1
|
Hoogendoorn EM, Geerse DJ, van Dam AT, Stins JF, Roerdink M. Gait-modifying effects of augmented-reality cueing in people with Parkinson's disease. Front Neurol 2024; 15:1379243. [PMID: 38654737 PMCID: PMC11037397 DOI: 10.3389/fneur.2024.1379243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction External cueing can improve gait in people with Parkinson's disease (PD), but there is a need for wearable, personalized and flexible cueing techniques that can exploit the power of action-relevant visual cues. Augmented Reality (AR) involving headsets or glasses represents a promising technology in those regards. This study examines the gait-modifying effects of real-world and AR cueing in people with PD. Methods 21 people with PD performed walking tasks augmented with either real-world or AR cues, imposing changes in gait speed, step length, crossing step length, and step height. Two different AR headsets, differing in AR field of view (AR-FOV) size, were used to evaluate potential AR-FOV-size effects on the gait-modifying effects of AR cues as well as on the head orientation required for interacting with them. Results Participants modified their gait speed, step length, and crossing step length significantly to changes in both real-world and AR cues, with step lengths also being statistically equivalent to those imposed. Due to technical issues, step-height modulation could not be analyzed. AR-FOV size had no significant effect on gait modifications, although small differences in head orientation were observed when interacting with nearby objects between AR headsets. Conclusion People with PD can modify their gait to AR cues as effectively as to real-world cues with state-of-the-art AR headsets, for which AR-FOV size is no longer a limiting factor. Future studies are warranted to explore the merit of a library of cue modalities and individually-tailored AR cueing for facilitating gait in real-world environments.
Collapse
Affiliation(s)
- Eva M. Hoogendoorn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
2
|
Mak TCT, Wong TWL, Ng SSM. Visual-related training to improve balance and walking ability in older adults: A systematic review. Exp Gerontol 2021; 156:111612. [PMID: 34718089 DOI: 10.1016/j.exger.2021.111612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Evidence has emerged about the use of visual-related training as an intervention to improve mobility that could implicate fall prevention in the older population. The objective of this systematic review was to investigate whether visual-related interventions are effective in improving balance and walking ability in healthy older adults. An electronic database search was conducted using Pubmed, Embase, CINAHL Plus, Web of Science, PsycINFO, and SportDiscus. Seventeen studies out of a total of 3297 studies were identified in this review that met the inclusion criteria of (1) adopting a longitudinal design with at least one control comparison group, (2) targeting healthy older adults (age 60 or above), (3) primary focus targeting visual element, and (4) the primary outcome(s) were measures indicating walking and/or balance ability. Our results indicated that visual-related training generally led to improvements in balance and walking ability in healthy older adults. It seems necessary that visual-related training should at least involve mobility-related movement component(s), or form a part of a multi-component training to achieve a beneficial effect on balance and walking. The effectiveness and feasibility of these visual-related training in clinical practice for rehabilitation has been discussed and needs to be investigated in future studies. (197/200).
Collapse
Affiliation(s)
- Toby C T Mak
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|
3
|
Ravi DK, Heimhofer CC, Taylor WR, Singh NB. Adapting Footfall Rhythmicity to Auditory Perturbations Affects Resilience of Locomotor Behavior: A Proof-of-Concept Study. Front Neurosci 2021; 15:678965. [PMID: 34393705 PMCID: PMC8358836 DOI: 10.3389/fnins.2021.678965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
For humans, the ability to effectively adapt footfall rhythm to perturbations is critical for stable locomotion. However, only limited information exists regarding how dynamic stability changes when individuals modify their footfall rhythm. In this study, we recorded 3D kinematic activity from 20 participants (13 males, 18–30 years old) during walking on a treadmill while synchronizing with an auditory metronome sequence individualized to their baseline walking characteristics. The sequence then included unexpected temporal perturbations in the beat intervals with the subjects required to adapt their footfall rhythm accordingly. Building on a novel approach to quantify resilience of locomotor behavior, this study found that, in response to auditory perturbation, the mean center of mass (COM) recovery time across all participants who showed deviation from steady state (N = 15) was 7.4 (8.9) s. Importantly, recovery of footfall synchronization with the metronome beats after perturbation was achieved prior (+3.4 [95.0% CI +0.1, +9.5] s) to the recovery of COM kinematics. These results highlight the scale of temporal adaptation to perturbations and provide implications for understanding regulation of rhythm and balance. Thus, our study extends the sensorimotor synchronization paradigm to include analysis of COM recovery time toward improving our understanding of an individual’s resilience to perturbations and potentially also their fall risk.
Collapse
Affiliation(s)
- Deepak K Ravi
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Caroline C Heimhofer
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - William R Taylor
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Navrag B Singh
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Switzerland
| |
Collapse
|
4
|
Desrochers PC, Gill SV. Temporal accuracy of gait after metronome practice. Hum Mov Sci 2021; 77:102798. [PMID: 33857702 DOI: 10.1016/j.humov.2021.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Humans readily entrain their movements to a beat, including matching their gait to a prescribed tempo. Rhythmic auditory cueing tasks have been used to enhance stepping behavior in a variety of clinical populations. However, there is limited understanding of how temporal accuracy of gait changes over practice in healthy young adults. In this study, we examined how inter-step interval and cadence deviated from slow, medium, and fast tempos across steps within trials, across trials within blocks, and across two blocks that bookended a period of practice of walking to each tempo. Participants were accurate in matching the tempo at the slow and medium tempos, while they tended to lag behind the beat at the fast tempo. We also found that participants showed no substantial improvement across steps and trials, nor across blocks, suggesting that participants had a robust ability to entrain their gait to the specified metronome tempo. However, we did find that participants habituated to the prescribed tempo, showing self-paced gait that was faster than self-paced baseline gait after the fast tempo, and slower than self-paced baseline gait after the slow tempo. These findings might represent an "after-effect" in the temporal domain, akin to after-effects consistently shown in other sensorimotor tasks. This knowledge of how healthy participants entrain their gait to temporal cues may have important implications in understanding how clinical populations acquire and modify their gait in rhythmic auditory cueing tasks.
Collapse
Affiliation(s)
| | - Simone V Gill
- Sargent College of Health and Rehabilitation Sciences, Boston University, USA.
| |
Collapse
|
5
|
Zhang Y, Smeets JBJ, Brenner E, Verschueren S, Duysens J. Effects of ageing on responses to stepping-target displacements during walking. Eur J Appl Physiol 2020; 121:127-140. [PMID: 32995959 PMCID: PMC7815571 DOI: 10.1007/s00421-020-04504-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/19/2020] [Indexed: 01/21/2023]
Abstract
Purpose Human sensory and motor systems deteriorate with age. When walking, older adults may therefore find it more difficult to adjust their steps to new visual information, especially considering that such adjustments require control of balance as well as of foot trajectory. Our study investigates the effects of ageing on lower limb responses to unpredictable target shifts. Methods Participants walked on a treadmill with projected stepping targets that occasionally shifted in the medial or lateral direction. The shifts occurred at a random moment during the early half of the swing phase of either leg. Kinematic, kinetic and muscle activity data were collected. Results Older adults responded later and corrected for a smaller proportion of the shift than young adults. The order in which muscle activation changed was similar in both groups, with responses of gluteus medius and semitendinosus from about 120 to 140 ms after the shift. Most muscles responded slightly later to lateral target shifts in the older adults than in the young adults, but this difference was not observed for medial target shifts. Ageing delayed the behavioural responses more than it did the electromyographic (EMG) responses. Conclusions Our study suggests that older adults can adjust their walking to small target shifts during the swing phase, but not as well as young adults. Furthermore, muscle strength probably plays a substantial role in the changes in online adjustments during ageing.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium. .,Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine Verschueren
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, FaBer, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Foot-placement accuracy during planned and reactive target stepping during walking in stroke survivors and healthy adults. Gait Posture 2020; 81:261-267. [PMID: 32846357 DOI: 10.1016/j.gaitpost.2020.08.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The high prevalence of falls due to trips and slips following stroke may signify difficulty adjusting foot-placement in response to the environment. However, little is known about under what circumstances foot-placement adjustment becomes difficult for stroke survivors (SS), making the design of targeted rehabilitation interventions to improve independent community mobility difficult. RESEARCH QUESTION To investigate the effect of planned and reactive target-stepping on foot-placement accuracy in stroke survivors and young and older healthy adults? METHODS Young (N = 11, 30 ± 6 years) and older (N = 10, 64 ± 8 years) healthy adults and SS (N = 11, 67 ± 9 years) walked, at preferred pace, on a force instrumented treadmill. Each participant walked to illuminated targets, visible two steps in advance (planned) or appearing at contralateral midstance (reactive). Foot-placement error (magnitude and bias) and number of missed targets were compared. RESULTS All participants missed more reactive than planned targets (p = 0.05), and SS missed more targets than young (p < 0.001) and older (p = 0.001) adults. But no interaction showing SS missed more reactive targets than other groups was found. For all groups: reactive adaptations to steps in the antero-posterior plane resulted in lower error than planned adaptations (p = 0.027). Lengthening steps where undershot more than shortening (p < 0.001) by all groups. Reactive medio-lateral adaptations over all induced larger error (p = 0.029) than planned and changed the direction of bias (p = 0.018). SIGNIFICANCE SS experience difficulty making all adjustments, they showed increased error in all conditions but less pronounced difference between planned and reactive stepping. SS may use a reactive control strategy for all adjustments, in contrast to healthy young adults who may plan foot-placement in advance. The likelihood of stroke survivors misplacing a step is large, with 9.8% targets missed; possibly leading to falls. Further investigation is needed to understand foot-placement control strategies used by SS and the role of planning in gait adaptability.
Collapse
|
7
|
Cadence Modulation in Walking and Running: Pacing Steps or Strides? Brain Sci 2020; 10:brainsci10050273. [PMID: 32370091 PMCID: PMC7288070 DOI: 10.3390/brainsci10050273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
Abstract
A change in cadence during walking or running might be indicated for a variety of reasons, among which mobility improvement and injury prevention. In a within-subject study design, we examined whether walking or running cadences are modulated best by means of step-based or stride-based auditory pacing. Sixteen experienced runners walked and ran on a treadmill while synchronizing with step-based and stride-based pacing at slow, preferred and fast pacing frequencies in synchronization-perturbation and synchronization-continuation conditions. We quantified the variability of the relative phase between pacing cues and footfalls and the responses to perturbations in the pacing signal as measures of coordinative stability; the more stable the auditory-motor coordination, the stronger the modulating effect of pacing. Furthermore, we quantified the deviation from the prescribed cadence after removal of the pacing signal as a measure of internalization of this cadence. Synchronization was achieved less often in running, especially at slow pacing frequencies. If synchronization was achieved, coordinative stability was similar, and the paced cadence was well internalized for preferred and fast pacing frequencies. Step-based pacing led to more stable auditory-motor coordination than stride-based pacing in both walking and running. We therefore concluded that step-based auditory pacing deserves preference as a means to modulate cadence in walking and running.
Collapse
|
8
|
Zhang Y, Smeets JBJ, Brenner E, Verschueren S, Duysens J. Fast responses to stepping-target displacements when walking. J Physiol 2020; 598:1987-2000. [PMID: 32128815 PMCID: PMC7317495 DOI: 10.1113/jp278986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Key points Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Abstract It is well‐known that goal‐directed hand movements can be adjusted to small changes in target location with a latency of about 100 ms. We tested whether people make similar fast adjustments when a target location for foot placement changes slightly as they walk over a flat surface. Participants walked at 3 km/h on a treadmill on which stepping stones were projected. The stones were 50 cm apart in the walking direction. Every 5–8 steps, a stepping stone was unexpectedly displaced by 2.5 cm in the medio‐lateral direction. The displacement took place during the first half of the swing phase. We found fast adjustments of the foot trajectory, with a latency of about 155 ms, initiated by changes in muscle activation 123 ms after the perturbation. The responses corrected for about 80% of the perturbation. We conclude that goal‐directed movements of the foot are controlled in a similar way to those of the hand, thus also giving very fast adjustments. Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium.,Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine Verschueren
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, FaBeR, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Khan O, Ahmed I, Cottingham J, Rahhal M, Arvanitis TN, Elliott MT. Timing and correction of stepping movements with a virtual reality avatar. PLoS One 2020; 15:e0229641. [PMID: 32109252 PMCID: PMC7048307 DOI: 10.1371/journal.pone.0229641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Research into the ability to coordinate one's movements with external cues has focussed on the use of simple rhythmic, auditory and visual stimuli, or interpersonal coordination with another person. Coordinating movements with a virtual avatar has not been explored, in the context of responses to temporal cues. To determine whether cueing of movements using a virtual avatar is effective, people's ability to accurately coordinate with the stimuli needs to be investigated. Here we focus on temporal cues, as we know from timing studies that visual cues can be difficult to follow in the timing context. Real stepping movements were mapped onto an avatar using motion capture data. Healthy participants were then motion captured whilst stepping in time with the avatar's movements, as viewed through a virtual reality headset. The timing of one of the avatar step cycles was accelerated or decelerated by 15% to create a temporal perturbation, for which participants would need to correct to, in order to remain in time. Step onset times of participants relative to the corresponding step-onsets of the avatar were used to measure the timing errors (asynchronies) between them. Participants completed either a visual-only condition, or auditory-visual with footstep sounds included, at two stepping tempo conditions (Fast: 400ms interval, Slow: 800ms interval). Participants' asynchronies exhibited slow drift in the Visual-Only condition, but became stable in the Auditory-Visual condition. Moreover, we observed a clear corrective response to the phase perturbation in both the fast and slow tempo auditory-visual conditions. We conclude that an avatar's movements can be used to influence a person's own motion, but should include relevant auditory cues congruent with the movement to ensure a suitable level of entrainment is achieved. This approach has applications in physiotherapy, where virtual avatars present an opportunity to provide the guidance to assist patients in adhering to prescribed exercises.
Collapse
Affiliation(s)
- Omar Khan
- Warwick Manufacturing Group, Institute of Digital Healthcare, University of Warwick, Coventry, United Kingdom
| | - Imran Ahmed
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Joshua Cottingham
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Musa Rahhal
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Theodoros N. Arvanitis
- Warwick Manufacturing Group, Institute of Digital Healthcare, University of Warwick, Coventry, United Kingdom
| | - Mark T. Elliott
- Warwick Manufacturing Group, Institute of Digital Healthcare, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Vaz JR, Rand T, Fujan-Hansen J, Mukherjee M, Stergiou N. Auditory and Visual External Cues Have Different Effects on Spatial but Similar Effects on Temporal Measures of Gait Variability. Front Physiol 2020; 11:67. [PMID: 32116777 PMCID: PMC7026509 DOI: 10.3389/fphys.2020.00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
Walking synchronized to external cues is a common practice in clinical settings. Several research studies showed that this popular gait rehabilitation tool alters gait variability. There is also recent evidence which suggests that alterations in the temporal structure of the external cues could restore gait variability at healthy levels. It is unknown, however, if such alterations produce similar effects if the cueing modalities used are different; visual or auditory. The modality could affect gait variability differentially, since there is evidence that auditory cues mostly act in the temporal domain of gait, while visual cues act in the spatial domain of gait. This study investigated how synchronizing steps with visual and auditory cues that are presented with different temporal structures could affect gait variability during treadmill walking. Three different temporal structured stimuli were used, invariant, fractal and random, in both modalities. Stride times, length and speed were determined, and their fractal scaling (an indicator of complexity) and coefficient of variation (CV) were calculated. No differences were observed in the CV, regardless of the cueing modality and the temporal structure of the stimuli. In terms of the stride time's fractal scaling, we observed that the fractal stimulus induced higher values compared to random and invariant stimuli. The same was also observed in stride length, but only for the visual cueing modality. No differences were observed for stride speed. The selection of the cueing modality seems to be an important feature of gait rehabilitation. Visual cues are possibly a better choice due to the dependency on vision during walking. This is particularly evident during treadmill walking, a common practice in a clinical setting. Because of the treadmill effect on the temporal domain of gait, the use of auditory cues can be minimal, compared to visual cues.
Collapse
Affiliation(s)
- Joao R. Vaz
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Troy Rand
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- The Paley Institute, West Palm Beach, FL, United States
| | - Jessica Fujan-Hansen
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Mukul Mukherjee
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Nick Stergiou
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
11
|
van der Veen SM, Hammerbeck U, Hollands KL. How accuracy of foot-placement is affected by the size of the base of support and crutch support in stroke survivors and healthy adults. Gait Posture 2020; 76:224-230. [PMID: 31874454 DOI: 10.1016/j.gaitpost.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The high prevalence of falls due to trips and slips following stroke may signify difficulty controlling balance and adjusting foot-placement in response to the environment. We know very little about how controlling foot-placement is affected by balance requirements and the effects of stroke. Therefore, in this study the research question is how foot-placement control is affected by balance support from crutches and reducing or enlarging the base of support. By understanding how foot-placement control and balance deficits following stroke interact, rehabilitation efforts can be more effectively targeted towards the cause of poor mobility. METHODS Young (N=13, 30±6 years) and older (N=10, 64±8 years) healthy adults and stroke survivors (N=11, 67±9 years) walked to targets on an instrumented treadmill with or without crutch support for balance. Targets were randomized to either reduce or increase the base of support in the antero-posterior (AP) or medio-lateral (ML) direction. Mean and absolute foot-placement error were measured using motion analysis. These outcomes were compared using repeated measures ANCOVA with walking speed as a covariate. RESULTS Overall, stroke survivors missed more targets (9.1±2.3%, p=0.001) than young (1.0±2.5%) and older (0.2±2.1%) healthy adults (p=0.001). However, there were no significant differences between groups in foot-placement error. Crutch support reduced both AP and ML foot-placement error (p=<0.001, AP 5.2±0.5cm unsupported, 4.1±0.4cm supported, ML 2.3±0.2cm unsupported, 1.9±0.2cm supported) for all participants. Interaction effects indicate crutch support reduced foot-placement error more when narrowing (unsupported 2.8±0.2cm, supported 1.8±0.2cm) than widening (unsupported 2.6±0.4cm, supported 2.4±0.4cm) steps (p<0.001), SIGNIFICANCE: Stroke survivors have greater difficulty accurately adjusting steps in response to the environment. Crutch support reduces foot-placement error for all steps, but particularly when narrowing foot-placement. These results provide support for the implication of walking aids, which support balance to improve ability to adjust footplacement in response to the environment.
Collapse
|
12
|
Forner-Cordero A, Pinho JP, Umemura G, Lourenço JC, Mezêncio B, Itiki C, Krebs HI. Effects of supraspinal feedback on human gait: rhythmic auditory distortion. J Neuroeng Rehabil 2019; 16:159. [PMID: 31870399 PMCID: PMC6929305 DOI: 10.1186/s12984-019-0632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Different types of sound cues have been used to adapt the human gait rhythm. We investigated whether young healthy volunteers followed subliminal metronome rhythm changes during gait. METHODS Twenty-two healthy adults walked at constant speed on a treadmill following a metronome sound cue (period 566 msec). The metronome rhythm was then either increased or decreased, without informing the subjects, at 1 msec increments or decrements to reach, respectively, a low (596 msec) or a high frequency (536 msec) plateaus. After 30 steps at one of these isochronous conditions, the rhythm returned to the original period with decrements or increments of 1 msec. Motion data were recorded with an optical measurement system to determine footfall. The relative phase between sound cue (stimulus) and foot contact (response) were compared. RESULTS Gait was entrained to the rhythmic auditory stimulus and subjects subconsciously adapted the step time and length to maintain treadmill speed, while following the rhythm changes. In most cases there was a lead error: the foot contact occurred before the sound cue. The mean error or the absolute mean relative phase increased during the isochronous high (536 msec) or low frequencies (596 msec). CONCLUSION These results showed that the gait period is strongly "entrained" with the first metronome rhythm while subjects still followed metronome changes with larger error. This suggests two processes: one slow-adapting, supraspinal oscillator with persistence that predicts the foot contact to occur ahead of the stimulus, and a second fast process linked to sensory inputs that adapts to the mismatch between peripheral sensory input (foot contact) and supraspinal sensory input (auditory rhythm).
Collapse
Affiliation(s)
- Arturo Forner-Cordero
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
- Instituto de Estudos Avançados of the Universidade de São Paulo (IEA-USP), São Paulo, Brazil
| | - João Pedro Pinho
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Guilherme Umemura
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
| | - João Carlos Lourenço
- Biomechatronics Laboratory, Department of Mechatronics and Mechanical Systems of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
- Instituto de Estudos Avançados of the Universidade de São Paulo (IEA-USP), São Paulo, Brazil
- Biomechanics Laboratory of the Escola de Educação Física e Esportes, Universidade de São Paulo (USP), São Paulo, Brazil
- Department of Telecommunications and Control Engineering of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
- Dept. of Mechanical Engineering, MIT, Cambridge, MA02139 USA
| | - Bruno Mezêncio
- Biomechanics Laboratory of the Escola de Educação Física e Esportes, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cinthia Itiki
- Department of Telecommunications and Control Engineering of the Escola Politécnica, Universidade de São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
13
|
Wagner J, Martinez-Cancino R, Delorme A, Makeig S, Solis-Escalante T, Neuper C, Mueller-Putz G. High-density EEG mobile brain/body imaging data recorded during a challenging auditory gait pacing task. Sci Data 2019; 6:211. [PMID: 31624252 PMCID: PMC6797727 DOI: 10.1038/s41597-019-0223-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
In this report we present a mobile brain/body imaging (MoBI) dataset that allows study of source-resolved cortical dynamics supporting coordinated gait movements in a rhythmic auditory cueing paradigm. Use of an auditory pacing stimulus stream has been recommended to identify deficits and treat gait impairments in neurologic populations. Here, the rhythmic cueing paradigm required healthy young participants to walk on a treadmill (constant speed) while attempting to maintain step synchrony with an auditory pacing stream and to adapt their step length and rate to unanticipated shifts in tempo of the pacing stimuli (e.g., sudden shifts to a faster or slower tempo). High-density electroencephalography (EEG, 108 channels), surface electromyography (EMG, bilateral tibialis anterior), pressure sensors on the heel (to register timing of heel strikes), and goniometers (knee, hip, and ankle joint angles) were concurrently recorded in 20 participants. The data is provided in the Brain Imaging Data Structure (BIDS) format to promote data sharing and reuse, and allow the inclusion of the data into fully automated data analysis workflows.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA.
- Laboratory for Brain Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
| | - Ramon Martinez-Cancino
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
- Electric and Computer Engineering Department, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arnaud Delorme
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Teodoro Solis-Escalante
- Laboratory for Brain Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christa Neuper
- Laboratory for Brain Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- Department of Psychology, University of Graz, Graz, Austria
| | - Gernot Mueller-Putz
- Laboratory for Brain Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
14
|
Wagner J, Martínez-Cancino R, Makeig S. Trial-by-trial source-resolved EEG responses to gait task challenges predict subsequent step adaptation. Neuroimage 2019; 199:691-703. [PMID: 31181332 DOI: 10.1016/j.neuroimage.2019.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
A growing body of evidence indicates a pivotal role of cognition and in particular executive function in gait control and fall prevention. In a recent gait study using electroencephalographic (EEG) imaging, we provided direct proof for cortical top-down inhibitory control in step adaptation. A crucial part of motor inhibition is recognizing stimuli that signal the need to inhibit or adjust motor actions such as steps during walking. One of the EEG signatures of performance monitoring in response to events signaling the need to adjust motor responses, are error-related potential (error-ERP) features. To examine whether error-ERP features may index executive control during gait adaptation, we analyzed high-density (108-channel) EEG data from an auditory gait pacing study. Participants (N = 18) walking on a steadily moving treadmill were asked to step in time to an auditory cue tone sequence, and then to quickly adapt their step length and rate, to regain step-cue synchrony following occasional unexpected shifts in the pacing cue train to a faster or slower cue tempo. Decomposition of the continuous EEG data by independent component analysis revealed a negative deflection in the source-resolved event-related potential (ERP) time locked to 'late' cue tones marking a shift to a slower cue tempo. This vertex-negative ERP feature, localized primarily to posterior medial frontal cortex (pMFC) and peaking 250 ms after the onset of the tempo-shift cue, we here refer to as the step-cue delay negativity (SDN). SDN source, timing, and polarity resemble other error-related ERP features, e.g., the Error-Related Negativity (ERN) and Feedback-Related Negativity (FRN) in (seated) button press response tasks. In single trials, SDN amplitude varied with the magnitude of the cue latency deviation (the time interval between the expected and actual cue onsets). Regression analysis also identified linear coupling between SDN amplitude and the subsequent speed of gait tempo adaptation (as measured by the increase in length of the ensuing adaptation step). The SDN in this paradigm thus seems both to index the perceived need for and the subsequent magnitude of the immediate gait adjustment, consistent with performance-monitoring models. Future research might investigate relationships of these control processes to the impairment of gait adjustment in motor disorders and cognitive decline, for example to develop a biomarker for fall risk prediction in early-stage Parkinson's.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0559, USA.
| | - Ramón Martínez-Cancino
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0559, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0559, USA
| |
Collapse
|
15
|
Timmermans C, Cutti AG, van Donkersgoed H, Roerdink M. Gaitography on lower-limb amputees: Repeatability and between-methods agreement. Prosthet Orthot Int 2019; 43:71-79. [PMID: 30101682 DOI: 10.1177/0309364618791618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND: Gaitography is gait parametrization from center-of-pressure trajectories of walking on an instrumented treadmill. Gaitograms may be useful for prosthetic gait analyses, as they can be rapidly and unobtrusively collected over multiple gait cycles without constraining foot placement. However, its reliability must still be established for prosthetic gait. OBJECTIVES: To evaluate (a) within-method test-retest repeatability and (b) between-methods agreement for temporal gait events (foot contact, foot off) and gait characteristics (e.g. step times, single-support duration). STUDY DESIGN: Cohort study with repeated measurements. METHODS: Ten male proficient prosthetic walkers with a unilateral trans-femoral or trans-tibial amputation were equipped with a pressure-insole system and were invited to walk on separate days on an instrumented treadmill. RESULTS: We found better between-methods reproducibility than within-method repeatability in temporal gait characteristics. Step times, stride times, and foot-contact events matched well between the two methods. In contrast, insole-based foot-off events were detected one-to-two samples earlier. Likewise, a similar bias was observed for temporal gait characteristics that incorporated foot-off events. CONCLUSION: Notwithstanding small systematic biases, the good between-methods agreement indicates that temporal gait characteristics may be determined interchangeably with gaitograms and insoles in persons with a prosthesis. However, the relatively poorer test-retest repeatability hinders longitudinal assessments with either method. CLINICAL RELEVANCE: Clinical practice could potentially benefit from gaitography as an efficient, unobtrusive, easy to use, automatized, and patient-friendly means to objectively parametrize prosthetic gait, with immediate availability of test results allowing for prompt clinical decision-making. Temporal gait parameters demonstrate good between-methods agreement, but poorer within-method repeatability hinders detecting prosthetic gait changes.
Collapse
Affiliation(s)
- Celine Timmermans
- 1 Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | | | - Hester van Donkersgoed
- 1 Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | - Melvyn Roerdink
- 1 Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| |
Collapse
|
16
|
van der Veen SM, Hammerbeck U, Baker RJ, Hollands KL. Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait. J Biomech 2018; 79:218-222. [PMID: 30135014 DOI: 10.1016/j.jbiomech.2018.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Target-stepping paradigms are increasingly used to assess and train gait adaptability. Accurate gait-event detection (GED) is key to locating targets relative to the ongoing step cycle as well as measuring foot-placement error. In the current literature GED is either based on kinematics or centre of pressure (CoP), and both have been previously validated with young healthy individuals. However, CoP based GED has not been validated for stroke survivors who demonstrate altered CoP pattern. METHODS Young healthy adults and individuals affected by stroke stepped to targets on a treadmill, while gait events were measured using three detection methods; verticies of CoP cyclograms, and two kinematic criteria, (1) vertical velocity and position and of the heel marker, (2) anterior velocity and position of the heel and toe marker, were used. The percentage of unmatched gait events was used to determine the success of the GED method. The difference between CoP and kinematic GED methods were tested with two one sample (two-tailed) t-tests against a reference value of zero. Differences between group and paretic and non-paretic leg were tested with a repeated measures ANOVA. RESULTS The kinematic method based on vertical velocity only detected about 80% of foot contact events on the paretic side in stroke survivors while the method on anterior velocity was more successful in both young healthy adults as stroke survivors (3% young healthy and 7% stroke survivors unmatched). Both kinematic methods detected gait events significantly earlier than CoP GED (p < 0.001) except for foot contact in stroke survivors based on the vertical velocity. CONCLUSIONS CoP GED may be more appropriate for gait analyses of SS than kinematic methods; even when walking and varying steps.
Collapse
Affiliation(s)
- Susanne M van der Veen
- Salford University, School of Health Science, Salford, United Kingdom, Ohio University, Health Sciences Professions, Athens, United States.
| | | | - Richard J Baker
- Salford University, School of Health Science, Salford, United Kingdom.
| | | |
Collapse
|
17
|
Ghai S, Ghai I, Effenberg AO. Effect of Rhythmic Auditory Cueing on Aging Gait: A Systematic Review and Meta-Analysis. Aging Dis 2018; 9:901-923. [PMID: 30271666 PMCID: PMC6147584 DOI: 10.14336/ad.2017.1031] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Rhythmic auditory cueing has been widely used in gait rehabilitation over the past decade. The entrainment effect has been suggested to introduce neurophysiological changes, alleviate auditory-motor coupling and reduce cognitive-motor interferences. However, a consensus as to its influence over aging gait is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal gait parameters among healthy young and elderly participants. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until May 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 2789 records, 34 studies, involving 854 (499 young/355 elderly) participants met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e. gait velocity (Hedge's g: 0.85), stride length (0.61), and cadence (1.1), amongst both age groups. This review, for the first time, evaluates the effects of auditory entrainment on aging gait and discusses its implications under higher and lower information processing constraints. Clinical implications are discussed with respect to applications of auditory entrainment in rehabilitation settings.
Collapse
Affiliation(s)
- Shashank Ghai
- 1Institute for Sports Science, Leibniz University Hannover, Germany
| | - Ishan Ghai
- 2School of Life Sciences, Jacobs University Bremen, Germany
| | | |
Collapse
|
18
|
Gómez-Jordana LI, Stafford J, Peper C(LE, Craig CM. Virtual Footprints Can Improve Walking Performance in People With Parkinson's Disease. Front Neurol 2018; 9:681. [PMID: 30174648 PMCID: PMC6107758 DOI: 10.3389/fneur.2018.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease (PD) self-directed movement, such as walking, is often found to be impaired while goal directed movement, such as catching a ball, stays relatively unaltered. This dichotomy is most clearly observed when sensory cueing techniques are used to deliver patterns of sound and/or light which in turn act as an external guide that improves gait performance. In this study we developed visual cues that could be presented in an immersive, interactive virtual reality (VR) environment. By controlling how the visual cues (black footprints) were presented, we created different forms of spatial and temporal information. By presenting the black footprints at a pre-specified distance apart we could recreate different step lengths (spatial cues) and by controlling when the black footprints changed color to red, we could convey information about the timing of the foot placement (temporal cues). A group of healthy controls (HC; N = 10) and a group of idiopathic PD patients (PD, N = 12) were asked to walk using visual cues that were tailored to their own gait performance [two spatial conditions (115% [N] and 130% [L] of an individual's baseline step length) and three different temporal conditions (spatial only condition [NT], 100 and 125% baseline step cadence)]. Both groups were found to be able to match their gait performance (step length and step cadence) to the information presented in all the visual cue conditions apart from the 125% step cadence conditions. In all conditions the PD group showed reduced levels of gait variability (p < 0.05) while the HC group did not decrease. For step velocity there was a significant increase in the temporal conditions, the spatial conditions and of the interaction between the two for both groups of participants (p < 0.05). The coefficient of variation of step length, cadence, and velocity were all significantly reduced for the PD group compared to the HC group. In conclusion, our results show how virtual footsteps presented in an immersive, interactive VR environment can significantly improve gait performance in participants with Parkinson's disease.
Collapse
Affiliation(s)
- Luis I. Gómez-Jordana
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - James Stafford
- School of Psychology, Queens University Belfast, Belfast, United Kingdom
| | - C. (Lieke) E. Peper
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cathy M. Craig
- School of Psychology, Queens University Belfast, Belfast, United Kingdom
- INCISIV Ltd., Belfast, United Kingdom
| |
Collapse
|
19
|
Abstract
Our activities of daily living inherently involve interacting with the physical environment. This interaction involves both reactive (feedback) and proactive (feedforward) gait adaptations. Reactive adaptations involve responses to mechanical perturbations and occur, for instance, when we stumble over a doorstep or slip on an icy spot on the pavement. Examples of proactive adaptations in response to visual stimuli include stepping over an obstacle, targeting precise foot placements when walking on rough terrain, stepping up to the pavement, or making a turn for going around a corner. These adaptations have to be implemented in our steady-state gait pattern, thus posing a challenge to center-of-mass control and maintenance of forward progression. Yet, despite the apparent complexity of adaptive bipedal walking, we commonly do this with remarkable ease. This chapter will provide a comprehensive overview of the behavioral strategies and control mechanisms that we apply for executing these common, yet complex, gait adaptations. In addition, how we use visual information for guiding proactive gait adaptations and path selection will be discussed. Finally, cognitive involvement during gait adaptations will also be addressed.
Collapse
Affiliation(s)
- Vivian Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands.
| | - Kristen L Hollands
- School of Health and Society, University of Salford, Manchester, United Kingdom
| | - Mark A Hollands
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Performance of a visuomotor walking task in an augmented reality training setting. Hum Mov Sci 2017; 56:11-19. [PMID: 29096179 DOI: 10.1016/j.humov.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022]
Abstract
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects.
Collapse
|
21
|
Walking-adaptability assessments with the Interactive Walkway: Between-systems agreement and sensitivity to task and subject variations. Gait Posture 2017; 54:194-201. [PMID: 28340371 DOI: 10.1016/j.gaitpost.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/15/2017] [Accepted: 02/21/2017] [Indexed: 02/02/2023]
Abstract
The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high-functioning and fragile populations since walking adaptability can be assessed at various levels of difficulty.
Collapse
|
22
|
Timmermans C, Roerdink M, van Ooijen MW, Meskers CG, Janssen TW, Beek PJ. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial. Trials 2016; 17:425. [PMID: 27565425 PMCID: PMC5002097 DOI: 10.1186/s13063-016-1527-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/25/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. METHODS This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. DISCUSSION This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. TRIAL REGISTRATION Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Collapse
Affiliation(s)
- Celine Timmermans
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands. .,Amsterdam Rehabilitation Research Center, Reade, Overtoom 283, Amsterdam, 1054 HW, The Netherlands.
| | - Melvyn Roerdink
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands
| | - Marielle W van Ooijen
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands.,Amsterdam Rehabilitation Research Center, Reade, Overtoom 283, Amsterdam, 1054 HW, The Netherlands
| | - Carel G Meskers
- VU Medical Centre, Department of Rehabilitation Medicine, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
| | - Thomas W Janssen
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands.,Amsterdam Rehabilitation Research Center, Reade, Overtoom 283, Amsterdam, 1054 HW, The Netherlands
| | - Peter J Beek
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, 1081 BT, The Netherlands
| |
Collapse
|
23
|
Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. J Neurosci 2016; 36:2212-26. [PMID: 26888931 DOI: 10.1523/jneurosci.3543-15.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Everyday locomotion and obstacle avoidance requires effective gait adaptation in response to sensory cues. Many studies have shown that efficient motor actions are associated with μ rhythm (8-13 Hz) and β band (13-35 Hz) local field desynchronizations in sensorimotor and parietal cortex, whereas a number of cognitive task studies have reported higher behavioral accuracy to be associated with increases in β band power in prefrontal and sensory cortex. How these two distinct patterns of β band oscillations interplay during gait adaptation, however, has not been established. Here we recorded 108 channel EEG activity from 18 participants (10 males, 22-35 years old) attempting to walk on a treadmill in synchrony with a series of pacing cue tones, and quickly adapting their step rate and length to sudden shifts in pacing cue tempo. Independent component analysis parsed each participant's EEG data into maximally independent component (IC) source processes, which were then grouped across participants into distinct spatial/spectral clusters. Following cue tempo shifts, mean β band power was suppressed for IC sources in central midline and parietal regions, whereas mean β band power increased in IC sources in or near medial prefrontal and dorsolateral prefrontal cortex. In the right dorsolateral prefrontal cortex IC cluster, the β band power increase was stronger during (more effortful) step shortening than during step lengthening. These results thus show that two distinct patterns of β band activity modulation accompany gait adaptations: one likely serving movement initiation and execution; and the other, motor control and inhibition. SIGNIFICANCE STATEMENT Understanding brain dynamics supporting gait adaptation is crucial for understanding motor deficits in walking, such as those associated with aging, stroke, and Parkinson's. Only a few electromagnetic brain imaging studies have examined neural correlates of human upright walking. Here, application of independent component analysis to EEG data recorded during treadmill walking allowed us to uncover two distinct β band oscillatory cortical networks that are active during gait adaptation to shifts in the tempo of an auditory pacing cue: (8-13 Hz) μ rhythm and (13-35 Hz) β band power decreases in central and parietal cortex and (14-20 Hz) β band power increases in frontal brain areas. These results provide a fuller framework for electrophysiological studies of cortical gait control and its disorders.
Collapse
|
24
|
Maculewicz J, Kofoed LB, Serafin S. A Technological Review of the Instrumented Footwear for Rehabilitation with a Focus on Parkinson's Disease Patients. Front Neurol 2016; 7:1. [PMID: 26834696 PMCID: PMC4719096 DOI: 10.3389/fneur.2016.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 12/02/2022] Open
Abstract
In this review article, we summarize systems for gait rehabilitation based on instrumented footwear and present a context of their usage in Parkinson’s disease (PD) patients’ auditory and haptic rehabilitation. We focus on the needs of PD patients, but since only a few systems were made with this purpose, we go through several applications used in different scenarios when gait detection and rehabilitation are considered. We present developments of the designs, possible improvements, and software challenges and requirements. We conclude that in order to build successful systems for PD patients’ gait rehabilitation, technological solutions from several studies have to be applied and combined with knowledge from auditory and haptic cueing.
Collapse
Affiliation(s)
- Justyna Maculewicz
- Sound and Music Computing Group, Department of Architecture, Design and Media Technology, Aalborg University Copenhagen , Copenhagen , Denmark
| | - Lise Busk Kofoed
- Sound and Music Computing Group, Department of Architecture, Design and Media Technology, Aalborg University Copenhagen , Copenhagen , Denmark
| | - Stefania Serafin
- Sound and Music Computing Group, Department of Architecture, Design and Media Technology, Aalborg University Copenhagen , Copenhagen , Denmark
| |
Collapse
|
25
|
Bohnsack-McLagan NK, Cusumano JP, Dingwell JB. Adaptability of stride-to-stride control of stepping movements in human walking. J Biomech 2015; 49:229-37. [PMID: 26725217 DOI: 10.1016/j.jbiomech.2015.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Abstract
Humans continually adapt their movements as they walk on different surfaces, avoid obstacles, etc. External (environmental) and internal (physiological) noise-like disturbances, and the responses that correct for them, each contribute to locomotor variability. This variability may sometimes be detrimental (perhaps increasing fall risk), or sometimes beneficial (perhaps reflecting exploration of multiple task solutions). Here, we determined how humans regulated stride-to-stride fluctuations in walking when presented different task goals that allowed them to exploit inherent redundancies in different ways. Fourteen healthy adults walked on a treadmill under each of four conditions: constant speed only (SPD), constant speed and stride length (LEN), constant speed and stride time (TIM), or constant speed, stride length, and stride time (ALL). Multiple analyses tested competing hypotheses that participants might attempt to either equally satisfy all goals simultaneously, or instead adopt systematic intermediate strategies that only partly satisfied each individual goal. Participants exhibited similar average stepping behavior, but significant differences in variability and stride-to-stride serial correlations across conditions. Analyses of the structure of stride-to-stride fluctuation dynamics demonstrated humans resolved the competing goals presented not by minimizing errors equally with respect to all goals, but instead by trying to only partly satisfy each goal. Thus, humans exploit task redundancies even when they are explicitly removed from the task specifications. These findings may help identify when variability is predictive of, or protective against, fall risk. They may also help inform rehabilitation interventions to better exploit the positive contributions of variability, while minimizing the negative.
Collapse
Affiliation(s)
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, Penn State University, University Park, PA 16802 USA
| | - Jonathan B Dingwell
- Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712 USA.
| |
Collapse
|
26
|
Hollands KL, Pelton TA, Wimperis A, Whitham D, Tan W, Jowett S, Sackley CM, Wing AM, Tyson SF, Mathias J, Hensman M, van Vliet PM. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial. PLoS One 2015; 10:e0139261. [PMID: 26445137 PMCID: PMC4596478 DOI: 10.1371/journal.pone.0139261] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. DESIGN This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services. PARTICIPANTS Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments. INTERVENTION Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. MAIN OUTCOME MEASURES Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. RESULTS Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. CONCLUSIONS Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. TRIAL REGISTRATION Clinicaltrials.gov NCT01600391.
Collapse
Affiliation(s)
- Kristen L. Hollands
- School of Health Sciences, University of Salford, Allerton Building, Salford, M6 6PU, United Kingdom
- * E-mail:
| | - Trudy A. Pelton
- Colleges of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Andrew Wimperis
- Birmingham Community Health Care NHS Trust, (BCHCT), Moseley Hall Hospital, Birmingham, B13 8JL, United Kingdom
| | - Diane Whitham
- University of Nottingham, Nottingham Clinical Trials Unit, Nottingham Health Science Partners, C-floor, South Block, Queen’s Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Wei Tan
- University of Nottingham, Nottingham Clinical Trials Unit, Nottingham Health Science Partners, C-floor, South Block, Queen’s Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Sue Jowett
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Catherine M. Sackley
- King’s College London, Capital House, Guy’s Campus, London, SE1 3QD, United Kingdom
| | - Alan M. Wing
- Colleges of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Sarah F. Tyson
- School of Nursing, Midwifery & Social Work, University of Manchester,Oxford Rd, Manchester, M13 9PL, United Kingdom
| | - Jonathan Mathias
- Colleges of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Marianne Hensman
- Colleges of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Paulette M. van Vliet
- School of Health Sciences, Hunter Building, University Drive, University of Newcastle, Callaghn, New South Wales, 2308, Australia
| |
Collapse
|
27
|
Mazaheri M, Hoogkamer W, Potocanac Z, Verschueren S, Roerdink M, Beek PJ, Peper CE, Duysens J. Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking. Exp Brain Res 2015; 233:3467-74. [PMID: 26298043 PMCID: PMC4646946 DOI: 10.1007/s00221-015-4407-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Abstract
Making step adjustments is an essential component of walking. However, the ability to make step adjustments may be compromised when the walker’s attentional capacity is limited. This study compared the effects of aging and dual tasking on step adjustments in response to stepping-target perturbations during visually cued treadmill walking. Fifteen older adults (69.4 ± 5.0 years; mean ± SD) and fifteen young adults (25.4 ± 3.0 years) walked at a speed of 3 km/h on a treadmill. Both groups performed visually cued step adjustments in response to unpredictable shifts of projected stepping targets in forward (FW), backward (BW) or sideward (SW) directions, at different levels of task difficulty [which increased as the available response distance (ARD) decreased], and with and without dual tasking (auditory Stroop task). In both groups, step adjustments were smaller than required. For FW and BW shifts, older adults undershot more under dual-task conditions. For these shifts, ARD affected the age groups differentially. For SW shifts, larger errors were found for older adults, dual tasking and the most difficult ARD. Stroop task performance did not differ between groups in all conditions. Older adults have more difficulty than young adults to make corrective step adjustments while walking, especially under dual-tasking conditions. Furthermore, they seemed to prioritize the cognitive task over the step adjustment task, a strategy that may pose aging populations at a greater fall risk. For comparable task difficulty, the older adults performed considerably worse than the young adults, indicating a decreased ability to adjust steps under time pressure.
Collapse
Affiliation(s)
- Masood Mazaheri
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | - Melvyn Roerdink
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - Peter J Beek
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | - C E Peper
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Roerdink M, Daffertshofer A, Marmelat V, Beek PJ. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill? PLoS One 2015; 10:e0134148. [PMID: 26230254 PMCID: PMC4521716 DOI: 10.1371/journal.pone.0134148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results challenge the premise that persistent metronomes in gait rehabilitation would evoke stride-to-stride dynamics reminiscent of self-paced walking healthy adults. Future studies are recommended to include an analysis of the interrelation between stride times and stride lengths in addition to the correlational structure of either one in isolation.
Collapse
Affiliation(s)
- Melvyn Roerdink
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Andreas Daffertshofer
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Vivien Marmelat
- Movement to Health Laboratory, Euromov, University of Montpellier, Montpellier, France
| | - Peter J. Beek
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Attuning one's steps to visual targets reduces comfortable walking speed in both young and older adults. Gait Posture 2015; 41:830-4. [PMID: 25800002 DOI: 10.1016/j.gaitpost.2015.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/17/2015] [Accepted: 02/28/2015] [Indexed: 02/02/2023]
Abstract
Comfortable walking speed (CWS) is indicative of clinically relevant factors in the elderly, such as fall risk and mortality. Standard CWS tests involve walking on a straight, unobstructed surface, while in reality surfaces are uneven and cluttered and so walkers rely on visually guided adaptations to avoid trips or slips. Hence, the predictive value of CWS may be expected to increase when assessed for walking in more realistic (visually guided) conditions. We examined CWS in young (n=18) and older (n=18) adults for both overground and treadmill walking. Overground CWS was assessed using the 10-meter walk test with and without visual stepping targets. For treadmill walking, four conditions were examined: (i) uncued walking, and (ii-iv) cued walking with visual stepping targets where the inter-stepping target distance varied by 0%, 20%, or 40%. Pre-experimental measures were taken so that the average inter-stepping target distance could be adjusted for each belt speed based on each participant's self-selected gait characteristics. Results showed that CWS was significantly slower when stepping targets were present in both overground (p<.001) and treadmill walking (p<.001). Thus, attuning steps to visual targets significantly affected CWS, even when the patterning of these targets matched the participant's own gait pattern (viz. 0%-treadmill-walking condition). Results from the treadmill-walking task showed that the amount of variation in inter-stepping target distance did not differentially affect CWS. Our results suggest that it may be worthwhile in clinical assessments to not only determine walking speed using standard conditions but also in situations that require visually guided stepping.
Collapse
|
30
|
Wright RL, Elliott MT. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction. Front Hum Neurosci 2014; 8:724. [PMID: 25309397 PMCID: PMC4161059 DOI: 10.3389/fnhum.2014.00724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.
Collapse
Affiliation(s)
- Rachel L Wright
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, UK
| | - Mark T Elliott
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, UK
| |
Collapse
|
31
|
Mazaheri M, Roerdink M, Bood RJ, Duysens J, Beek PJ, Peper CLE. Attentional costs of visually guided walking: effects of age, executive function and stepping-task demands. Gait Posture 2014; 40:182-6. [PMID: 24767613 DOI: 10.1016/j.gaitpost.2014.03.183] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 02/02/2023]
Abstract
During walking, attention needs to be flexibly allocated to deal with varying environmental constraints. This ability may be affected by aging and lower overall executive function. The present study examined the influence of aging and executive function on the attentional costs of visually guided walking under different task demands. Three groups, young adults (n=15) and elderly adults with higher (n=16) and lower (n=10) executive function, walked on a treadmill in three conditions: uncued walking and walking with regular and irregular patterns of visual stepping targets projected onto the belt. Attentional costs were assessed using a secondary probe reaction time task and corrected by subtracting baseline single-task reaction time, yielding an estimate of the additional attentional costs of each walking condition. We found that uncued walking was more attentionally demanding for elderly than for young participants. In young participants, the attentional costs increased significantly from uncued to regularly cued to irregularly cued walking, whereas for the higher executive function group, attentional costs only increased significantly from regularly cued to irregularly cued walking. For the group with lower executive function, no significant differences were observed. The observed decreased flexibility of elderly, especially those with lower executive function, to allocate additional attentional resources to more challenging walking conditions may be attributed to the already increased attentional costs of uncued walking, presumably required for visuomotor and/or balance control of walking.
Collapse
Affiliation(s)
- Masood Mazaheri
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Melvyn Roerdink
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Robert Jan Bood
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Peter J Beek
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands; School of Sport and Education, Brunel University, Uxbridge, UK
| | - C Lieke E Peper
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Su YH. Peak velocity as a cue in audiovisual synchrony perception of rhythmic stimuli. Cognition 2014; 131:330-44. [PMID: 24632323 DOI: 10.1016/j.cognition.2014.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
This study investigated audiovisual synchrony perception in a rhythmic context, where the sound was not consequent upon the observed movement. Participants judged synchrony between a bouncing point-light figure and an auditory rhythm in two experiments. Two questions were of interest: (1) whether the reference in the visual movement, with which the auditory beat should coincide, relies on a position or a velocity cue; (2) whether the figure form and motion profile affect synchrony perception. Experiment 1 required synchrony judgment with regard to the same (lowest) position of the movement in four visual conditions: two figure forms (human or non-human) combined with two motion profiles (human or ball trajectory). Whereas figure form did not affect synchrony perception, the point of subjective simultaneity differed between the two motions, suggesting that participants adopted the peak velocity in each downward trajectory as their visual reference. Experiment 2 further demonstrated that, when judgment was required with regard to the highest position, the maximal synchrony response was considerably low for ball motion, which lacked a peak velocity in the upward trajectory. The finding of peak velocity as a cue parallels results of visuomotor synchronization tasks employing biological stimuli, suggesting that synchrony judgment with rhythmic motions relies on the perceived visual beat.
Collapse
|
33
|
Abstract
Sensorimotor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm, ranging from finger tapping in time with a metronome to musical ensemble performance. An earlier review (Repp, 2005) covered tapping studies; two additional reviews (Repp, 2006a, b) focused on music performance and on rate limits of SMS, respectively. The present article supplements and extends these earlier reviews by surveying more recent research in what appears to be a burgeoning field. The article comprises four parts, dealing with (1) conventional tapping studies, (2) other forms of moving in synchrony with external rhythms (including dance and nonhuman animals' synchronization abilities), (3) interpersonal synchronization (including musical ensemble performance), and (4) the neuroscience of SMS. It is evident that much new knowledge about SMS has been acquired in the last 7 years.
Collapse
|
34
|
Mendonça C, Oliveira M, Fontes L, Santos J. The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum Mov Sci 2014; 33:33-42. [PMID: 24576706 DOI: 10.1016/j.humov.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Walking to a pacing stimulus has proven useful in motor rehabilitation, and it has been suggested that spontaneous synchronization could be preferable to intentional synchronization. But it is still unclear if the paced walking effect can occur spontaneously, or if intentionality plays a role. The aim of this work is to analyze the effect of sound pacing on gait with and without instruction to synchronize, and with different rhythmic auditory cues, while walking on a treadmill. Firstly, the baseline step frequency while walking on a treadmill was determined for all participants, followed by experimental sessions with both music and footstep sound cues. Participants were split into two groups, with one being instructed to synchronize their gait to the auditory stimuli, and the other being simply told to walk. Individual auditory cues were generated for each participant: for each trial, cues were provided at the participant's baseline walking frequency, at 5% and 10% above baseline, and at 5% and 10% below baseline. This study's major finding was the role of intention on synchronization, given that only the instructed group synchronized their gait with the auditory cues. No differences were found between the effects of step or music stimuli on step frequency. In conclusion, without intention or cues that direct the individual's attention, spontaneous gait synchronization does not occur during treadmill walking.
Collapse
Affiliation(s)
- Catarina Mendonça
- Aalto University, Department of Signal Processing and Acoustics, Finland; Carl von Ossietzky University, Cluster of Excellence Hearing4all, Germany; University of Minho, Centro Algoritmi, Portugal.
| | - Marta Oliveira
- University of Minho, Department of Basic Psychology, Portugal; University of Algarve, Department of Psychology and Educational Sciences, Portugal
| | - Liliana Fontes
- University of Minho, School of Engineering, Centro de Ciência e Tecnologia Têxtil, Portugal
| | - Jorge Santos
- University of Minho, Centro Algoritmi, Portugal; University of Minho, Department of Basic Psychology, Portugal; Centro de Computação Gráfica, Department of Perception, Interaction and Usability, Portugal
| |
Collapse
|
35
|
Koenraadt KLM, Roelofsen EGJ, Duysens J, Keijsers NLW. Cortical control of normal gait and precision stepping: An fNIRS study. Neuroimage 2014; 85 Pt 1:415-22. [PMID: 23631980 DOI: 10.1016/j.neuroimage.2013.04.070] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/29/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Koen L M Koenraadt
- Sint Maartenskliniek Nijmegen, Department of Research, PO box 9011, 6500 GM Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Hollands KL, Pelton T, Wimperis A, Whitham D, Jowett S, Sackley C, Alan W, van Vliet P. Visual cue training to improve walking and turning after stroke: a study protocol for a multi-centre, single blind randomised pilot trial. Trials 2013; 14:276. [PMID: 24004882 PMCID: PMC3846668 DOI: 10.1186/1745-6215-14-276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background Visual information comprises one of the most salient sources of information used to control walking and the dependence on vision to maintain dynamic stability increases following a stroke. We hypothesize, therefore, that rehabilitation efforts incorporating visual cues may be effective in triggering recovery and adaptability of gait following stroke. This feasibility trial aims to estimate probable recruitment rate, effect size, treatment adherence and response to gait training with visual cues in contrast to conventional overground walking practice following stroke. Methods/design A 3-arm, parallel group, multi-centre, single blind, randomised control feasibility trial will compare overground visual cue training (O-VCT), treadmill visual cue training (T-VCT), and usual care (UC). Participants (n = 60) will be randomly assigned to one of three treatments by a central randomisation centre using computer generated tables to allocate treatment groups. The research assessor will remain blind to allocation. Treatment, delivered by physiotherapists, will be twice weekly for 8 weeks at participating outpatient hospital sites for the O-VCT or UC and in a University setting for T-VCT participants. Individuals with gait impairment due to stroke, with restricted community ambulation (gait speed <0.8m/s), residual lower limb paresis and who are able to take part in repetitive walking practice involving visual cues (i.e., no severe visual impairments, able to walk with minimal assistance and no comorbid medical contraindications for walking practice) will be included. The primary outcomes concerning participant enrolment, recruitment, retention, and health and social care resource use data will be recorded over a recruitment period of 18 months. Secondary outcome measures will be undertaken before randomisation (baseline), after the eight-week intervention (outcome), and at three months (follow-up). Outcome measures will include gait speed and step length symmetry; time and steps taken to complete a 180° turn; assessment of gait adaptability (success rate in target stepping); timed up and go; Fugl-Meyer lower limb motor assessment; Berg balance scale; falls efficacy scale; SF-12; and functional ambulation category. Discussion Participation and compliance measured by treatment logs, accrual rate, attrition, and response variation will determine sample sizes for an early phase randomised controlled trial and indicate whether a definitive late phase efficacy trial is justified. Trial registration Clinicaltrials.gov, NCT01600391.
Collapse
Affiliation(s)
- Kristen L Hollands
- Research Fellow School of Health Sciences, University of Salford, Allerton Building, Salford M6 6PU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context. Phys Ther 2012; 92:1452-60. [PMID: 22836005 DOI: 10.2522/ptj.20110362] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. OBJECTIVE The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. DESIGN This was an observational study. METHODS A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. RESULTS Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. LIMITATIONS Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. CONCLUSIONS Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique, quantitative information about walking ability in people with a lower-limb amputation.
Collapse
|
38
|
Peper CLE, Oorthuizen JK, Roerdink M. Attentional demands of cued walking in healthy young and elderly adults. Gait Posture 2012; 36:378-82. [PMID: 22608701 DOI: 10.1016/j.gaitpost.2012.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 02/02/2023]
Abstract
Acoustic and visual cues are frequently used in gait rehabilitation. Attuning the steps to the cues is attentionally demanding. We examined the attentional demands of walking to two types of cues using a probe reaction time (RT) task. The steps were cued by either metronome beeps or visual stepping stones projected on a treadmill. The coupling between gait and these cues was assessed using a perturbation paradigm. In view of age-related changes in attentional demands of motor control, both elderly and young adults were tested. RTs were determined for walking to the two types of cues, as well as for three control conditions, viz. uncued walking, standing, and sitting. For all conditions, RTs were higher for elderly adults. However, the difference between elderly and young adults did not vary over conditions. Uncued walking required more attention than did standing and sitting. The attentional demands were further elevated during cued walking, with larger RTs for walking to visual stepping stones than to metronome beeps. Because the coupling to the cues was superior in the stepping stones condition, this type of cues seems to aid cued walking by allocating higher levels of attention to task-relevant information (viz. future footfall positions). Hence, the observed differences between the two cueing types may be associated with the natural dependence of gait on visual information.
Collapse
Affiliation(s)
- C Lieke E Peper
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Roerdink M, Bank PJM, Peper CLE, Beek PJ. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture 2011; 33:690-4. [PMID: 21454077 DOI: 10.1016/j.gaitpost.2011.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/10/2011] [Accepted: 03/01/2011] [Indexed: 02/02/2023]
Abstract
Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing of auditory-motor coordination. We examined auditory-motor coordination in 20 healthy elderly individuals walking to metronome beats with pacing frequencies slower than, equal to, and faster than their preferred cadence. We found that more steps were required to adjust gait to the beat, the more the metronome rate deviated from the preferred cadence. Furthermore, participants anticipated the beat with their footfalls to various degrees, depending on the metronome rate; the faster the tempo, the smaller the phase advance or phase lead. Finally, the variability in the relative timing between footfalls and the beat was smaller for metronome rates closer to the preferred cadence, reflecting superior auditory-motor coordination. These observations have three practical implications. First, instantaneous effects of acoustic stimuli on gait characteristics may typically be underestimated given the considerable number of steps required to attune gait to the beat in combination with the usual short walkways. Second, a systematic phase lead of footfalls to the beat does not necessarily reflect a reduced ability to couple gait to the metronome. Third, the efficacy of acoustic rhythms to modify gait depends on metronome rate. Gait is coupled best to the beat for metronome rates near the preferred cadence.
Collapse
Affiliation(s)
- Melvyn Roerdink
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|