1
|
ten Hoor M, van de Berg R, Pérez Fornos A, Stultiens JJA. Electrical stimulation of the vestibular nerve: evaluating effects and potential starting points for optimization in vestibular implants. Curr Opin Otolaryngol Head Neck Surg 2024; 32:313-321. [PMID: 39171746 PMCID: PMC11377057 DOI: 10.1097/moo.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW Oscillopsia and unsteadiness are common and highly debilitating symptoms in individuals with bilateral vestibulopathy. A lack of adequate treatment options encouraged the investigation of vestibular implants, which aim to restore vestibular function with motion-modulated electrical stimulation. This review aims to outline the ocular and postural responses that can be evoked with electrical prosthetic stimulation of the semicircular canals and discuss potential approaches to further optimize evoked responses. Particular focus is given to the stimulation paradigm. RECENT FINDINGS Feasibility studies in animals paved the way for vestibular implantation in human patients with bilateral vestibulopathy. Recent human trials demonstrated prosthetic electrical stimulation to partially restore vestibular reflexes, enhance dynamic visual acuity, and generate controlled postural responses. To further optimize prosthetic performance, studies predominantly targeted eye responses elicited by the vestibulo-ocular reflex, aiming to minimize misalignments and asymmetries while maximizing the response. Changes of stimulation parameters are shown to hold promise to increase prosthetic efficacy, together with surgical refinements and neuroplastic effects. SUMMARY Optimization of the stimulation paradigm, in combination with a more precise electrode placement, holds great potential to enhance the clinical benefit of vestibular implants.
Collapse
Affiliation(s)
- Marieke ten Hoor
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Xavier F, Chouin E, Serin-Brackman V, Séverac Cauquil A. How a Subclinical Unilateral Vestibular Signal Improves Binocular Vision. J Clin Med 2023; 12:5847. [PMID: 37762788 PMCID: PMC10532309 DOI: 10.3390/jcm12185847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The present study aimed to determine if an infra-liminal asymmetric vestibular signal could account for some of the visual complaints commonly encountered in chronic vestibular patients. We used infra-liminal galvanic vestibular stimulation (GVS) to investigate its potential effects on visuo-oculomotor behavior. A total of 78 healthy volunteers, 34 aged from 20 to 25 years old and 44 aged from 40 to 60 years old, were included in a crossover study to assess the impact of infra-liminal stimulation on convergence, divergence, proximal convergence point, and stereopsis. Under GVS stimulation, a repeated measures ANOVA showed a significant variation in near convergence (p < 0.001), far convergence (p < 0.001), and far divergence (p = 0.052). We also observed an unexpected effect of instantaneous blocking of the retest effect on the far divergence measurement. Further investigations are necessary to establish causal relationships, but GVS could be considered a behavioral modulator in non-pharmacological vestibular therapies.
Collapse
Affiliation(s)
- Frédéric Xavier
- Sensory and Cognitive Neuroscience Unit LNC UMR 7231 CNRS, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
| | - Emmanuelle Chouin
- Pathophysiology and Therapy of Vestibular Disorders Unit GDR 2074, Aix-Marseille University, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
| | - Véronique Serin-Brackman
- Medical, Maieutics and Paramedical Department, Faculty of Health, University Toulouse III, Paul Sabatier, 31062 Toulouse, France
| | - Alexandra Séverac Cauquil
- ActiVest—Vestibular Functional Exploration in Humans and Non-Human Primates Unit GDR 2074, St-Charles, 3, Place Victor Hugo, 13003 Marseille, France
- Brain and Cognition Research Center CerCo UMR 5549 CNRS, University Toulouse III, Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
3
|
Stultiens JJA, Lewis RF, Phillips JO, Boutabla A, Della Santina CC, Glueckert R, van de Berg R. The Next Challenges of Vestibular Implantation in Humans. J Assoc Res Otolaryngol 2023; 24:401-412. [PMID: 37516679 PMCID: PMC10504197 DOI: 10.1007/s10162-023-00906-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.
Collapse
Affiliation(s)
- Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands.
| | - Richard F Lewis
- Department of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - James O Phillips
- Department of Otolaryngology, University of Washington, Seattle, WA, USA
| | - Anissa Boutabla
- Department of Otorhinolaryngology & Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Charles C Della Santina
- Department of Biomedical Engineering and Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
4
|
Chow MR, Fernandez Brillet C, Hageman KN, Roberts DC, Ayiotis AI, Haque RM, Della Santina CC. Binocular 3-D otolith-ocular reflexes: responses of chinchillas to natural and prosthetic stimulation after ototoxic injury and vestibular implantation. J Neurophysiol 2023; 129:1157-1176. [PMID: 37018758 PMCID: PMC10151050 DOI: 10.1152/jn.00445.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The otolith end organs inform the brain about gravitational and linear accelerations, driving the otolith-ocular reflex (OOR) to stabilize the eyes during translational motion (e.g., moving forward without rotating) and head tilt with respect to gravity. We previously characterized OOR responses of normal chinchillas to whole body tilt and translation and to prosthetic electrical stimulation targeting the utricle and saccule via electrodes implanted in otherwise normal ears. Here we extend that work to examine OOR responses to tilt and translation stimuli after unilateral intratympanic gentamicin injection and to natural/mechanical and prosthetic/electrical stimulation delivered separately or in combination to animals with bilateral vestibular hypofunction after right ear intratympanic gentamicin injection followed by surgical disruption of the left labyrinth at the time of electrode implantation. Unilateral intratympanic gentamicin injection decreased natural OOR response magnitude to about half of normal, without markedly changing OOR response direction or symmetry. Subsequent surgical disruption of the contralateral labyrinth at the time of electrode implantation surgery further decreased OOR magnitude during natural stimulation, consistent with bimodal-bilateral otolith end organ hypofunction (ototoxic on the right ear, surgical on the left ear). Delivery of pulse frequency- or pulse amplitude-modulated prosthetic/electrical stimulation targeting the left utricle and saccule in phase with whole body tilt and translation motion stimuli yielded responses closer to normal than the deficient OOR responses of those same animals in response to head tilt and translation alone.NEW & NOTEWORTHY Previous studies to expand the scope of prosthetic stimulation of the otolith end organs showed that selective stimulation of the utricle and saccule is possible. This article further defines those possibilities by characterizing a diseased animal model and subsequently studying its responses to electrical stimulation alone and in combination with mechanical motion. We show that we can partially restore responses to tilt and translation in animals with unilateral gentamicin ototoxic injury and contralateral surgical disruption.
Collapse
Affiliation(s)
- Margaret R Chow
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Celia Fernandez Brillet
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Dale C Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Andrianna I Ayiotis
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Razi M Haque
- Lawrence Livermore National Laboratory, Livermore, California, United States
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
A novel 3D video oculography system for measuring cross-axis vestibulo-ocular reflex. Med Eng Phys 2021; 96:41-45. [PMID: 34565551 DOI: 10.1016/j.medengphy.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
We present a video oculography (VOG) system with 6-degree-of-freedom (6-DOF) mobility for real-time measurements of the binocular 3D eye position of a small animal. A hybrid hexapod that allowed for multi-axis complex motions with the resolution of the microscopic level was used to control the motion of the animal. The instantaneous eyeball movement of the animal was determined based on two approaches: (1) tracking of marker arrays affixed to the cornea; and (2) tracking the pupil outline. The tracking of the eyeball movement and the motion control of the hexapod were implemented with the LabVIEW virtual instruments. Compared with our previous measurements using a servo-motor-based single-axis VOG system, positional error reduced from more than 4% to less than 0.7%. Validation showed that the tracking errors in three rotational axes are less than 2% for the magnitude and less than 5° for the direction angle. The present VOG system is an effective tool for cross-axis 3D vestibulo-ocular reflex study on small animals.
Collapse
|
6
|
Crétallaz C, Boutabla A, Cavuscens S, Ranieri M, Nguyen TAK, Kingma H, Van De Berg R, Guinand N, Pérez Fornos A. Influence of systematic variations of the stimulation profile on responses evoked with a vestibular implant prototype in humans. J Neural Eng 2020; 17:036027. [PMID: 32213673 PMCID: PMC8630998 DOI: 10.1088/1741-2552/ab8342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To explore the impact of different electrical stimulation profiles in human recipients of the Geneva-Maastricht vestibular implant prototypes. APPROACH Four implanted patients were recruited for this study. We investigated the relative efficacy of systematic variations of the electrical stimulus profile (phase duration, pulse rate, baseline level, modulation depth) in evoking vestibulo-ocular (eVOR) and perceptual responses. MAIN RESULTS Shorter phase durations and, to a lesser extent, slower pulse rates allowed maximizing the electrical dynamic range available for eliciting a wider range of intensities of vestibular percepts. When either the phase duration or the pulse rate was held constant, current modulation depth was the factor that had the most significant impact on peak velocity of the eVOR. SIGNIFICANCE Our results identified important parametric variations that influence the measured responses. Furthermore, we observed that not all vestibular pathways seem equally sensitive to the electrical stimulus when the electrodes are placed in the semicircular canals and monopolar stimulation is used. This opens the door to evaluating new stimulation strategies for a vestibular implant, and suggests the possibility of selectively activating one vestibular pathway or the other in order to optimize rehabilitation outcomes.
Collapse
Affiliation(s)
- Céline Crétallaz
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hageman KN, Chow MR, Roberts D, Boutros PJ, Tooker A, Lee K, Felix S, Pannu SS, Haque R, Della Santina CC. Binocular 3D otolith-ocular reflexes: responses of chinchillas to prosthetic electrical stimulation targeting the utricle and saccule. J Neurophysiol 2019; 123:259-276. [PMID: 31747349 DOI: 10.1152/jn.00883.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation.NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.
Collapse
Affiliation(s)
- Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Margaret R Chow
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela Tooker
- Lawrence Livermore National Laboratory, Livermore, California
| | - Kye Lee
- Lawrence Livermore National Laboratory, Livermore, California
| | - Sarah Felix
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Razi Haque
- Lawrence Livermore National Laboratory, Livermore, California
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, Morris BJ, Hofner A, Rascon AM, Marx A, Deas R, Fridman GY, Davidovics NS, Ward BK, Treviño C, Bowditch SP, Roberts DC, Lane KE, Gimmon Y, Schubert MC, Carey JP, Jaeger A, Della Santina CC. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight 2019; 4:128397. [PMID: 31723056 DOI: 10.1172/jci.insight.128397] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDBilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear's 3 semicircular canals.METHODSWe report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTSInitiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal's anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350-812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSIONThese results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATIONClinicalTrials.gov: NCT02725463.FUNDINGNIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.
Collapse
Affiliation(s)
| | - Desi P Schoo
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mehdi Rahman
- Labyrinth Devices, LLC, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | - Gene Y Fridman
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Bryan K Ward
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Carolina Treviño
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephen P Bowditch
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dale C Roberts
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly E Lane
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoav Gimmon
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael C Schubert
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John P Carey
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Charles C Della Santina
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Labyrinth Devices, LLC, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Virtual Rhesus Labyrinth Model Predicts Responses to Electrical Stimulation Delivered by a Vestibular Prosthesis. J Assoc Res Otolaryngol 2019; 20:313-339. [PMID: 31165284 DOI: 10.1007/s10162-019-00725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
To better understand the spread of prosthetic current in the inner ear and to facilitate design of electrode arrays and stimulation protocols for a vestibular implant system intended to restore sensation after loss of vestibular hair cell function, we created a model of the primate labyrinth. Because the geometry of the implanted ear is complex, accurately modeling effects of prosthetic stimuli on vestibular afferent activity required a detailed representation of labyrinthine anatomy. Model geometry was therefore generated from three-dimensional (3D) reconstructions of a normal rhesus temporal bone imaged using micro-MRI and micro-CT. For systematically varied combinations of active and return electrode location, the extracellular potential field during a biphasic current pulse was computed using finite element methods. Potential field values served as inputs to stochastic, nonlinear dynamic models for each of 2415 vestibular afferent axons, each with unique origin on the neuroepithelium and spiking dynamics based on a modified Smith and Goldberg model. We tested the model by comparing predicted and actual 3D vestibulo-ocular reflex (VOR) responses for eye rotation elicited by prosthetic stimuli. The model was individualized for each implanted animal by placing model electrodes in the standard labyrinth geometry based on CT localization of actual implanted electrodes. Eye rotation 3D axes were predicted from relative proportions of model axons excited within each of the three ampullary nerves, and predictions were compared to archival eye movement response data measured in three alert rhesus monkeys using 3D scleral coil oculography. Multiple empirically observed features emerged as properties of the model, including effects of changing active and return electrode position. The model predicts improved prosthesis performance when the reference electrode is in the labyrinth's common crus (CC) rather than outside the temporal bone, especially if the reference electrode is inserted nearly to the junction of the CC with the vestibule. Extension of the model to human anatomy should facilitate optimal design of electrode arrays for clinical application.
Collapse
|
10
|
Boutros PJ, Valentin NS, Hageman KN, Dai C, Roberts D, Della Santina CC. Nonhuman primate vestibuloocular reflex responses to prosthetic vestibular stimulation are robust to pulse timing errors caused by temporal discretization. J Neurophysiol 2019; 121:2256-2266. [PMID: 30995152 DOI: 10.1152/jn.00887.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrical stimulation of vestibular afferent neurons to partially restore semicircular canal sensation of head rotation and the stabilizing reflexes that sensation supports has potential to effectively treat individuals disabled by bilateral vestibular hypofunction. Ideally, a vestibular implant system using this approach would be integrated with a cochlear implant, which would provide clinicians with a means to simultaneously treat loss of both vestibular and auditory sensation. Despite obvious similarities, merging these technologies poses several challenges, including stimulus pulse timing errors that arise when a system must implement a pulse frequency modulation-encoding scheme (as is used in vestibular implants to mimic normal vestibular nerve encoding of head movement) within fixed-rate continuous interleaved sampling (CIS) strategies used in cochlear implants. Pulse timing errors caused by temporal discretization inherent to CIS create stair step discontinuities of the vestibular implant's smooth mapping of head velocity to stimulus pulse frequency. In this study, we assayed electrically evoked vestibuloocular reflex responses in two rhesus macaques using both a smooth pulse frequency modulation map and a discretized map corrupted by temporal errors typical of those arising in a combined cochlear-vestibular implant. Responses were measured using three-dimensional scleral coil oculography for prosthetic electrical stimuli representing sinusoidal head velocity waveforms that varied over 50-400°/s and 0.1-5 Hz. Pulse timing errors produced negligible effects on responses across all canals in both animals, indicating that temporal discretization inherent to implementing a pulse frequency modulation-coding scheme within a cochlear implant's CIS fixed pulse timing framework need not sacrifice performance of the combined system's vestibular implant portion. NEW & NOTEWORTHY Merging a vestibular implant system with existing cochlear implant technology can provide clinicians with a means to restore both vestibular and auditory sensation. Pulse timing errors inherent to integration of pulse frequency modulation vestibular stimulation with fixed-rate, continuous interleaved sampling cochlear implant stimulation would discretize the smooth head velocity encoding of a combined device. In this study, we show these pulse timing errors produce negligible effects on electrically evoked vestibulo-ocular reflex responses in two rhesus macaques.
Collapse
Affiliation(s)
- Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Nicolas S Valentin
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Chenkai Dai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
11
|
Hitier M, Sato G, Zhang YF, Zheng Y, Besnard S, Smith PF. Vestibular-related eye movements in the rat following selective electrical stimulation of the vestibular sensors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:835-847. [DOI: 10.1007/s00359-018-1286-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/26/2023]
|
12
|
Phillips JO, Ling L, Nowack AL, Phillips CM, Nie K, Rubinstein JT. The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey. Front Neurosci 2018; 12:88. [PMID: 29867306 PMCID: PMC5962652 DOI: 10.3389/fnins.2018.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM) or current amplitude modulated (AM). In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.
Collapse
Affiliation(s)
- James O Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Leo Ling
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Amy L Nowack
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Christopher M Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Epidemiology, University of Washington, Seattle, WA, United States
| | - Kaibao Nie
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| | - Jay T Rubinstein
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
van de Berg R, Guinand N, Ranieri M, Cavuscens S, Khoa Nguyen TA, Guyot JP, Lucieer F, Starkov D, Kingma H, van Hoof M, Perez-Fornos A. The Vestibular Implant Input Interacts with Residual Natural Function. Front Neurol 2017; 8:644. [PMID: 29312107 PMCID: PMC5735071 DOI: 10.3389/fneur.2017.00644] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Patients with bilateral vestibulopathy (BV) can still have residual “natural” function. This might interact with “artificial” vestibular implant input (VI-input). When fluctuating, it could lead to vertigo attacks. Main objective was to investigate how “artificial” VI-input is integrated with residual “natural” input by the central vestibular system. This, to explore (1) whether misalignment in the response of “artificial” VI-input is sufficiently counteracted by well-aligned residual “natural” input and (2) whether “artificial” VI-input is able to influence and counteract the response to residual “natural” input, to show feasibility of a “vestibular pacemaker.” Materials and methods Five vestibular electrodes in four BV patients implanted with a VI were available. This involved electrodes with a predominantly horizontal response and electrodes with a predominantly vertical response. Responses to predominantly horizontal residual “natural” input and predominantly horizontal and vertical “artificial” VI-input were separately measured first. Then, inputs were combined in conditions where both would hypothetically collaborate or counteract. In each condition, subjects were subjected to 60 cycles of sinusoidal stimulation presented at 1 Hz. Gain, asymmetry, phase and angle of eye responses were calculated. Signal averaging was performed. Results Combining residual “natural” input and “artificial” VI-input resulted in an interaction in which characteristics of the resulting eye movement responses could significantly differ from those observed when responses were measured for each input separately (p < 0.0013). In the total eye response, inputs with a stronger vector magnitude seemed to have stronger weights than inputs with a lower vector magnitude, in a non-linear combination. Misalignment in the response of “artificial” VI-input was not sufficiently counteracted by well-aligned residual “natural” input. “Artificial” VI-input was able to significantly influence and counteract the response to residual “natural” input. Conclusion In the acute phase of VI-activation, residual “natural” input and “artificial” VI-input interact to generate eye movement responses in a non-linear fashion. This implies that different stimulation paradigms and more complex signal processing strategies will be required unless the brain is able to optimally combine both sources of information after adaptation during chronic use. Next to this, these findings could pave the way for using the VI as “vestibular pacemaker.”
Collapse
Affiliation(s)
- Raymond van de Berg
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Maurizio Ranieri
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Samuel Cavuscens
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - T A Khoa Nguyen
- Translational Neural Engineering Lab, Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Lucieer
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Herman Kingma
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Marc van Hoof
- Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Dai C, Lehar M, Sun DQ, Rvt LS, Carey JP, MacLachlan T, Brough D, Staecker H, Della Santina AM, Hullar TE, Della Santina CC. Rhesus Cochlear and Vestibular Functions Are Preserved After Inner Ear Injection of Saline Volume Sufficient for Gene Therapy Delivery. J Assoc Res Otolaryngol 2017. [PMID: 28646272 DOI: 10.1007/s10162-017-0628-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 μL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 μL transmastoid/trans-round window injection. Group C received a 30 μL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 μL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.
Collapse
Affiliation(s)
- Chenkai Dai
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.
| | - Mohamed Lehar
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Daniel Q Sun
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Lani Swarthout Rvt
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - John P Carey
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Tim MacLachlan
- Novartis Institutes for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Doug Brough
- GenVec, 910 Clopper Rd #220n, Gaithersburg, MD, 20878, USA
| | - Hinrich Staecker
- Dept of Otolaryngology, Head & Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Alexandra M Della Santina
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Timothy E Hullar
- Department of Otolaryngology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Department of Audiology and Communication Sciences, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Charles C Della Santina
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| |
Collapse
|
15
|
Hitier M, Sato G, Zhang YF, Zheng Y, Besnard S, Smith PF, Curthoys IS. Anatomy and surgical approach of rat’s vestibular sensors and nerves. J Neurosci Methods 2016; 270:1-8. [DOI: 10.1016/j.jneumeth.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
16
|
Nguyen TAK, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, van de Berg R, Carpaneto J, Kingma H, Guyot JP, Micera S, Fornos AP. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng 2016; 13:046023. [DOI: 10.1088/1741-2560/13/4/046023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Vestibular assistance systems: promises and challenges. J Neurol 2016; 263 Suppl 1:S30-5. [PMID: 27083882 PMCID: PMC4833784 DOI: 10.1007/s00415-015-7922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
The handicap resulting from a bilateral vestibular deficit is often underestimated. In most cases the deficit settles gradually. Patients do not understand what is happening to them and have many difficulties to describe their symptoms. They have to consult several doctors with different medical specialties before diagnosis. Once the diagnosis is made there is no biological way to “repair” the deficient vestibular apparatus and vestibular exercises are mildly effective. Attempts have been made to help patients using substitution devices replacing the defective vestibular information by tactile or acoustic cues. Currently, efforts are being made towards the development of a vestibular implant, conceptually similar to the cochlear implant for the rehabilitation of deaf patients. In recent years, several experiments on animal models have demonstrated the feasibility of this project. This paper reports the steps accomplished in human experiments and the main results obtained in our laboratory.
Collapse
|
18
|
Hageman KN, Kalayjian ZK, Tejada F, Chiang B, Rahman MA, Fridman GY, Dai C, Pouliquen PO, Georgiou J, Della Santina CC, Andreou AG. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:269-79. [PMID: 25974945 PMCID: PMC4641830 DOI: 10.1109/tbcas.2015.2409797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 °/s for the MVP2 and 2.0-14.2 °/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2.
Collapse
Affiliation(s)
- Kristin N. Hageman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Zaven K. Kalayjian
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Francisco Tejada
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Bryce Chiang
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Mehdi A. Rahman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Gene Y. Fridman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Chenkai Dai
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philippe O. Pouliquen
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Julio Georgiou
- Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosa, Cyprus
| | - Charles C. Della Santina
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Andreas G. Andreou
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
19
|
Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, Kingma H, Guyot JP, Perez-Fornos A. Vestibular Implants: 8 Years of Experience with Electrical Stimulation of the Vestibular Nerve in 11 Patients with Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec 2015; 77:227-240. [PMID: 26367113 DOI: 10.1159/000433554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The concept of the vestibular implant is primarily to artificially restore the vestibular function in patients with a bilateral vestibular loss (BVL) by providing the central nervous system with motion information using electrical stimulation of the vestibular nerve. Our group initiated human trials about 10 years ago. METHODS Between 2007 and 2013, 11 patients with a BVL received a vestibular implant prototype providing electrodes to stimulate the ampullary branches of the vestibular nerve. Eye movements were recorded and analyzed to assess the effects of the electrical stimulation. Perception induced by electrical stimulation was documented. RESULTS Smooth, controlled eye movements were obtained in all patients showing that electrical stimulation successfully activated the vestibulo-ocular pathway. However, both the electrical dynamic range and the amplitude of the eye movements were variable from patient to patient. The axis of the response was consistent with the stimulated nerve branch in 17 out of the 24 tested electrodes. Furthermore, in at least 1 case, the elicited eye movements showed characteristics similar to those of compensatory eye movements observed during natural activities such as walking. Finally, diverse percepts were reported upon electrical stimulation (i.e., rotatory sensations, sound, tickling or pressure) with intensity increasing as the stimulation current increased. CONCLUSIONS These results demonstrate that electrical stimulation is a safe and effective means to activate the vestibular system, even in a heterogeneous patient population with very different etiologies and disease durations. Successful tuning of this information could turn this vestibular implant prototype into a successful artificial balance organ.
Collapse
|
20
|
Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, Phillips JO. Longitudinal performance of an implantable vestibular prosthesis. Hear Res 2015; 322:200-11. [PMID: 25245586 PMCID: PMC4369472 DOI: 10.1016/j.heares.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
| | - Leo Ling
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Trey Oxford
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Amy Nowack
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Kaibao Nie
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jay T Rubinstein
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Bioengineering, University of Washington, Seattle, WA, USA
| | - James O Phillips
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Phillips JO, Ling L, Nie K, Jameyson E, Phillips CM, Nowack AL, Golub JS, Rubinstein JT. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. J Neurophysiol 2015; 113:3866-92. [PMID: 25652917 DOI: 10.1152/jn.00171.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0-400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.
Collapse
Affiliation(s)
- James O Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| | - Leo Ling
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Kaibao Nie
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| | - Elyse Jameyson
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington
| | - Christopher M Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy L Nowack
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Justin S Golub
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington
| | - Jay T Rubinstein
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
van de Berg R, Guinand N, Nguyen TAK, Ranieri M, Cavuscens S, Guyot JP, Stokroos R, Kingma H, Perez-Fornos A. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci 2015; 8:255. [PMID: 25653601 PMCID: PMC4299437 DOI: 10.3389/fnsys.2014.00255] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/29/2014] [Indexed: 12/05/2022] Open
Abstract
The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the “natural” VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the “natural” VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the “normal” vestibular system.
Collapse
Affiliation(s)
- Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands ; Faculty of Physics, Tomsk State University Tomsk, Russia
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - T A Khoa Nguyen
- Translational Neural Engineering Lab, Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Maurizio Ranieri
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Samuel Cavuscens
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Robert Stokroos
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands ; Faculty of Physics, Tomsk State University Tomsk, Russia
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| |
Collapse
|
23
|
Treatment of vertigo and postural instability using visual illusions. The Journal of Laryngology & Otology 2014; 128:1005-7. [DOI: 10.1017/s0022215114002254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground:Ototoxicity caused by medication can lead to debilitating symptoms such as dizziness, vertigo and postural instability. There is no current ‘gold standard’ treatment available.Case report:A 79-year-old male, with bilateral loss of vestibular function caused by gentamicin toxicity after surgery for prosthetic valve endocarditis, complained of dizziness, difficulty in walking and an increased risk of falling. Physical examination showed a positive head thrust test suggesting bilateral loss of vestibular function.Results:The patient underwent a specific motion-based virtual reality enhanced protocol for peripheral vestibular disease. He showed a great improvement, with a 50 per cent reduction in his Dizziness Handicap Inventory score.Conclusion:Computer-aided rehabilitation programmes might represent an important advance in gait and posture training.
Collapse
|
24
|
Nguyen TAK, Ranieri M, DiGiovanna J, Peter O, Genovese V, Perez Fornos A, Micera S. A real-time research platform to study vestibular implants with gyroscopic inputs in vestibular deficient subjects. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:474-484. [PMID: 25073124 DOI: 10.1109/tbcas.2013.2290089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Researchers have succeeded in partly restoring damaged vestibular functionality in several animal models. Recently, acute interventions have also been demonstrated in human patients. Our previous work on a vestibular implant for humans used predefined stimulation patterns; here we present a research tool that facilitates motion-modulated stimulation. This requires a system that can process gyroscope measurements and send stimulation parameters to a hybrid vestibular-cochlear implant in real-time. To match natural vestibular latencies, the time from sensor input to stimulation output should not exceed 6.5 ms. We describe a system based on National Instrument's CompactRIO platform that can meet this requirement and also offers floating point precision for advanced transfer functions. It is designed for acute clinical interventions, and is sufficiently powerful and flexible to serve as a development platform for evaluating prosthetic control strategies. Amplitude and pulse frequency modulation to predetermined functions or sensor inputs have been validated. The system has been connected to human patients, who each have received a modified MED-EL cochlear implant for vestibular stimulation, and patient tests are ongoing.
Collapse
|
25
|
Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Micera S, Kingma H, Pelizzone M, Guyot JP. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol 2014; 5:66. [PMID: 24808890 PMCID: PMC4010770 DOI: 10.3389/fneur.2014.00066] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 12/05/2022] Open
Abstract
The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.
Collapse
Affiliation(s)
- Angelica Perez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Robert Stokroos
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Silvestro Micera
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland ; The BioRobotics Institute, Scuola Superiore Sant'Anna , Pisa , Italy
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Marco Pelizzone
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| |
Collapse
|
26
|
Fridman GY, Della Santina CC. Safe direct current stimulation to expand capabilities of neural prostheses. IEEE Trans Neural Syst Rehabil Eng 2013; 21:319-28. [PMID: 23476007 DOI: 10.1109/tnsre.2013.2245423] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While effective in treating some neurological disorders, neuroelectric prostheses are fundamentally limited because they must employ charge-balanced stimuli to avoid evolution of irreversible electrochemical reactions and their byproducts at the interface between metal electrodes and body fluids. Charge-balancing is typically achieved by using brief biphasic alternating current (AC) pulses, which typically excite nearby neural tissues but cannot efficiently inhibit them. In contrast, direct current (DC) applied via a metal electrode in contact with body fluids can excite, inhibit and modulate sensitivity of neurons; however, chronic DC stimulation is incompatible with biology because it violates charge injection limits that have long been considered unavoidable. In this paper, we describe the design and fabrication of a Safe DC Stimulator (SDCS) that overcomes this constraint. The SCDS drives DC ionic current into target tissue via salt-bridge micropipette electrodes by switching valves in phase with AC square waves applied to metal electrodes contained within the device. This approach achieves DC ionic flow through tissue while still adhering to charge-balancing constraints at each electrode-saline interface. We show the SDCS's ability to both inhibit and excite neural activity to achieve improved dynamic range during prosthetic stimulation of the vestibular part of the inner ear in chinchillas.
Collapse
Affiliation(s)
- Gene Y Fridman
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21208, USA.
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review examines the research from 2011 through 2012 on treatment efficacy in two common vestibular disorders - vestibular hypofunction and benign paroxysmal positional vertigo (BPPV). RECENT FINDINGS Significant numbers of randomized controlled trials now support the use of specific exercises for the treatment of patients with unilateral peripheral vestibular hypofunction. We do not know if some treatment approaches are more effective than others. There is preliminary evidence that head movement may be the component critical to recovered function and decreased symptoms. Some patient characteristics and initial assessment results appear to predict treatment outcome but the evidence is incomplete. Treatment of posterior canal BPPV canalithiasis is well established. New evidence supports certain treatments for horizontal canal BPPV. SUMMARY Treatments for unilateral vestibular hypofunction and for posterior canal BPPV are effective; however, there are many as yet unanswered questions such as why some patients with vestibular hypofunction do not improve with a course of vestibular exercises. We also do not know what would be the best treatment for anterior canal BPPV or for multiple-canal involvement BPPV.
Collapse
|
28
|
Valentin NS, Hageman KN, Dai C, Della Santina CC, Fridman GY. Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Trans Neural Syst Rehabil Eng 2013; 21:830-9. [PMID: 23649285 DOI: 10.1109/tnsre.2013.2259261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.
Collapse
|
29
|
Davidovics NS, Rahman MA, Dai C, Ahn J, Fridman GY, Della Santina CC. Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J Assoc Res Otolaryngol 2013; 14:233-48. [PMID: 23355001 DOI: 10.1007/s10162-013-0370-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022] Open
Abstract
An implantable prosthesis that stimulates vestibular nerve branches to restore the sensation of head rotation and the three-dimensional (3D) vestibular ocular reflex (VOR) could benefit individuals disabled by bilateral loss of vestibular sensation. Our group has developed a vestibular prosthesis that partly restores normal function in animals by delivering biphasic current pulses via electrodes implanted in semicircular canals. Despite otherwise promising results, this approach has been limited by insufficient velocity of VOR response to head movements that should inhibit the implanted labyrinth and by misalignment between direction of head motion and prosthetically elicited VOR. We report that significantly larger VOR eye velocities in the inhibitory direction can be elicited by adapting a monkey to elevated baseline stimulation rate and current prior to stimulus modulation and then concurrently modulating ("co-modulating") both rate and current below baseline levels to encode inhibitory angular head velocity. Co-modulation of pulse rate and current amplitude above baseline can also elicit larger VOR eye responses in the excitatory direction than do either pulse rate modulation or current modulation alone. Combining these stimulation strategies with a precompensatory 3D coordinate transformation improves alignment and magnitude of evoked VOR eye responses. By demonstrating that a combination of co-modulation and precompensatory transformation strategies achieves a robust VOR response in all directions with significantly improved alignment in an animal model that closely resembles humans with vestibular loss, these findings provide a solid preclinical foundation for application of vestibular stimulation in humans.
Collapse
Affiliation(s)
- Natan S Davidovics
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Fridman GY, Della Santina CC. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency. Anat Rec (Hoboken) 2012; 295:2010-29. [PMID: 23044664 DOI: 10.1002/ar.22581] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices appropriate for use in clinical trials.
Collapse
Affiliation(s)
- Gene Y Fridman
- Department of Otolaryngology-Head & Neck surgery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
31
|
Phillips JO, Bierer SM, Ling L, Nie K, Rubinstein JT. Real-time communication of head velocity and acceleration for an externally mounted vestibular prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3537-41. [PMID: 22255103 DOI: 10.1109/iembs.2011.6090588] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Loss of vestibular function results in imbalance, disorientation, and oscillopsia. Several groups have designed and constructed implantable devices to restore vestibular function through electrical stimulation of the vestibular nerve. We have designed a two-part device in which the head motion sensing and signal processing elements are externally mounted to the head, and are coupled through an inductive link to a receiver stimulator that is based on a cochlear implant. The implanted electrode arrays are designed to preserve rotational sensitivity in the implanted ear. We have tested the device in rhesus monkeys by rotating the animals in the plane of the implanted canals, and then using head velocity and acceleration signals to drive electrical stimulation of the vestibular system. Combined electrical and rotational stimulation results in a summation of responses, so that one can control the modulation of eye velocity induced by sinusoidal yaw rotation.
Collapse
Affiliation(s)
- James O Phillips
- Department of Otolaryngology and the Virginia Merrill Bloedel Hearing Research Center at the University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
32
|
Sun DQ, Rahman MA, Fridman G, Dai C, Chiang B, Della Santina CC. Chronic stimulation of the semicircular canals using a multichannel vestibular prosthesis: effects on locomotion and angular vestibulo-ocular reflex in chinchillas. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3519-23. [PMID: 22255099 DOI: 10.1109/iembs.2011.6090584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bilateral loss of vestibular sensation causes difficulty maintaining stable vision, posture and gait. An implantable prosthesis that partly restores vestibular sensation could significantly improve quality of life for individuals disabled by this disorder. We have developed a head-mounted multichannel vestibular prosthesis (MVP) that restores sufficient semicircular canal function to recreate a 3D angular vestibulo-ocular reflex (aVOR). In this study, we evaluated effects of chronic MVP stimulation on locomotion in chinchillas. Two of three animals examined exhibited significant improvements in both locomotion and aVOR.
Collapse
Affiliation(s)
- Daniel Q Sun
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Lewis RF, Haburcakova C, Gong W, Karmali F, Merfeld DM. Spatial and temporal properties of eye movements produced by electrical stimulation of semicircular canal afferents. J Neurophysiol 2012; 108:1511-20. [PMID: 22673321 DOI: 10.1152/jn.01029.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the characteristics of eye movements produced by electrical stimulation of semicircular canal afferents, we studied the spatial and temporal features of eye movements elicited by short-term lateral canal stimulation in two squirrel monkeys with plugged lateral canals, with the head upright or statically tilted in the roll plane. The electrically induced vestibuloocular reflex (eVOR) evoked with the head upright decayed more quickly than the stimulation signal provided by the electrode, demonstrating an absence of the classic velocity storage effect that improves the dynamics of the low-frequency VOR. When stimulation was provided with the head tilted in roll, however, the eVOR decayed more rapidly than when the head was upright, and a cross-coupled vertical response developed that shifted the eye's rotational axis toward alignment with gravity. These results demonstrate that rotational information provided by electrical stimulation of canal afferents interacts with otolith inputs (or other graviceptive cues) in a qualitatively normal manner, a process that is thought to be mediated by the velocity storage network. The observed interaction between the eVOR and graviceptive cues is of critical importance for the development of a functionally useful vestibular prosthesis. Furthermore, the presence of gravity-dependent effects (dumping, spatial orientation) despite an absence of low-frequency augmentation of the eVOR has not been previously described in any experimental preparation.
Collapse
Affiliation(s)
- Richard F Lewis
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
34
|
Blödow A, Bloching M, Hörmann K, Walther LE. [Receptor function of the semicircular canals. Part 2: pathophysiology, diseases, clinical findings and treatment aspects]. HNO 2012; 60:249-59; quiz 260-1. [PMID: 22402905 DOI: 10.1007/s00106-011-2438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Perturbation of semicircular canal function may result in a pathological angular vestibulo-ocular reflex (aVOR). The resulting impairment in gaze stabilization is perceived as "vertigo" or "dizziness" and may occur following receptor function impairment of all three semicircular canals. The head impulse test reveals hidden (covert-catchup) or visible (overt-catchup) saccades in disturbances of semicircular function. Most peripheral vestibular disorders can be treated conservatively. There are surgical treatment options for some diseases, such as intractable benign paroxysmal positional vertigo and superior semicircular canal dehiscence. Vestibular training promotes central reorganization of the VOR. Impaired semicircular receptor function, in particular bilateral vestibulopathy, may affect spatial orientation and cognitive processes. Balance prostheses could serve as a replacement for receptors in the future.
Collapse
Affiliation(s)
- A Blödow
- HNO-Klinik, Helios-Klinikum Berlin-Buch, Berlin, Deutschland
| | | | | | | |
Collapse
|
35
|
van de Berg R, Guinand N, Guyot JP, Kingma H, Stokroos RJ. The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol 2012; 3:18. [PMID: 22363317 PMCID: PMC3282298 DOI: 10.3389/fneur.2012.00018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/30/2012] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess, for the first time in a human with a long-term vestibular loss, a modified approach to the ampullae and the feasibility of evoking a VOR by ampullar stimulation. Materials and methods: Peroperative stimulation of the ampullae, using the ampullar approach, was performed under full anesthesia during cochlear implantation in a 21-year-old female patient, who had experienced bilateral vestibular areflexia and sensorineural hearing loss for almost 20 years. Results: The modified ampullar approach was performed successfully with as minimally invasive surgery as possible. Ampullar stimulation evoked eye movements containing vectors congruent with the stimulated canal. As expected, the preliminary electrophysiological data were influenced by the general anesthesia, which resulted in current spread and reduced maximum amplitudes of eye movement. Nevertheless, they confirm the feasibility of ampullar stimulation. Conclusion: The modified ampullar approach provides safe access to the ampullae using as minimally invasive surgery as possible. For the first time in a human with long-term bilateral vestibular areflexia, it is shown that the VOR can be evoked by ampullar stimulation, even when there has been no vestibular function for almost 20 years. This approach should be considered in vestibular surgery, as it provides safe access to one of the most favorable stimulus locations for development of a vestibular implant.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otolaryngology and Head and Neck Surgery, Maastricht University Medical Centre Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
36
|
Davidovics NS, Fridman GY, Della Santina CC. Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Exp Brain Res 2012; 218:389-400. [PMID: 22349559 DOI: 10.1007/s00221-012-3025-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
An implantable prosthesis that stimulates vestibular nerve branches to restore sensation of head rotation and vision-stabilizing reflexes could benefit individuals disabled by bilateral loss of vestibular sensation. The normal vestibular system encodes head movement by increasing or decreasing firing rate of the vestibular afferents about a baseline firing rate in proportion to head rotation velocity. Our multichannel vestibular prosthesis emulates this encoding scheme by modulating pulse rate and pulse current amplitude above and below a baseline stimulation rate (BSR) and a baseline stimulation current. Unilateral baseline prosthetic stimulation that mimics normal vestibular afferent baseline firing results in vestibulo-ocular reflex (VOR) eye responses with a wider range of eye velocity in response to stimuli modulated above baseline (excitatory) than below baseline (inhibitory). Stimulus modulation about higher than normal baselines resulted in increased range of inhibitory eye velocity, but decreased range of excitatory eye velocity. Simultaneous modulation of rate and current (co-modulation) above all tested baselines elicited a significantly wider range of excitatory eye velocity than rate or current modulation alone. Time constants associated with the recovery of VOR excitability following adaptation to elevated BSRs implicate synaptic vesicle depletion as a possible mechanism for the small range of excitatory eye velocity elicited by rate modulation alone. These findings can be used toward selecting optimal baseline levels for vestibular stimulation that would result in large inhibitory eye responses while maintaining a wide range of excitatory eye velocity via co-modulation.
Collapse
Affiliation(s)
- Natan S Davidovics
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
37
|
Nguyen TAK, Kogler V, DiGiovanna J, Micera S. Finding physiological responses in vestibular evoked potentials. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2258-61. [PMID: 22254790 DOI: 10.1109/iembs.2011.6090568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vestibular prostheses are regarded as a promising tool to restore lost sensation in patients with vestibular disorders. These prostheses often electrically stimulate the vestibular nerve and stimulation efficacy is evaluated by measuring the vestibulo-ocular reflex (VOR). However, eye movement recording as intuitive metric of vestibular functionality is difficult to obtain outside the laboratory environment, and hence not available as an error signal in a closed-loop prosthesis. Recently we investigated vestibular evoked potentials (VEPs) by stimulating and recording in the same semicircular canal of a guinea pig. Here we studied the correlation between VOR and one region of VEP. We further analyzed a second portion of VEP, where vestibular nerve activity should occur using rectified bin integration (RBI). To this end, stimulation artifact was significantly reduced by hardware and software approaches. We found a high VEP-VOR correlation (R-squared=0.86), suggesting that VEP could substitute VOR as metric of vestibular function. Differences between below and above vestibular threshold stimulation were seen for the second portion of VEP. Further investigations are required to determine the specific parts of VEP that accurately represents vestibular function(s).
Collapse
Affiliation(s)
- T A K Nguyen
- Neuroprosthesis Control Group, Automatic Control Lab, ETH Zurich, Physikstrasse 3, 8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
38
|
McCall AA, Yates BJ. Compensation following bilateral vestibular damage. Front Neurol 2011; 2:88. [PMID: 22207864 PMCID: PMC3246292 DOI: 10.3389/fneur.2011.00088] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 01/22/2023] Open
Abstract
Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10 days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
39
|
Dai C, Fridman GY, Davidovics NS, Chiang B, Ahn JH, Della Santina CC. Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis. Hear Res 2011; 281:74-83. [PMID: 21888961 DOI: 10.1016/j.heares.2011.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (MVP) is encoded via rate-modulated pulsatile stimulation of vestibular nerve branches. Despite significant improvement versus the unaided condition, animals still exhibited some 3D VOR misalignment (i.e., the 3D axis of eye movement responses did not precisely align with the axis of head rotation), presumably due to current spread between a given ampullary nerve's stimulating electrode(s) and afferent fibers in non-targeted branches of the vestibular nerve. Assuming that effects of current spread depend on relative orientation and separation between nerve branches, anatomic differences between chinchilla and human labyrinths may limit the extent to which results in chinchillas accurately predict MVP performance in humans. In this report, we describe the MVP-evoked 3D VOR measured in alert rhesus monkeys, which have labyrinths that are larger than chinchillas and temporal bone anatomy more similar to humans. Electrodes were implanted in five monkeys treated with intratympanic gentamicin to bilaterally ablate vestibular hair cell mechanosensitivity. Eye movements mediated by the 3D VOR were recorded during passive sinusoidal (0.2-5 Hz, peak 50°/s) and acceleration-step (1000°/s(2) to 150°/s) whole-body rotations in darkness about each semicircular canal axis. During constant 100 pulse/s stimulation (i.e., MVP powered ON but set to stimulate each ampullary nerve at a constant mean baseline rate not modulated by head motion), 3D VOR responses to head rotation exhibited profoundly low gain [(mean eye velocity amplitude)/(mean head velocity amplitude) < 0.1] and large misalignment between ideal and actual eye movements. In contrast, motion-modulated sinusoidal MVP stimuli elicited a 3D VOR with gain 0.4-0.7 and axis misalignment of 21-38°, and responses to high-acceleration transient head rotations exhibited gain and asymmetry closer to those of unilaterally gentamicin-treated animals (i.e., with one intact labyrinth) than to bilaterally gentamicin-treated animals without MVP stimulation. In comparison to responses observed under similar conditions in chinchillas, acute responses to MVP stimulation in rhesus macaque monkeys were slightly better aligned to the desired rotation axis. Responses during combined rotation and prosthetic stimulation were greater than when either stimulus was presented alone, suggesting that the central nervous system uses MVP input in the context of multisensory integration. Considering the similarity in temporal bone anatomy and VOR performance between rhesus monkeys and humans, these observations suggest that an MVP will likely restore a useful level of vestibular sensation and gaze stabilization in humans.
Collapse
Affiliation(s)
- Chenkai Dai
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave.,Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
40
|
van de Berg R, Guinand N, Stokroos RJ, Guyot JP, Kingma H. The vestibular implant: quo vadis? Front Neurol 2011; 2:47. [PMID: 21991260 PMCID: PMC3181464 DOI: 10.3389/fneur.2011.00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Objective: To assess the progress of the development of the vestibular implant (VI) and its feasibility short-term. Data sources: A search was performed in Pubmed, Medline, and Embase. Key words used were “vestibular prosth*” and “VI.” The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation. Study selection: All studies about the VI and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the VI. Data extraction and synthesis: Data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: To use a basic VI in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation), complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Centre Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
41
|
Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res 2011; 210:623-40. [PMID: 21380738 DOI: 10.1007/s00221-011-2599-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
To facilitate design of a multichannel vestibular prosthesis that can restore sensation to individuals with bilateral loss of vestibular hair cell function, we created a virtual labyrinth model. Model geometry was generated through 3-dimensional (3D) reconstruction of microMRI and microCT scans of normal chinchillas (Chinchilla lanigera) acquired with 30-48 μm and 12 μm voxels, respectively. Virtual electrodes were positioned based on anatomic landmarks, and the extracellular potential field during a current pulse was computed using finite element methods. Potential fields then served as inputs to stochastic, nonlinear dynamic models for each of 2,415 vestibular afferent axons with spiking dynamics based on a modified Smith and Goldberg model incorporating parameters that varied with fiber location in the neuroepithelium. Action potential propagation was implemented by a well validated model of myelinated fibers. We tested the model by comparing predicted and actual 3D angular vestibulo-ocular reflex (aVOR) axes of eye rotation elicited by prosthetic stimuli. Actual responses were measured using 3D video-oculography. The model was individualized for each animal by placing virtual electrodes based on microCT localization of real electrodes. 3D eye rotation axes were predicted from the relative proportion of model axons excited within each of the three ampullary nerves. Multiple features observed empirically were observed as emergent properties of the model, including effects of active and return electrode position, stimulus amplitude and pulse waveform shape on target fiber recruitment and stimulation selectivity. The modeling procedure is partially automated and can be readily adapted to other species, including humans.
Collapse
|
42
|
Rahman MA, Dai C, Fridman GY, Davidovics NS, Chiang B, Ahn J, Hayden R, Melvin TAN, Sun DQ, Hedjoudje A, Della Santina CC. Restoring the 3D vestibulo-ocular reflex via electrical stimulation: the Johns Hopkins multichannel vestibular prosthesis project. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:3142-5. [PMID: 22255006 PMCID: PMC3270063 DOI: 10.1109/iembs.2011.6090857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bilateral loss of vestibular sensation causes difficulty maintaining stable vision, posture and gait. An implantable prosthesis that partly restores normal activity on branches of the vestibular nerve should improve quality of life for individuals disabled by this disorder. We have developed a head-mounted multichannel vestibular prosthesis that restores sufficient semicircular canal function to partially recreate a normal 3-dimensional angular vestibulo-ocular reflex in animals. Here we describe several parallel lines of investigation directed toward refinement of this approach toward eventual clinical application.
Collapse
Affiliation(s)
- Mehdi A Rahman
- Departments of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|