1
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
2
|
Merola A, Sturchio A, Hacker S, Serna S, Vizcarra JA, Marsili L, Fasano A, Espay AJ. Technology-based assessment of motor and nonmotor phenomena in Parkinson disease. Expert Rev Neurother 2018; 18:825-845. [PMID: 30269610 DOI: 10.1080/14737175.2018.1530593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The increasing development and availability of portable and wearable technologies is rapidly expanding the field of technology-based objective measures (TOMs) in neurological disorders, including Parkinson disease (PD). Substantial challenges remain in the recognition of disease phenomena relevant to patients and clinicians, as well as in the identification of the most appropriate devices to carry out these measurements. Areas covered: The authors systematically reviewed PubMed for studies employing technology as outcome measures in the assessment of PD-associated motor and nonmotor abnormalities. Expert commentary: TOMs minimize intra- and inter-rater variability in clinical assessments of motor and nonmotor phenomena in PD, improving the accuracy of clinical endpoints. Critical unmet needs for the integration of TOMs into clinical and research practice are the identification and validation of relevant endpoints for individual patients, the capture of motor and nonmotor activities from an ecologically valid environment, the integration of various sensor data into an open-access, common-language platforms, and the definition of a regulatory pathway for approval of TOMs. The current lack of multidomain, multisensor, smart technologies to measure in real time a wide scope of relevant changes remain a significant limitation for the integration of technology into the assessment of PD motor and nonmotor functional disability.
Collapse
Affiliation(s)
- Aristide Merola
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Andrea Sturchio
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Stephanie Hacker
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Santiago Serna
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Joaquin A Vizcarra
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Luca Marsili
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| | - Alfonso Fasano
- b Edmond J. Safra Program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic , Toronto Western Hospital, University of Toronto; Krembil Brain Institute , Toronto , ON , Canada
| | - Alberto J Espay
- a James J and Joan A Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
3
|
Rand MK, Van Gemmert AWA, Hossain ABMI, Stelmach GE. Coordination deficits during trunk-assisted reach-to-grasp movements in Parkinson's disease. Exp Brain Res 2014; 232:61-74. [PMID: 24105594 PMCID: PMC3905200 DOI: 10.1007/s00221-013-3720-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
The present study investigated how Parkinson's disease (PD) affects temporal coordination among the trunk, arm, and fingers during trunk-assisted reach-to-grasp movements. Seated participants with PD and healthy controls made prehensile movements. During the reach to the object, the involvement of the trunk was altered based on the instruction; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. For the transport component, the individuals with PD substantially delayed the onset of trunk motion relative to that of arm motion in conditions where the trunk was moved in the direction opposite from the arm reaching toward the object. At the same time, variability of intervals between the onsets and intervals between the velocity peaks of the trunk and wrist movements was increased. The magnitudes of the variability measures were significantly correlated with the severity of PD. Regarding the grasp component, the individuals with PD delayed the onset of finger movements during reaching. These results imply that PD impairs temporal coordination between the axial and distal body segments during goal-directed skilled actions. When there is a directional discrepancy between the trunk and wrist motions, individuals with PD appear to prioritize wrist motion that is tied to the task goal over the trunk motion. An increase in disease severity magnifies the coordination deficits.
Collapse
Affiliation(s)
- Miya K. Rand
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 67 Ardeystraße, 44139 Dortmund, Germany
| | - Arend W. A. Van Gemmert
- School of Kinesiology, Louisiana State University, 112 HP Long Fieldhouse, Baton Rouge, LA 70803, USA
| | | | - George E. Stelmach
- Motor Control Laboratory, Arizona State University, Tempe, AZ 85287-0701, USA
| |
Collapse
|
4
|
Stuart S, Alcock L, Galna B, Lord S, Rochester L. The measurement of visual sampling during real-world activity in Parkinson's disease and healthy controls: a structured literature review. J Neurosci Methods 2013; 222:175-88. [PMID: 24291711 DOI: 10.1016/j.jneumeth.2013.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Visual sampling techniques are used to investigate the complex role of vision during real-world activities in Parkinson's disease. Earlier research is limited to static simple tasks or measurement of eye movements alone, but more recent investigations involve more real-world activities. The approach to the objective measurement of eye movements varies with respect to instrumentation, testing protocols, and mediating factors that may influence visual sampling. OBJECTIVES The aim of this review was to examine previous work measuring visual sampling during real-world activities in Parkinson's disease to inform the development of robust protocols. Within this review a real-world activity was considered to be a goal-orientated motor task involving more than one body segment such as reaching or walking. METHODS Medline, Embase, PsychInfo, Scopus, Web of Knowledge, PubMed and the Cochrane library databases were searched. Two independent reviewers and an adjudicator screened articles that described quantitative visual sampling in people with Parkinson's disease and healthy controls. RESULTS Twenty full-text articles were screened and 15 met inclusion/exclusion criteria. A wide range of instruments and outcome measures were reported which were generally used in a task-dependent manner. Instrument reliability and validity was insufficiently reported in all studies. Few studies considered mediators of visual sampling such as visual or cognitive deficits. CONCLUSIONS Future research is required to accurately characterise visual impairments in Parkinson's disease and during real-world activities. Composite use of instruments may be required to achieve reliability and validity of visual sampling outcomes which need to be standardised. Recommendations also include assessment of cognition and basic visual function.
Collapse
Affiliation(s)
- Samuel Stuart
- Institute for Ageing and Health, Clinical Ageing Research Unit, Newcastle University, United Kingdom
| | - Lisa Alcock
- Institute for Ageing and Health, Clinical Ageing Research Unit, Newcastle University, United Kingdom
| | - Brook Galna
- Institute for Ageing and Health, Clinical Ageing Research Unit, Newcastle University, United Kingdom
| | - Sue Lord
- Institute for Ageing and Health, Clinical Ageing Research Unit, Newcastle University, United Kingdom
| | - Lynn Rochester
- Institute for Ageing and Health, Clinical Ageing Research Unit, Newcastle University, United Kingdom.
| |
Collapse
|
5
|
Lucas M, Chaves F, Teixeira S, Carvalho D, Peressutti C, Bittencourt J, Velasques B, Menéndez-González M, Cagy M, Piedade R, Nardi AE, Machado S, Ribeiro P, Arias-Carrión O. Time perception impairs sensory-motor integration in Parkinson's disease. Int Arch Med 2013; 6:39. [PMID: 24131660 PMCID: PMC3856585 DOI: 10.1186/1755-7682-6-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/12/2013] [Indexed: 11/10/2022] Open
Abstract
It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson' disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called "Scalar Expectancy Theory". Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD.
Collapse
Affiliation(s)
- Marina Lucas
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Fernanda Chaves
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Diana Carvalho
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Physiotherapy Laboratory, Veiga de Almeida University (UVA), Rio de Janeiro, Brazil
| | - Caroline Peressutti
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | | | - Mauricio Cagy
- Division of Epidemiology and Biostatistic, Institute of Health Community, Federal Fluminense University (UFF), Rio de Janeiro, Brazil
| | - Roberto Piedade
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
| | - Sergio Machado
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
- Faculty of Medical Sciences, Quiropraxia Program, Central University, Santiago, Chile
- Physical Activity Neuroscience, Physical Activity Postgraduate Program, Salgado de Oliveira University (UNIVERSO), Niterói, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- School of Physical Education, Bioscience Department (EEFD/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Oscar Arias-Carrión
- Sleep and Movement Disorders Clinic and Transcranial Magnetic Stimulation Unit, Hospital General Dr. Manuel Gea González, México D.F., Mexico
- Sleep and Movement Disorders Clinic and Transcranial Magnetic Stimulation Unit, Hospital General Ajusco Medio, México D.F., Mexico
| |
Collapse
|
6
|
Parkinson's disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects. Neuroscience 2013; 254:205-21. [PMID: 24056196 DOI: 10.1016/j.neuroscience.2013.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/22/2023]
Abstract
The effect of Parkinson's disease (PD) on hand-eye coordination and corrective response control during reach-to-grasp tasks remains unclear. Moderately impaired PD patients (n=9) and age-matched controls (n=12) reached to and grasped a virtual rectangular object, with haptic feedback provided to the thumb and index fingertip by two 3-degree of freedom manipulanda. The object rotated unexpectedly on a minority of trials, requiring subjects to adjust their grasp aperture. On half the trials, visual feedback of finger positions disappeared during the initial phase of the reach, when feedforward mechanisms are known to guide movement. PD patients were tested without (OFF) and with (ON) medication to investigate the effects of dopamine depletion and repletion on eye-hand coordination online corrective response control. We quantified eye-hand coordination by monitoring hand kinematics and eye position during the reach. We hypothesized that if the basal ganglia are important for eye-hand coordination and online corrections to object perturbations, then PD patients tested OFF medication would show reduced eye-hand spans and impoverished arm-hand coordination responses to the perturbation, which would be further exasperated when visual feedback of the hand was removed. Strikingly, PD patients tracked their hands with their gaze, and their movements became destabilized when having to make online corrective responses to object perturbations exhibiting pauses and changes in movement direction. These impairments largely remained even when tested in the ON state, despite significant improvement on the Unified Parkinson's Disease Rating Scale. Our findings suggest that basal ganglia-cortical loops are essential for mediating eye-hand coordination and adaptive online responses for reach-to-grasp movements, and that restoration of tonic levels of dopamine may not be adequate to remediate this coordinative nature of basal ganglia-modulated function.
Collapse
|
7
|
Rand MK, Shimansky YP. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory. Exp Brain Res 2013; 230:1-13. [PMID: 23811737 DOI: 10.1007/s00221-013-3626-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
Abstract
In the companion paper utilizing a quantitative model of optimal motor coordination (Part I, Rand and Shimansky, in Exp Brain Res 225:55-73, 2013), we examined coordination between X and Y movement directions (XYC) during reaching movements performed under three prescribed speeds, two movement amplitudes, and two target sizes. The obtained results indicated that the central nervous system (CNS) utilizes a two-phase strategy, where the initial and the final phases correspond to lower and higher precision of information processing, respectively, for controlling goal-directed reach-type movements to optimize the total cost of task performance including the cost of neural computations. The present study investigates how two different well-known concepts used for describing movement performance relate to the concepts of optimal XYC and two-phase control strategy. First, it is examined to what extent XYC is equivalent to movement trajectory straightness. The data analysis results show that the variability, the movement trajectory's deviation from the straight line, increases with an increase in prescribed movement speed. In contrast, the dependence of XYC strength on movement speed is opposite (in total agreement with an assumption of task performance optimality), suggesting that XYC is a feature of much higher level of generality than trajectory straightness. Second, it is tested how well the ballistic and the corrective components described in the traditional concept of two-component model of movement performance match with the initial and the final phase of the two-phase control strategy, respectively. In fast reaching movements, the percentage of trials with secondary corrective submovement was smaller under larger-target shorter-distance conditions. In slower reaching movements, meaningful parsing was impossible due to massive fluctuations in the kinematic profile throughout the movement. Thus, the parsing points determined by the conventional submovement analysis did not consistently reflect separation between the ballistic and error-corrective components. In contrast to the traditional concept of two-component movement performance, the concept of two-phase control strategy is applicable to a wide variety of experimental conditions.
Collapse
Affiliation(s)
- Miya K Rand
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Ardeystraβe 67, 44139 Dortmund, Germany.
| | | |
Collapse
|
8
|
Two-phase strategy of neural control for planar reaching movements: I. XY coordination variability and its relation to end-point variability. Exp Brain Res 2012. [PMID: 23196802 DOI: 10.1007/s00221-012-3348-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A quantitative model of optimal transport-aperture coordination (TAC) during reach-to-grasp movements has been developed in our previous studies. The utilization of that model for data analysis allowed, for the first time, to examine the phase dependence of the precision demand specified by the CNS for neurocomputational information processing during an ongoing movement. It was shown that the CNS utilizes a two-phase strategy for movement control. That strategy consists of reducing the precision demand for neural computations during the initial phase, which decreases the cost of information processing at the expense of lower extent of control optimality. To successfully grasp the target object, the CNS increases precision demand during the final phase, resulting in higher extent of control optimality. In the present study, we generalized the model of optimal TAC to a model of optimal coordination between X and Y components of point-to-point planar movements (XYC). We investigated whether the CNS uses the two-phase control strategy for controlling those movements, and how the strategy parameters depend on the prescribed movement speed, movement amplitude and the size of the target area. The results indeed revealed a substantial similarity between the CNS's regulation of TAC and XYC. First, the variability of XYC within individual trials was minimal, meaning that execution noise during the movement was insignificant. Second, the inter-trial variability of XYC was considerable during the majority of the movement time, meaning that the precision demand for information processing was lowered, which is characteristic for the initial phase. That variability significantly decreased, indicating higher extent of control optimality, during the shorter final movement phase. The final phase was the longest (shortest) under the most (least) challenging combination of speed and accuracy requirements, fully consistent with the concept of the two-phase control strategy. This paper further discussed the relationship between motor variability and XYC variability.
Collapse
|
9
|
Lee PY, Gadareh K, Naushahi MJ, Gresty M, Bronstein AM. Protective stepping response in Parkinsonian patients and the effect of vibrotactile feedback. Mov Disord 2012; 28:482-9. [DOI: 10.1002/mds.25227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/31/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022] Open
Affiliation(s)
- Pei-Yun Lee
- Neuro-Otology Unit; Division of Experimental Medicine; Imperial College London; Charing Cross Hospital; London United Kingdom
| | - Kris Gadareh
- Neuro-Otology Unit; Division of Experimental Medicine; Imperial College London; Charing Cross Hospital; London United Kingdom
| | - Mohammad J. Naushahi
- Neuromodulation Group; Division of Experimental Medicine; Imperial College London; Charing Cross Hospital; London United Kingdom
| | - Michael Gresty
- Neuro-Otology Unit; Division of Experimental Medicine; Imperial College London; Charing Cross Hospital; London United Kingdom
| | - Adolfo M. Bronstein
- Neuro-Otology Unit; Division of Experimental Medicine; Imperial College London; Charing Cross Hospital; London United Kingdom
| |
Collapse
|
10
|
Rand MK, Van Gemmert AWA, Hossain ABMI, Shimansky YP, Stelmach GE. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements. Exp Brain Res 2012; 219:293-304. [PMID: 22526948 DOI: 10.1007/s00221-012-3088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
Abstract
The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relationship between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relationship between the time of peak wrist velocity and the time of peak grip aperture did not change or become less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation, which is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp initiation in the conditions where the trunk was involved compared to the conditions where the trunk was not involved. An increase also occurred when the trunk was extended compared to when it was flexed. The increased distance threshold implies an increase in the hand-to-target distance-related safety margin for grasping when the trunk is involved, especially when it is extended. These results suggest that the CNS significantly utilizes the parameters of trunk movement together with movement parameters related to the arm and the hand for controlling grasp initiation.
Collapse
Affiliation(s)
- Miya K Rand
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 67 Ardeystraβe, Dortmund 44139, Germany.
| | | | | | | | | |
Collapse
|
11
|
Rand MK, Shimansky YP, Hossain ABMI, Stelmach GE. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements. Exp Brain Res 2010; 207:49-63. [PMID: 20931181 DOI: 10.1007/s00221-010-2428-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS performs a trade-off between that cost and TAC regulation accuracy. It is further discussed that such trade-off is possible because, due to a special control law that governs optimal switching from aperture opening to aperture closure, the inter-trial variability of the end of aperture opening does not affect the high accuracy of TAC regulation in the subsequent aperture-closure phase.
Collapse
Affiliation(s)
- Miya K Rand
- Motor Control Laboratory, Department of Kinesiology, Arizona State University, Box 870404, Tempe, AZ 85287-0404, USA.
| | | | | | | |
Collapse
|