMID: 29736560 DOI: 10.1007/s10162-018-0664-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/22/2018] [Indexed: 11/29/2022] Open
Abstract
There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory efferent nervous system, while yielding larger, more discernible, inhibition of the CEOAEs relative to either ipsilateral or contralateral condition.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, and The Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Julianne Kurke
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, and The Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
13
|
Contralateral Suppression of DPOAEs in Mice after Ouabain Treatment. Neural Plast 2018; 2018:6890613. [PMID: 29849563 PMCID: PMC5914095 DOI: 10.1155/2018/6890613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Medial olivocochlear (MOC) efferent feedback is suggested to protect the ear from acoustic injury and to increase its ability to discriminate sounds against a noisy background. We investigated whether type II spiral ganglion neurons participate in the contralateral suppression of the MOC reflex. The application of ouabain to the round window of the mouse cochlea selectively induced the apoptosis of the type I spiral ganglion neurons, left the peripherin-immunopositive type II spiral ganglion neurons intact, and did not affect outer hairs, as evidenced by the maintenance of the distorted product otoacoustic emissions (DPOAEs). With the ouabain treatment, the threshold of the auditory brainstem response increased significantly and the amplitude of wave I decreased significantly in the ouabain-treated ears, consistent with the loss of type I neurons. Contralateral suppression was measured as reduction in the amplitude of the 2f1−f2 DPOAEs when noise was presented to the opposite ear. Despite the loss of all the type I spiral ganglion neurons, virtually, the amplitude of the contralateral suppression was not significantly different from the control when the suppressor noise was delivered to the treated cochlea. These results are consistent with the type II spiral ganglion neurons providing the sensory input driving contralateral suppression of the MOC reflex.
Collapse
|
14
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
16
|
Suthakar K, Ryugo DK. Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness. Hear Res 2017; 343:34-49. [DOI: 10.1016/j.heares.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
|
17
|
Abstract
Abstract:Descending connections are present in many sensory systems and support adaptive information processing. This allows the sensory brain to code a wider range of inputs. A well characterized descending system is the olivo-cochlear cholinergic innervation of the inner ear, which mediates a reduction of the sensitivity of the inner ear upon perception of intense sounds. Because this inhibits the response to background noise, the olivo-cochlear system supports detection of transient sound events. Olivo-cochlear neurons also innervate the cochlear nucleus through axon collaterals. Here, acetylcholine increases the excitability of central neurons without reducing their temporal precision. Thus their target neurons in the superior olivary complex can more effectively process binaural temporal cues. We argue that the central effect of the olivo-cochlear system augments the peripheral effect. In addition, olivo-cochlear cholinergic neurons are under top-down control of cortical inputs, providing further adaptability of information processing on the level of the auditory brainstem.
Collapse
|
18
|
Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 2016; 65:80-87. [PMID: 27760385 DOI: 10.1016/j.semcdb.2016.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/12/2016] [Accepted: 09/25/2016] [Indexed: 01/17/2023]
Abstract
In hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection. However, less attention has been given to the type II SGNs, which exclusively innervate outer hair cells (OHCs). In this review, we emphasize recent advances in the molecular mechanisms that control how type II SGNs develop and form connections with OHCs, and exciting new insights into the function of type II SGNs.
Collapse
Affiliation(s)
- Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
19
|
Goyer D, Kurth S, Gillet C, Keine C, Rübsamen R, Kuenzel T. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons. eNeuro 2016; 3:ENEURO.0186-16.2016. [PMID: 27699207 PMCID: PMC5035776 DOI: 10.1523/eneuro.0186-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 11/23/2022] Open
Abstract
Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top-down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55-72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top-down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway.
Collapse
Affiliation(s)
- David Goyer
- Institute for Biology II, Department of Zoology/Animal Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Stefanie Kurth
- Institute for Biology II, Department of Zoology/Animal Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Charlène Gillet
- Institute for Biology II, Department of Zoology/Animal Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Christian Keine
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, D-04103 Leipzig, Germany
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, D-04103 Leipzig, Germany
| | - Thomas Kuenzel
- Institute for Biology II, Department of Zoology/Animal Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
20
|
Type II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice. eNeuro 2016; 3:eN-NWR-0207-16. [PMID: 27570826 PMCID: PMC4987660 DOI: 10.1523/eneuro.0207-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/26/2022] Open
Abstract
The cochlear nerve includes a small population of unmyelinated sensory fibers connecting outer hair cells to the brain. The functional role of these type II afferent neurons is controversial, because neurophysiological data are sparse. A recent study (Froud et al., 2015) reported that targeted deletion of peripherin, a type of neurofilament, eliminated type II afferents and inactivated efferent feedback to the outer hair cells, thereby suggesting that type II afferents were the sensory drive to this sound-evoked, negative-feedback reflex, the olivocochlear pathway. Here, we re-evaluated the cochlear phenotype in mice from the peripherin knock-out line and show that (1) type II afferent terminals are present in normal number and (2) olivocochlear suppression of cochlear responses is absent even when this efferent pathway is directly activated by shocks. We conclude that type II neurons are not the sensory drive for the efferent reflex and that peripherin deletion likely causes dysfunction of synaptic transmission between olivocochlear terminals and their peripheral targets.
Collapse
|
21
|
Park SY, Park JM, Back SA, Yeo SW, Park SN. Functional Significance of Medial Olivocochlear System Morphology in the Mouse Cochlea. Clin Exp Otorhinolaryngol 2016; 10:137-142. [PMID: 27464515 PMCID: PMC5426398 DOI: 10.21053/ceo.2016.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 11/22/2022] Open
Abstract
Objectives Baso-apical gradients exist in various cochlear structures including medial olivocochlear (MOC) efferent system. This study investigated the cochlear regional differentials in the function and morphology of the MOC system, and addressed the functional implications of regional MOC efferent terminals (ETs) in the mouse cochlea. Methods In CBA/J mice, MOC reflex (MOCR) was assessed based on the distortion product otoacoustic emission in the absence and presence of contralateral acoustic stimulation. High, middle, and low frequencies were grouped according to a mouse place-frequency map. Cochlear whole mounts were immunostained for ETs with anti-α-synuclein and examined using confocal laser scanning microscopy. The diameters of ETs and the number of ETs per outer hair cell were measured from the z-stack images of the basal, middle and apical regions, respectively. Results The middle cochlear region expressed large, clustered MOC ETs with strong MOCR, the base expressed small, less clustered ETs with strong MOCR, and the apex expressed large, but less clustered ETs with weak MOCR. Conclusion The mouse cochlea demonstrated regional differentials in the function and morphology of the MOC system. Strong MOCR along with superior MOC morphology in the middle region may contribute to ‘signal detection in noise,’ the primary efferent function, in the best hearing frequencies. Strong MOCR in spite of inferior MOC morphology in the base may reflect the importance of ‘protection from noise trauma’ in the high frequencies.
Collapse
Affiliation(s)
- So Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang A Back
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Won Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
22
|
Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat Commun 2015; 6:7115. [PMID: 25965946 PMCID: PMC4432632 DOI: 10.1038/ncomms8115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/04/2015] [Indexed: 01/31/2023] Open
Abstract
The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex. The medial olivocochlear efferent reflex regulates cochlear outer hair cell-based amplification of sound energy. Here the authors show this dynamic control of hearing sensitivity is driven by sensory input from the outer hair cells and their type II spiral ganglion neuron innervation.
Collapse
|
23
|
Sturm JJ, Weisz CJC. Hyperactivity in the medial olivocochlear efferent system is a common feature of tinnitus and hyperacusis in humans. J Neurophysiol 2015; 114:2551-4. [PMID: 25695650 DOI: 10.1152/jn.00948.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
Tinnitus and hyperacusis are common, burdensome sources of morbidity with a high rate of co-occurrence. Knudson et al. (J Neurophysiol 112: 3197-3208, 2014) demonstrated that efferent suppression of cochlear activity by the medial olivocochlear system is enhanced in individuals with tinnitus and/or hyperacusis. Their findings stress that atypical activity in the efferent auditory pathway may represent a shared substrate, as well as a potential therapeutic target, in tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Joshua J Sturm
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
24
|
Yasin I, Drga V, Plack CJ. Effect of human auditory efferent feedback on cochlear gain and compression. J Neurosci 2014; 34:15319-26. [PMID: 25392499 PMCID: PMC4228134 DOI: 10.1523/jneurosci.1043-14.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 11/21/2022] Open
Abstract
The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain.
Collapse
Affiliation(s)
- Ifat Yasin
- Ear Institute, University College London, London WC1X 8EE, United Kingdom, and
| | - Vit Drga
- Ear Institute, University College London, London WC1X 8EE, United Kingdom, and
| | - Christopher J Plack
- School of Psychological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| |
Collapse
|
25
|
Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 2013; 242:1348-68. [PMID: 23996673 DOI: 10.1002/dvdy.24055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 01/17/2023] Open
Abstract
Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. In vertebrates, 39 Hox genes have been identified and like their Drosophila counterparts they are organized within chromosomal clusters. Hox genes interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing hindbrain and spinal cord, and are considered crucial determinants of segmental identity and cell specification along the anterioposterior and dorsoventral axes of the embryo. Here, we review their later roles in the assembly of neuronal circuitry, in stereotypic neuronal migration, axon pathfinding, and topographic connectivity. Importantly, we will put some emphasis on how their early-segmented expression patterns can influence the formation of complex vital hindbrain and spinal cord circuitries.
Collapse
Affiliation(s)
- Maria Di Bonito
- University of Nice-Sophia Antipolis, F-06108, Nice, France; INSERM, iBV, UMR 1091, F-06108, Nice, France
| | | | | |
Collapse
|
26
|
Identification of inputs to olivocochlear neurons using transneuronal labeling with pseudorabies virus (PRV). J Assoc Res Otolaryngol 2013; 14:703-17. [PMID: 23728891 DOI: 10.1007/s10162-013-0400-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022] Open
Abstract
Olivocochlear (OC) neurons respond to sound and provide descending input that controls processing in the cochlea. The identities of neurons in the pathways providing inputs to OC neurons are incompletely understood. To explore these pathways, the retrograde transneuronal tracer pseudorabies virus (Bartha strain, expressing green fluorescent protein) was used to label OC neurons and their inputs in guinea pigs. Labeling of OC neurons began 1 day after injection into the cochlea. On day 2 (and for longer survival times), transneuronal labeling spread to the cochlear nucleus, inferior colliculus, and other brainstem areas. There was a correlation between the numbers of these transneuronally labeled neurons and the number of labeled medial (M) OC neurons, suggesting that the spread of labeling proceeds mainly via synapses on MOC neurons. In the cochlear nucleus, the transneuronally labeled neurons were multipolar cells including the subtype known as planar cells. In the central nucleus of the inferior colliculus, transneuronally labeled neurons were of two principal types: neurons with disc-shaped dendritic fields and neurons with dendrites in a stellate pattern. Transneuronal labeling was also observed in pyramidal cells in the auditory cortex and in centers not typically associated with the auditory pathway such as the pontine reticular formation, subcoerulean nucleus, and the pontine dorsal raphe. These data provide information on the identity of neurons providing input to OC neurons, which are located in auditory as well as non-auditory centers.
Collapse
|
27
|
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 2013; 9:e1003249. [PMID: 23408898 PMCID: PMC3567144 DOI: 10.1371/journal.pgen.1003249] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/02/2012] [Indexed: 12/24/2022] Open
Abstract
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
Collapse
Affiliation(s)
- Maria Di Bonito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
| | - Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Bice Avallone
- Department of Biological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Sequino
- Institute of Audiology, University “Federico II”, Naples, Italy
| | - Marta Mancuso
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Gennaro Andolfi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Anna Maria Franzè
- Institute of Genetics and Biophysics “A. Buzzati Traverso” C.N.R., Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (FMR); (MS)
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
- * E-mail: (FMR); (MS)
| |
Collapse
|
28
|
Kang HW, Shim HJ, Song SJ, Lee SH, Yoon SW. Time course of the suppression effect on transient evoked otoacoustic emissions by prolonged contralateral acoustic stimulation. KOREAN JOURNAL OF AUDIOLOGY 2012; 16:114-9. [PMID: 24653884 PMCID: PMC3936663 DOI: 10.7874/kja.2012.16.3.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/01/2022]
Abstract
Background and Objectives Although the suppressive effect of the medial efferent acoustic reflex is well known, the time course of this effect over prolonged periods has yet to be fully evaluated. We assessed time-dependent change in the suppression of transient evoked otoacoustic emissions (TEOAEs) by the medial efferent acoustic reflex over a relatively long period. Subjects and Methods We measured TEOAEs in the right ear before contralateral acoustic stimulation (CAS), and then measured serial TEOAEs in the right ear at four intervals during a total of 16 minutes of continuous CAS, followed by three more recordings after termination of CAS. Results TEOAE amplitudes were reduced with CAS during a certain period (from the immediate period to 10 minutes depending on frequency) and subsequently recovered. TEOAE suppression values in the mean amplitudes for overall frequency were 0.76 dB at the initial recording, 0.35 dB at 5 minutes, 0.44 dB at 10 minutes, and 0.33 dB at 15 minutes during CAS. The initial suppression value was significantly larger than other suppression values of 5, 10, and 15 minutes (p<0.05). In recordings obtained after CAS, TEOAE amplitude exceeded pre-acoustic amplitudes at 1 kHz, 1.5 kHz, and 2 kHz. Conclusions The present results show the existence of the medial efferent acoustic reflex and demonstrate the time course that TEOAE suppressions present initially after CAS, showing fatigue over time. Overshooting of TEOAE was observed in recordings at several frequencies after termination of CAS.
Collapse
Affiliation(s)
- Hyun Woo Kang
- Department of Otolaryngology, Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Hyun Joon Shim
- Department of Otolaryngology, Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Seong Jun Song
- Department of Otolaryngology, Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Seong Hee Lee
- Department of Otolaryngology, Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Sang Won Yoon
- Department of Otolaryngology, Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Darrow KN, Benson TE, Brown MC. Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse. J Comp Neurol 2012; 520:1365-75. [PMID: 22101968 PMCID: PMC3514887 DOI: 10.1002/cne.22797] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medial olivocochlear (MOC) neurons originate in the superior olivary complex and project to the cochlea, where they act to reduce the effects of noise masking and protect the cochlea from damage. MOC neurons respond to sound via a reflex pathway; however, in this pathway the cochlear nucleus cell type that provides input to MOC neurons is not known. We investigated whether multipolar cells of the ventral cochlear nucleus have projections to MOC neurons by labeling them with injections into the dorsal cochlear nucleus. The projections of one type of labeled multipolar cell, planar neurons, were traced into the ventral nucleus of the trapezoid body, where they were observed terminating on MOC neurons (labeled in some cases by a second cochlear injection of FluoroGold). These terminations formed what appear to be excitatory synapses, i.e., containing small, round vesicles and prominent postsynaptic densities. These data suggest that cochlear nucleus planar multipolar neurons drive the MOC neuron's response to sound.
Collapse
Affiliation(s)
- Keith N Darrow
- Department of Communication Sciences and Disorders, Worcester State University, Worcester, Massachusetts 01564, USA.
| | | | | |
Collapse
|
30
|
Zhao W, Dhar S. Frequency tuning of the contralateral medial olivocochlear reflex in humans. J Neurophysiol 2012; 108:25-30. [PMID: 22457463 DOI: 10.1152/jn.00051.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the medial olivocochlear (MOC) efferents attenuates cochlear gain and reduces the amplitudes of mechanical, electrical, and neural cochlear outputs. The functional roles of the MOC efferents are not fully understood, especially in humans, despite postulations that they are involved in protection against acoustic trauma, facilitation of transient-sound perception, etc. Delineating the frequency tuning properties of the MOC efferents would provide critical evidence to support or refute these postulated functional roles. By utilizing spontaneous otoacoustic emissions (SOAEs), a cochlear measure sensitive to MOC modulation, we systematically demonstrate in humans that the contralateral MOC reflex is tuned to a fixed frequency band between 500 and 1,000 Hz independent of SOAE frequency. Our results question the role of the MOC reflex in protection against acoustic trauma or facilitation of transient-sound perception.
Collapse
Affiliation(s)
- Wei Zhao
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
31
|
Guinan JJ. Physiology of the Medial and Lateral Olivocochlear Systems. AUDITORY AND VESTIBULAR EFFERENTS 2011. [DOI: 10.1007/978-1-4419-7070-1_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
|
33
|
Abstract
Animal models have demonstrated that mild hearing loss caused by acoustic trauma results in spontaneous hyperactivity in the central auditory pathways. This hyperactivity has been hypothesized to be involved in the generation of tinnitus, a phantom auditory sensation. We have recently shown that such hyperactivity, recorded in the inferior colliculus, is still dependent on cochlear neural output for some time after recovery (up to 6 weeks). We have now studied the capacity of an intrinsic efferent system, i.e., the olivocochlear system, to alter hyperactivity. This system is known to modulate cochlear neural output. Anesthetized guinea pigs were exposed to a loud sound and after 2 or 3 weeks of recovery, single-neuron recordings in inferior colliculus were made to confirm hyperactivity. Olivocochlear axons were electrically stimulated and effects on cochlear neural output and on highly spontaneous neurons in inferior colliculus were assessed. Olivocochlear stimulation suppressed spontaneous hyperactivity in the inferior colliculus. This result is in agreement with our earlier finding that hyperactivity can be modulated by altering cochlear neural output. Interestingly, the central suppression was generally much larger and longer lasting than reported previously for primary afferents. Blockade of the intracochlear effects of olivocochlear system activation eliminated some but not all of the effects observed on spontaneous activity, suggesting also a central component to the effects of stimulation. More research is needed to investigate whether these central effects of olivocochlear efferent stimulation are due to central intrinsic circuitry or to coactivation of central efferent collaterals to the cochlear nucleus.
Collapse
|
34
|
Bledsoe SC, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J Neurophysiol 2009; 102:886-900. [PMID: 19458143 PMCID: PMC2724362 DOI: 10.1152/jn.91003.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 05/15/2009] [Indexed: 11/22/2022] Open
Abstract
In the normal guinea pig, contralateral sound inhibits more than a third of ventral cochlear nucleus (VCN) neurons but excites <4% of these neurons. However, unilateral conductive hearing loss (CHL) and cochlear ablation (CA) result in a major enhancement of contralateral excitation. The response properties of the contralateral excitation produced by CHL and CA are similar, suggesting similar pathways are involved for both types of hearing loss. Here we used the neurotoxin melittin to test the hypothesis that this "compensatory" contralateral excitation is mediated either by direct glutamatergic CN-commissural projections or by cholinergic neurons of the olivocochlear bundle (OCB) that send collaterals to the VCN. Unit responses were recorded from the left VCN of anesthetized, unilaterally deafened guinea pigs (CHL via ossicular disruption, or CA via mechanical destruction). Neural responses were obtained with 16-channel electrodes to enable simultaneous data collection from a large number of single- and multiunits in response to ipsi- and contralateral tone burst and noise stimuli. Lesions of each pathway had differential effects on the contralateral excitation. We conclude that contralateral excitation has a fast and a slow component. The fast excitation is likely mediated by glutamatergic neurons located in medial regions of VCN that send their commissural axons to the other CN via the dorsal/intermediate acoustic striae. The slow component is likely mediated by the OCB collateral projections to the CN. Commissural neurons that leave the CN via the trapezoid body are an additional source of fast, contralateral excitation.
Collapse
Affiliation(s)
- Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
35
|
Brown MC, Levine JL. Dendrites of medial olivocochlear neurons in mouse. Neuroscience 2008; 154:147-59. [PMID: 18313859 PMCID: PMC2587447 DOI: 10.1016/j.neuroscience.2007.12.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022]
Abstract
Stains for acetylcholinesterase (AChE) and retrograde labeling with Fluorogold (FG) were used to study olivocochlear neurons and their dendritic patterns in mice. The two methods gave similar results for location and number of somata. The total number of medial olivocochlear (MOC) neurons in the ventral nucleus of the trapezoid body (VNTB) is about 170 per side. An additional dozen large olivocochlear neurons are located in the dorsal periolivary nucleus (DPO). Dendrites of all of these neurons are long and extend in all directions from the cell bodies, a pattern that contrasts with the sharp frequency tuning of their responses. For VNTB neurons, there were greater numbers of dendrites directed medially than laterally and those directed medially were longer (on average, 25-50% longer). Dendrite extensions were most pronounced for neurons located in the rostral portion of the VNTB. When each dendrite from a single neuron was represented as a vector, and all the vectors summed, the result was also skewed toward the medial direction. DPO neurons, however, had more symmetric dendrites that projected into more dorsal parts of the trapezoid body, suggesting that this small group of olivocochlear neurons has very different physiological properties. Dendrites of both types of neurons were somewhat elongated rostrally, about 20% longer than those directed caudally. These results can be interpreted as extensions of dendrites of olivocochlear neurons toward their synaptic inputs: medially to meet crossing fibers from the cochlear nucleus that are part of the MOC reflex pathway, and rostrally to meet descending inputs from higher centers.
Collapse
Affiliation(s)
- M C Brown
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
36
|
Zhu X, Vasilyeva ON, Kim S, Jacobson M, Romney J, Waterman MS, Tuttle D, Frisina RD. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. J Comp Neurol 2007; 503:593-604. [PMID: 17559088 DOI: 10.1002/cne.21402] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The C57BL/6J mouse has been a useful model of presbycusis, as it displays an accelerated age-related peripheral hearing loss. The medial olivocochlear efferent feedback (MOC) system plays a role in suppressing cochlear outer hair cell (OHC) responses, particularly for background noise. Neurons of the MOC system are located in the superior olivary complex, particularly in the dorsomedial periolivary nucleus (DMPO) and in the ventral nucleus of the trapezoid body (VNTB). We previously discovered that the function of the MOC system declines with age prior to OHC degeneration, as measured by contralateral suppression (CS) of distortion product otoacoustic emissions (DPOAEs) in humans and CBA mice. The present study aimed to determine the time course of age changes in MOC function in C57s. DPOAE amplitudes and CS of DPOAEs were collected for C57s from 6 to 40 weeks of age. MOC responses were observed at 6 weeks but were gone at middle (15-30 kHz) and high (30-45 kHz) frequencies by 8 weeks. Quantitative stereological analyses of Nissl sections revealed smaller neurons in the DMPO and VNTB of young adult C57s compared with CBAs. These findings suggest that reduced neuron size may underlie part of the noteworthy rapid decline of the C57 efferent system. In conclusion, the C57 mouse has MOC function at 6 weeks, but it declines quickly, preceding the progression of peripheral age-related sensitivity deficits and hearing loss in this mouse strain.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642-8629, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Skjönsberg A, Halsey K, Ulfendahl M, Dolan DF. Exploring efferent-mediated DPOAE adaptation in three different guinea pig strains. Hear Res 2007; 224:27-33. [PMID: 17224252 DOI: 10.1016/j.heares.2006.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022]
Abstract
The aims of this study were to explore the correlation between DPOAE adaptation magnitude in three different guinea pig strains to examine if the genetic component affects the DPOAE adaptation magnitude. It was also to investigate the correlation between strains with certain characteristics i.e. reduced susceptibility to noise, and early onset of age-dependent hearing loss and the DPOAE adaptation magnitude. The animals were anaesthetized and the 2f1-f2 DPOAE (f1=8k Hz, and f2/f1=1.2) adaptation was established with a minimum of 144 combinations of f1; f2 where f1 was held fixed and f2 was varied in 1 dB or 0.4 dB steps. The DPOAE adaptation magnitude was defined as the difference between maximum positive level and the maximum negative level. ABRs were conducted at different age-groups (at 4, 6.3, and 12.5k Hz) to evaluate the progress of hearing thresholds by age. There was a significant difference between strains regarding the hearing loss at one year of age. There was no significant difference in DPOAE adaptation magnitude between strains included in this study and from this we conclude that the DPOAE adaptation magnitude is not a predictor for the susceptibility to noise trauma, or early onset of age-dependent hearing loss, using the methods described in this paper.
Collapse
MESH Headings
- Adaptation, Physiological
- Aging/physiology
- Animals
- Auditory Threshold
- Disease Models, Animal
- Efferent Pathways/physiology
- Evoked Potentials, Auditory, Brain Stem
- Guinea Pigs/genetics
- Guinea Pigs/physiology
- Hearing Loss, Noise-Induced/etiology
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/physiopathology
- Otoacoustic Emissions, Spontaneous/genetics
- Otoacoustic Emissions, Spontaneous/physiology
- Presbycusis/etiology
- Presbycusis/genetics
- Presbycusis/physiopathology
- Reflex, Acoustic
- Species Specificity
Collapse
Affiliation(s)
- Asa Skjönsberg
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institute, Building M1:00, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
Abstract
Medial olivocochlear (MOC) neurons project from the brain to the cochlea to form the efferent limb of the MOC reflex. To study synaptic inputs to MOC neurons, we retrogradely labeled these neurons using horseradish peroxidase injections into the cochlea. Labeled neurons were identified in the ventral nucleus of the trapezoid body and documented with the light microscope before being studied with serial-section electron microscopy. MOC somata and dendrites were innervated by three different types of synapses, distinguished as either having: 1) large, round synaptic vesicles and forming asymmetric contacts; 2) small, round vesicles plus a few dense core vesicles and forming asymmetric contacts; or 3) pleomorphic vesicles and forming symmetric contacts. The first two types were the most frequent on somata. Acetylcholinesterase-stained material confirmed that the type containing large, round vesicles is most common on dendrites. We kept track of the synaptic terminals in serial sections and compiled them into three-dimensional swellings. Swellings with large, round vesicles formed up to seven synapses per swelling, were largest in size, and sometimes formed complex arrangements engulfing spines of MOC neurons. Swellings with small, round vesicles formed up to four synapses per swelling. The morphology of this type of synapse, and the moderate sizes of the swellings forming it, suggests that it originates from posteroventral cochlear nucleus stellate/multipolar neurons. This input may thus provide the sound-evoked input to MOC neurons that causes their reflexive response to sound.
Collapse
Affiliation(s)
- Thane E Benson
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
39
|
Hage SR, Jürgens U, Ehret G. Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. Eur J Neurosci 2006; 23:3297-308. [PMID: 16820019 DOI: 10.1111/j.1460-9568.2006.04835.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adjustment of the voice by auditory input happens at several brain levels. The caudal pontine brainstem, though rarely investigated, is one candidate area for such audio-vocal integration. We recorded neuronal activity in this area in awake, behaving squirrel monkeys (Saimiri sciureus) during vocal communication, using telemetric single-unit recording techniques. We found audio-vocal neurons at locations not described before, namely in the periolivary region of the superior olivary complex and the adjacent pontine reticular formation. They showed various responses to external sounds (noise bursts) and activity increases (excitation) or decreases (inhibition) to self-produced vocalizations, starting prior to vocal onset and continuing through vocalizations. In most of them, the responses to noise bursts and self-produced vocalizations were similar, with the only difference that neuronal activity started prior to vocal onset. About one-third responded phasically to noise bursts, independent of whether they increased or decreased their activity to vocalization. The activity of most audio-vocal neurons correlated with basic acoustic features of the vocalization, such as call duration and/or syllable structure. Auditory neurons near audio-vocal neurons showed significantly more frequent phasic response patterns than those in areas without audio-vocal activity. Based on these findings, we propose that audio-vocal neurons showing similar activity to external acoustical stimuli and vocalization play a role in olivocochlear regulation. Specifically, audio-vocal neurons with a phasic response to external auditory stimuli are candidates for the mediation of basal audio-vocal reflexes such as the Lombard reflex. Thus, our findings suggest that complex audio-vocal integration mechanisms exist in the ventrolateral pontine brainstem.
Collapse
Affiliation(s)
- Steffen R Hage
- Department of Neurobiology, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
40
|
Backus BC, Guinan JJ. Time-course of the human medial olivocochlear reflex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:2889-904. [PMID: 16708947 DOI: 10.1121/1.2169918] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The time-course of the human medial olivocochlear reflex (MOCR) was measured via its suppression of stimulus-frequency otoacoustic emissions (SFOAEs) in nine ears. MOCR effects were elicited by contralateral, ipsilateral or bilateral wideband acoustic stimulation. As a first approximation, MOCR effects increased like a saturating exponential with a time constant of 277+/-62 ms, and decayed exponentially with a time constant of 159+/-54 ms. However, in ears with the highest signal-to-noise ratios (4/9), onset time constants could be separated into "fast," tau= approximately 70 ms, "medium," tau = approximately 330 ms, and "slow," tau = approximately 25 s components, and there was an overshoot in the decay like an under-damped sinusoid. Both the buildup and decay could be modeled as a second order differential equation and the differences between the buildup and decay could be accounted for by decreasing one coefficient by a factor of 2. The reflex onset and offset delays were both approximately 25 ms. Although changing elicitor level over a 20 dB SPL range produced a consistent systematic change in response amplitude, the time course did not show a consistent dependence on elictor level, nor did the time-courses of ipsilaterally, contralaterally, and bilaterally activated MOCR responses differ significantly. Given the MOCR's time-course, it is best suited to operate on acoustic changes that persist for 100's of milliseconds.
Collapse
Affiliation(s)
- Bradford C Backus
- Eaton Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
41
|
Murao MS, Bento RF, Sanchez TG, Ribas GC. Transient evoked otoacoustic emissions after vestibular nerve section in chinchillas. Hear Res 2006; 213:43-8. [PMID: 16497453 DOI: 10.1016/j.heares.2005.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Transient evoked otoacoustic emissions are believed to be sensitive to the effects of the cochlear efferent system. The most well-known function of this system is inhibitory on cochlear response. It has been demonstrated that crossed medial efferent system section produces inhibitory control of the outer hair cells mechanisms responsible for non-linear transient evoked otoacoustic emissions generation. However, we suppose that the uncrossed medial efferent system plays a role in outer hair cell function too. We recorded the non-linear part of transient evoked otoacoustic emissions in 17 chinchillas before and after section of the vestibular nerve (crossed and uncrossed fibers). Responses at frequencies bands centered on 0.8, 1.6, 2.4, 3.2 and 4.0 kHz, as well as total emission responses, were analyzed. After vestibular nerve section, there were significant increases in the amplitudes of the 2.4- and 4.0 kHz responses and of the total response. These results indicate that the medial efferent system is important to maintain normal cochlear mechanics. Uncrossed medial efferent system and lateral efferent system seem to be not important in maintaining normal cochlear mechanics.
Collapse
Affiliation(s)
- Marcia Sayuri Murao
- Otorhinolaryngology Science Laboratory, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo, 455, LIM 32, CEP 01246-903, Sao Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
42
|
Cant NB, Benson CG. Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus. Hear Res 2006; 216-217:64-72. [PMID: 16497454 DOI: 10.1016/j.heares.2006.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/24/2022]
Abstract
The cochlear nucleus is made up of a number of diverse cell types with different anatomical and physiological properties. A plant lectin, Wisteria floribunda agglutinin, that recognizes specific carbohydrate residues in the extracellular matrix binds to some cell types in the ventral cochlear nucleus but not to cells in the dorsal cochlear nucleus. In the ventral cochlear nucleus, the most intensely labeled cells are octopus cells, a subset of multipolar cells and cochlear root neurons. The multipolar cells that are labeled may correspond to the population that projects to the inferior colliculus.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, P.O. Box 3209, 213 Bryan Research Building, Durham, NC 27710, USA.
| | | |
Collapse
|
43
|
de Venecia RK, Liberman MC, Guinan JJ, Brown MC. Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 2005; 487:345-60. [PMID: 15906311 PMCID: PMC1815216 DOI: 10.1002/cne.20550] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial olivocochlear (MOC) reflex arc is probably a three-neuron pathway consisting of type I spiral ganglion neurons, reflex interneurons in the cochlear nucleus, and MOC neurons that project to the outer hair cells of the cochlea. We investigated the identity of MOC reflex interneurons in the cochlear nucleus by assaying their regional distribution using focal injections of kainic acid. Our reflex metric was the amount of change in the distortion product otoacoustic emission (at 2f(1)-f(2)) just after onset of the primary tones. This metric for MOC reflex strength has been shown to depend on an intact reflex pathway. Lesions involving the posteroventral cochlear nucleus (PVCN), but not the other subdivisions, produced long-term decreases in MOC reflex strength. The degree of cell loss within the dorsal part of the PVCN was a predictor of whether the lesion affected MOC reflex strength. We suggest that multipolar cells within the PVCN have the distribution and response characteristics appropriate to be the MOC reflex interneurons.
Collapse
Affiliation(s)
- Ronald K de Venecia
- Department of Otology and Laryngology, Harvard Medical School, and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|