1
|
Bucchieri A, Tessari F, Buccelli S, De Momi E, Laffranchi M, De Michieli L. The effect of gravity on hand spatio-temporal kinematic features during functional movements. PLoS One 2024; 19:e0310192. [PMID: 39739850 DOI: 10.1371/journal.pone.0310192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 01/02/2025] Open
Abstract
Understanding the impact of gravity on daily upper-limb movements is crucial for comprehending upper-limb impairments. This study investigates the relationship between gravitational force and upper-limb mobility by analyzing hand trajectories from 24 healthy subjects performing nine pick-and-place tasks, captured using a motion capture system. The results reveal significant differences in motor behavior in terms of planning, smoothness, efficiency, and accuracy when movements are performed against or with gravity. Analysis showed that upward movements (g-) resembled transversal ones (g0) but differed significantly from downward movements (g+). Corrective movements in g+ began later than in g- and g0, indicating different motor planning models. Velocity profiles highlighted smoother movements in g- and g0 compared to g+. Smoothness was lower in g+, indicating less coordinated movements. Efficiency showed significant variability with no specific trends due to subjective task duration among subjects. This study highlights the importance of considering gravitational effects when evaluating upper-limb movements, especially for individuals with neurological impairments. Planning metrics, including Percent Time to Peak Velocity and Percent Time to Peak Standard Deviation, showed significant differences between g- and g0 compared to g+, supporting Fitts' law on the trade-off between speed and accuracy. Two novel indications were also introduced: the Target Position Error and the Minimum Required Tunnel. These new indicators provided insights into hand-eye coordination and movement variability. The findings suggest that motor planning, smoothness, and efficiency are significantly influenced by gravity, emphasizing the need for differentiated approaches in assessing and rehabilitating upper-limb impairments. Future research should explore these metrics in impaired populations to develop targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Anna Bucchieri
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federico Tessari
- Newman Laboratory for Biomechanics and Human Rehabilitation, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stefano Buccelli
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
2
|
Roberts JW, Burkitt JJ, Elliott D. The type 1 submovement conundrum: an investigation into the function of velocity zero-crossings within two-component aiming movements. Exp Brain Res 2024:10.1007/s00221-024-06784-0. [PMID: 38329516 DOI: 10.1007/s00221-024-06784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
In rapid manual aiming, traditional wisdom would have it that two components manifest from feedback-based processes, where error accumulated within the primary submovement can be corrected within the secondary submovement courtesy of online sensory feedback. In some aiming contexts, there are more type 1 submovements (overshooting) compared to types 2 and 3 submovements (undershooting), particularly for more rapid movements. These particular submovements have also been attributed to a mechanical artefact involving movement termination and stabilisation. Hence, the goal of our study was to more closely examine the function of type 1 submovements by revisiting some of our previous datasets. We categorised these submovements according to whether the secondary submovement moved the limb closer (functional), or not (non-functional), to the target. Overall, there were both functional and non-functional submovements with a significantly higher proportion for the former. The displacement at the primary and secondary submovements, and negative velocity peak were significantly greater in the functional compared to non-functional. The influence of submovement type on other movement characteristics, including movement time, was somewhat less clear. These findings indicate that the majority of type 1 submovements are related to intended feedforward- and/or feedback-based processes, although there are a portion that can be attributed an indirect manifestation of a mechanical artefact. As a result, we suggest that submovements should be further categorised by their error-reducing function.
Collapse
Affiliation(s)
- James W Roberts
- Brain and Behaviour Research Group, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK.
- School of Health Sciences, Psychology, Action and Learning of Movement (PALM) Laboratory, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK.
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - James J Burkitt
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Digby Elliott
- Brain and Behaviour Research Group, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Nakatake J, Arakawa H, Shogo M, Totoribe K, Chosa E. Effect of age on upper limb, neck, and trunk kinematics during activities of daily living. Heliyon 2023; 9:e20535. [PMID: 37829804 PMCID: PMC10565693 DOI: 10.1016/j.heliyon.2023.e20535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Motion analysis during activities of daily living has been conducted in numerous studies. However, information is lacking regarding age-related differences that affect clinical assessment and treatment goals. This study aimed to examine the effect of age on kinematics during activities of daily living. Three-dimensional motions of the shoulder, elbow, neck, and trunk of 12 younger adults (age, 29.8 ± 5.4 years; 7 men and 5 women) and 10 older adults (age, 69.5 ± 4.9 years; 6 men and 4 women) were measured during the acts of reaching for a table, bringing a glass to the mouth for drinking, wiping the buttocks, tying shoelaces, washing hair, washing the axilla, reaching for a high shelf, and reaching for the floor. The ranges of motion and sequential joint angles were compared between age groups by using discrete analysis and statistical parametric mapping, respectively. The ranges of motion of all joint angles in older and younger adults were comparable in the drinking, washing hair, washing the axilla, and reaching for the floor tasks. Statistical parametric mapping indicated that older adults had significantly poorer neck extension than did younger adults during the drinking (67-92% cycle time) and tying shoelaces (64-95% cycle time) tasks. Kinematics were mostly maintained in healthy older adults during activities of daily living. However, reduced motions were confirmed later during some tasks. The results indicated that existing knowledge combined with the current findings, which take age into account, could be used in clinical settings to assess the kinematics of activities of daily living and set treatment goals.
Collapse
Affiliation(s)
- Jun Nakatake
- Rehabilitation Unit, University of Miyazaki Hospital, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
| | - Hideki Arakawa
- Rehabilitation Unit, University of Miyazaki Hospital, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
| | - Maeda Shogo
- Rehabilitation Unit, University of Miyazaki Hospital, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
| | - Koji Totoribe
- Department of Rehabilitation, Miyazaki City Tano Hospital, Tano-cho Minamibaru 1-6-2, Miyazaki, 889-1704, Japan
| | - Etsuo Chosa
- Rehabilitation Unit, University of Miyazaki Hospital, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake-cho Kihara 5200, Miyazaki, 889-1692, Japan
| |
Collapse
|
4
|
Testing anxiety's effect on movement planning and correction: Online upper-limb corrections are not completely automatic. Hum Mov Sci 2023; 87:103022. [PMID: 36370619 DOI: 10.1016/j.humov.2022.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Via three experiments, we investigated heightened anxiety's effect on the offline planning and online correction of upper-limb target-directed aiming movements. In Experiment 1, the majority of task trials allowed for the voluntary distribution of offline planning and online correction to achieve task success, while a subset of cursor jump trials necessitated the use of online correction to achieve task success. Experiments 2 and 3 replicated and elaborated Experiment 1 by assessing movement-specific reinvestment propensity and manipulating the self-control resources of participants. This allowed more detailed inference of cognitive resource utilisation to tease apart the effects of conscious processing and distraction-based anxiety mechanisms. For the first time, we demonstrate that: anxiety-induced online-to-offline motor control shifts can be overridden when the need for online correction is necessitated (i.e., in jump trials); anxiety-induced online-to-offline shifts seem to be positively predicted by conscious processing propensity; and optimal spatial efficacy of limb information-based online correction seems to require cognitive resources. We conclude that long-standing definitions of limb information-based online correction require revision, and that both conscious processing and distraction theories appear to play a role in determining the control strategies of anxiety induced upper limb target directed aiming movements.
Collapse
|
5
|
Wittenberg GF, Tian J, Kortzorg N, Wyers L, Van Halewyck F, Boisgontier MP, Levin O, Swinnen SP, Jonkers I. Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Exp Brain Res 2022; 240:1029-1044. [PMID: 35171307 PMCID: PMC9985825 DOI: 10.1007/s00221-021-06280-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements. We sought to explore how such changes in accuracy relate to changes in finger, shoulder and elbow movements during performance of reaching movements with the normal effects of gravity, unconstrained hand movement, and stable target locations. Three-dimensional kinematic data and electromyography were collected in 14 young (25 ± 6 years) and 10 older adults (68 ± 3 years) during second-long reaches to 3 targets aligned vertically in front of the participants. Older adults took longer to initiate a movement than the young adults and were more variable and inaccurate in their initial and final movements. Target height had greater effect on trajectory curvature variability in older than young adults, with angle variability relative to target position being greater in older adults around the time of peak speed. There were significant age-related differences in use of the multiple degrees of freedom of the upper extremity, with less variability in shoulder abduction in the older group. Muscle activation patterns were similar, except for a higher biceps-triceps co-contraction and tonic levels of some proximal muscle activation. These results show an age-related deficit in the motor planning and online correction of reaching movements against a predictable force (i.e., gravity) when it is not compensated by mechanical support.
Collapse
Affiliation(s)
- George F Wittenberg
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA.
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA.
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.
- Department of Neurology, School of Medicine, University of Pittsburgh, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA, 15213-3232, USA.
| | - Jing Tian
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA
| | - Nick Kortzorg
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Lore Wyers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Florian Van Halewyck
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Bruyere Research Institute, Ottawa, Canada
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wijeyaratnam DO, Edwards T, Pilutti LA, Cressman EK. Assessing visually guided reaching in people with multiple sclerosis with and without self-reported upper limb impairment. PLoS One 2022; 17:e0262480. [PMID: 35061785 PMCID: PMC8782348 DOI: 10.1371/journal.pone.0262480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to accurately complete goal-directed actions, such as reaching for a glass of water, requires coordination between sensory, cognitive and motor systems. When these systems are impaired, like in people with multiple sclerosis (PwMS), deficits in movement arise. To date, the characterization of upper limb performance in PwMS has typically been limited to results attained from self-reported questionnaires or clinical tools. Our aim was to characterize visually guided reaching performance in PwMS. Thirty-six participants (12 PwMS who reported upper limb impairment (MS-R), 12 PwMS who reported not experiencing upper limb impairment (MS-NR), and 12 age- and sex-matched control participants without MS (CTL)) reached to 8 targets in a virtual environment while seeing a visual representation of their hand in the form of a cursor on the screen. Reaches were completed with both the dominant and non-dominant hands. All participants were able to complete the visually guided reaching task, such that their hand landed on the target. However, PwMS showed noticeably more atypical reaching profiles when compared to control participants. In accordance with these observations, analyses of reaching performance revealed that the MS-R group was more variable with respect to the time it took to initiate and complete their movements compared to the CTL group. While performance of the MS-NR group did not differ significantly from either the CTL or MS-R groups, individuals in the MS-NR group were less consistent in their performance compared to the CTL group. Together these findings suggest that PwMS with and without self-reported upper limb impairment have deficits in the planning and/or control of their movements. We further argue that deficits observed during movement in PwMS who report upper limb impairment may arise due to participants compensating for impaired movement planning processes.
Collapse
Affiliation(s)
- Darrin O. Wijeyaratnam
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas Edwards
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara A. Pilutti
- Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Cressman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Exp Brain Res 2021; 239:3585-3600. [PMID: 34591126 DOI: 10.1007/s00221-021-06228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Contributions from premotor and supplementary motor areas to reaching behavior in aging humans are not well understood. The objective of these experiments was to examine effects of perturbations to specific cortical areas on the control of unconstrained reaches against gravity by younger and older adults. Double-pulse transcranial magnetic stimulation (TMS) was applied to scalp locations targeting primary motor cortex (M1), dorsal premotor area (PMA), supplementary motor area (SMA), or dorsolateral prefrontal cortex (DLPFC). Stimulation was intended to perturb ongoing activity in the targeted cortical region before or after a visual cue to initiate moderately paced reaches to one of three vertical target locations. Regional effects were observed in movement amplitude both early and late in the reach. Perturbation of PMA increased reach distance before the time of peak velocity to a greater extent than all other regions. Reaches showed greater deviation from a straight-line path around the time of peak velocity and greater overall curvature with perturbation of PMA and M1 relative to SMA and DLPFC. The perturbation increased positional variability of the reach path at the time of peak velocity and the time elapsing after peak velocity. Although perturbations had stronger effects on reaches by younger subjects, this group exhibited less reach path variability at the time of peak velocity and required less time to adjust the movement trajectory thereafter. These findings support the role of PMA in visually guided reaching and suggest an age-related change in sensorimotor processing, possibly due to a loss of cortical inhibitory control.
Collapse
|
8
|
Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Hansen S, Grierson LEM, Foster NC, Roberts JW, Bennett SJ. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations. Exp Brain Res 2020; 238:2685-2699. [PMID: 33079207 DOI: 10.1007/s00221-020-05952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Several years ago, our research group forwarded a model of goal-directed reaching and aiming that describes the processes involved in the optimization of speed, accuracy, and energy expenditure Elliott et al. (Psychol Bull 136:1023-1044, 2010). One of the main features of the model is the distinction between early impulse control, which is based on a comparison of expected to perceived sensory consequences, and late limb-target control that involves a spatial comparison of limb and target position. Our model also emphasizes the importance of strategic behaviors that limit the opportunity for worst-case or inefficient outcomes. In the 2010 paper, we included a section on how our model can be used to understand atypical aiming/reaching movements in a number of special populations. In light of a recent empirical and theoretical update of our model Elliott et al. (Neurosci Biobehav Rev 72:95-110, 2017), here we consider contemporary motor control work involving typical aging, Down syndrome, autism spectrum disorder, and tetraplegia with tendon-transfer surgery. We outline how atypical limb control can be viewed within the context of the multiple-process model of goal-directed reaching and aiming, and discuss the underlying perceptual-motor impairment that results in the adaptive solution developed by the specific group.
Collapse
Affiliation(s)
- Digby Elliott
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK.
| | - James Lyons
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Spencer J Hayes
- Department of Psychology and Human Development, University College London, London, UK
| | | | - Steve Hansen
- School of Physical and Health Education, Nipissing University, North Bay, ON, Canada
| | - Lawrence E M Grierson
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Nathan C Foster
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - James W Roberts
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK
| | - Simon J Bennett
- Brain and Behaviour Laboratory, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
9
|
Energy minimization within target-directed aiming: the mediating influence of the number of movements and target size. Exp Brain Res 2020; 238:741-749. [PMID: 32077987 PMCID: PMC7080690 DOI: 10.1007/s00221-020-05750-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/08/2020] [Indexed: 11/20/2022]
Abstract
In target-directed aiming, performers tend to more greatly undershoot targets when aiming down compared to up because they try to avoid an overshoot error and subsequently minimize the time and energy expenditure that is required to suddenly combat gravitational forces. The present study aims to further examine this principle of time and energy minimization by directly mediating the perceived cost of potential errors as well as the likelihood of their occurrence by manipulating the number of movements and target size, respectively. Participants executed rapid aiming movements in the up/down direction as part of a one-/two-target movement towards a small/large target. Primary movement endpoints showed greater undershooting when aiming in the downward compared to upward direction and small compared to large targets. Meanwhile, the overall movement time showed that slower movements were generated for down compared to up, but only when aiming toward large targets. The failure to mediate the central tendency as a function of the number of movements and target size indicates that the feature of minimization is highly prominent within the performers’ pre-response planning. However, the continued minimization of energy in the presence of large targets may inadvertently cost the movement time.
Collapse
|
10
|
Roberts JW, Grierson LEM. Early Impulse Control: Treatment of Potential Errors within Pre-Programming and Control. J Mot Behav 2019; 52:713-722. [PMID: 31679475 DOI: 10.1080/00222895.2019.1683506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Early aiming adjustments following an online perturbation are made possible by impulse control. This process may unfold even earlier when perturbations impose a greater risk of a costly overshoot error. Participants executed upward and downward aims to mediate the cost of potential errors-downward overshoots require more energy to correct against gravity. On 33% of the trials, texture elements on the aiming surface were shifted following onset to appear congruent or incongruent with the aiming direction, and consequently generate a misperception of the limb moving slower or faster, respectively. Thus, the risk of potential errors could be influenced by the online perturbation (e.g., increased perceived likelihood of overshooting following the incongruent background). Findings indicated greater undershooting for down compared to up, which reflects the principle of movement optimisation. There was also more undershooting for an incongruent compared to congruent background, which is consistent with early online adjustments counter-acting the misperceived limb velocity. However, there were no interactions throughout the movement trajectory. We suggest that while the initial pre-programme considers the cost of potential errors (target direction), early impulse control fails to discriminate the likelihood of these errors occurring following an online perturbation (moving background).
Collapse
Affiliation(s)
- James W Roberts
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - Lawrence E M Grierson
- Department of Kinesiology, McMaster University, Hamilton, Canada.,McMaster Program for Educational Research, Innovation, and Theory, Faculty of Health Sciences, McMaster University, Hamilton, Canada.,Department of Family Medicine, David Braley Health Sciences Centre, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Etter NM, McKeon PO, Dressler EV, Andreatta RD. Effects of ageing on orofacial fine force control and its relationship with parallel change in sensory perception. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2018; 20:502-515. [PMID: 28466659 DOI: 10.1080/17549507.2017.1318303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Current theoretical models suggest the importance of a bidirectional relationship between sensation and production in the vocal tract to maintain lifelong speech skills. The purpose of this study was to assess age-related changes in orofacial skilled force production and to begin defining the orofacial perception-action relationship in healthy adults. METHOD Low-level orofacial force control measures (reaction time, rise time, peak force, mean hold force (N) and force hold SD) were collected from 60 adults (19-84 years). Non-parametric Kruskal Wallis tests were performed to identify statistical differences between force and group demographics. Non-parametric Spearman's rank correlations were completed to compare force measures against previously published sensory data from the same cohort of participants. RESULT Significant group differences in force control were found for age, sex, speech usage and smoking status. Significant correlational relationships were identified between labial vibrotactile thresholds and several low-level force control measures collected during step and ramp-and-hold conditions. CONCLUSION These findings demonstrate age-related alterations in orofacial force production. Furthermore, correlational analysis suggests as vibrotactile detection thresholds increase, the ability to maintain low-level force control accuracy decreases. Possible clinical applications and treatment consequences of these findings for speech disorders in the ageing population are provided.
Collapse
Affiliation(s)
- Nicole M Etter
- a Department of Communication Sciences and Disorders, Orofacial Physiology and Perceptual Analysis Lab (OPPAL) , Pennsylvania State University , University Park , PA , USA
| | - Patrick O McKeon
- b Department of Exercise and Sports Science , Ithaca College , Ithaca , NY , USA
| | - Emily V Dressler
- c Markey Cancer Center, Biostatistics Shared Resource Facility , University of Kentucky , Lexington , KY , USA ; and
| | - Richard D Andreatta
- d Laryngeal & Speech Dynamics Laboratory, Department of Rehabilitation Sciences , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
12
|
Allsop JE, Lawrence GP, Gray R, Khan MA. The interaction between practice and performance pressure on the planning and control of fast target directed movement. PSYCHOLOGICAL RESEARCH 2017; 81:1004-1019. [PMID: 27535064 PMCID: PMC5533866 DOI: 10.1007/s00426-016-0791-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 10/28/2022]
Abstract
Pressure to perform often results in decrements to both outcome accuracy and the kinematics of motor skills. Furthermore, this pressure-performance relationship is moderated by the amount of accumulated practice or the experience of the performer. However, the interactive effects of performance pressure and practice on the underlying processes of motor skills are far from clear. Movement execution involves both an offline pre-planning process and an online control process. The present experiment aimed to investigate the interaction between pressure and practice on these two motor control processes. Two groups of participants (control and pressure; N = 12 and 12, respectively) practiced a video aiming amplitude task and were transferred to either a non-pressure (control group) or a pressure condition (pressure group) both early and late in practice. Results revealed similar accuracy and movement kinematics between the control and pressure groups at early transfer. However, at late transfer, the introduction of pressure was associated with increased performance compared to control conditions. Analysis of kinematic variability throughout the movement suggested that the performance increase was due to participants adopting strategies to improve movement planning in response to pressure reducing the effectiveness of the online control system.
Collapse
Affiliation(s)
- Jonathan E Allsop
- Vision and Eye Research Unit (VERU), Postgraduate Medical Institute, Anglia Ruskin University, Cambridge, UK
| | - Gavin P Lawrence
- School of Sport, Health and Exercise Sciences, Institute for the Psychology of Elite Performance, Bangor University, George Building, Holyhead Road, Bangor, Gwynedd, LL57 2PZ, UK.
| | | | - Michael A Khan
- Faculty of Human Kinetics, University of Windsor, Windsor, Canada
| |
Collapse
|
13
|
A strategy of faster movements used by elderly humans to lift objects of increasing weight in ecological context. Neuroscience 2017; 357:384-399. [PMID: 28428010 DOI: 10.1016/j.neuroscience.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022]
Abstract
It is not known whether, during the course of aging, changes occur in the motor strategies used by the CNS for lifting objects of different weights. Here, we analyzed the kinematics of object-lifting in two different healthy groups (young and elderly people) plus one well-known deafferented patient (GL). The task was to reach and lift onto a shelf an opaque cylindrical object with changing weight. The movements of the hand and object were recorded with electromagnetic sensors. In an ecological context (i.e. no instruction was given about movement speed), we found that younger participants, elderly people and GL did not all move at the same speed and that, surprisingly, elder people are faster. We also observed that the lifting trajectories were constant for both the elderly and the deafferented patient while younger participants raised their hand higher when the object weighed more. It appears that, depending on age and on available proprioceptive information, the CNS uses different strategies of lifting. We suggest that elder people tend to optimize their feedforward control in order to compensate for less functional afferent feedback, perhaps to optimize movement time and energy expenditure at the expense of high precision. In the case of complete loss of proprioceptive input, however, compensation follows a different strategy as suggested by GL's behavior who moved more slowly compared to both our younger and older participants.
Collapse
|
14
|
Burkitt JJ, Bongers RM, Elliott D, Hansen S, Lyons JL. Extending Energy Optimization in Goal-Directed Aiming from Movement Kinematics to Joint Angles. J Mot Behav 2017; 49:129-140. [PMID: 28327058 DOI: 10.1080/00222895.2016.1161592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Energy optimization in goal-directed aiming has been demonstrated as an undershoot bias in primary movement endpoint locations, especially in conditions where corrections to target overshoots must be made against gravity. Two-component models of upper limb movement have not yet considered how joint angles are organized to deal with the energy constraints associated with moving the upper limb in goal-directed aiming tasks. To address this limitation, participants performed aiming movements to targets in the up and down directions with the index finger and two types of rod extensions attached to the index finger. The rod extensions were expected to invoke different energy optimizing strategies in the up and down directions by allowing the distal joints the opportunity to contribute to end effector displacement. Primary movements undershot the farthest target to a greater extent in the downward direction compared to the upward direction, showing that movement kinematics optimize energy expenditure in consideration of the effects of gravity. As rod length increased, shoulder elevation was optimized in movements to the far-up target and elbow flexion was optimally minimized in movements to the far-down target. The results suggest energy optimization in the control of joint angles independent of the force of gravity.
Collapse
Affiliation(s)
- James J Burkitt
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada
| | - Raoul M Bongers
- b University of Groningen , University Medical Center Groningen, Center for Human Movement Sciences , Groningen , The Netherlands
| | - Digby Elliott
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada.,c School of Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , England
| | - Steve Hansen
- d Schulich School of Education, Physical and Health Education , Nipissing University , North Bay , Ontario , Canada
| | - James L Lyons
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
15
|
Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Roberts JW, Grierson LE, Hansen S, Bennett SJ. The multiple process model of goal-directed reaching revisited. Neurosci Biobehav Rev 2017; 72:95-110. [DOI: 10.1016/j.neubiorev.2016.11.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/28/2022]
|
16
|
Roberts JW, Burkitt JJ, Elliott D, Lyons JL. The Impact of Strategic Trajectory Optimization on Illusory Target Biases During Goal-Directed Aiming. J Mot Behav 2016; 48:542-551. [PMID: 27362494 DOI: 10.1080/00222895.2016.1161588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During rapid aiming, movements are planned and executed to avoid worst-case outcomes that require time and energy to correct. As such, downward movements initially undershoot the target to avoid corrections against gravity. Illusory target context can also impact aiming bias. Here, the authors sought to determine how strategic biases mediate illusory biases. Participants aimed to Müller-Lyer figures in different directions (forward, backward, up, down). Downward biases emerged late in the movement and illusory biases emerged from peak velocity. The illusory effects were greater for downward movements at terminal endpoint. These results indicate that strategic biases interact with the limb-target control processes associated with illusory biases. Thus, multiple control processes during rapid aiming may combine and later affect endpoint accuracy (D. Elliott et al., 2010 ).
Collapse
Affiliation(s)
- James W Roberts
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada
| | - James J Burkitt
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada
| | - Digby Elliott
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada.,b Research Institute of Sport and Exercise Sciences, Liverpool John Moores University , England
| | - James L Lyons
- a Department of Kinesiology , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
17
|
Ao D, Song R, Tong KY. Sensorimotor control of tracking movements at various speeds for stroke patients as well as age-matched and young healthy subjects. PLoS One 2015; 10:e0128328. [PMID: 26030289 PMCID: PMC4452214 DOI: 10.1371/journal.pone.0128328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
There are aging- and stroke-induced changes on sensorimotor control in daily activities, but their mechanisms have not been well investigated. This study explored speed-, aging-, and stroke-induced changes on sensorimotor control. Eleven stroke patients (affected sides and unaffected sides) and 20 control subjects (10 young and 10 age-matched individuals) were enrolled to perform elbow tracking tasks using sinusoidal trajectories, which included 6 target speeds (15.7, 31.4, 47.1, 62.8, 78.5, and 94.2 deg/s). The actual elbow angle was recorded and displayed on a screen as visual feedback, and three indicators, the root mean square error (RMSE), normalized integrated jerk (NIJ) and integral of the power spectrum density of normalized speed (IPNS), were used to investigate the strategy of sensorimotor control. Both NIJ and IPNS had significant differences among the four groups (P<0.01), and the values were ranked in the following order: young controls < age-matched controls
Collapse
Affiliation(s)
- Di Ao
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Rong Song
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Kai-yu Tong
- Division of Biomedical Engineering, Department of Electronic Engineering, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Elliott D, Dutoy C, Andrew M, Burkitt JJ, Grierson LEM, Lyons JL, Hayes SJ, Bennett SJ. The Influence of Visual Feedback and Prior Knowledge About Feedback on Vertical Aiming Strategies. J Mot Behav 2014; 46:433-43. [DOI: 10.1080/00222895.2014.933767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Levit-Binnun N, Davidovitch M, Golland Y. Sensory and motor secondary symptoms as indicators of brain vulnerability. J Neurodev Disord 2013; 5:26. [PMID: 24063566 PMCID: PMC3849186 DOI: 10.1186/1866-1955-5-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/04/2013] [Indexed: 01/20/2023] Open
Abstract
In addition to the primary symptoms that distinguish one disorder from the next, clinicians have identified, yet largely overlooked, another set of symptoms that appear across many disorders, termed secondary symptoms. In the emerging era of systems neuroscience, which highlights that many disorders share common deficits in global network features, the nonspecific nature of secondary symptoms should attract attention. Herein we provide a scholarly review of the literature on a subset of secondary symptoms––sensory and motor. We demonstrate that their pattern of appearance––across a wide range of psychopathologies, much before the full-blown disorder appears, and in healthy individuals who display a variety of negative symptoms––resembles the pattern of appearance of network abnormalities. We propose that sensory and motor secondary symptoms can be important indicators of underlying network aberrations and thus of vulnerable brain states putting individuals at risk for psychopathology following extreme circumstances.
Collapse
Affiliation(s)
- Nava Levit-Binnun
- Interdisciplinary Center (IDC), Sagol Unit for Applied Neuroscience, School of Psychology, POB 167, Herzliya 46150, Israel.
| | | | | |
Collapse
|
20
|
Roberts J, Burkitt JJ, Willemse B, Ludzki A, Lyons J, Elliott D, Grierson LEM. The influence of target context and early and late vision on goal-directed reaching. Exp Brain Res 2013; 229:525-32. [DOI: 10.1007/s00221-013-3614-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|