1
|
Dębowska W, Więdłocha M, Dębowska M, Kownacka Z, Marcinowicz P, Szulc A. Transcranial magnetic stimulation and ketamine: implications for combined treatment in depression. Front Neurosci 2023; 17:1267647. [PMID: 37954877 PMCID: PMC10637948 DOI: 10.3389/fnins.2023.1267647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
Collapse
Affiliation(s)
- Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Kownacka
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
2
|
Minzenberg MJ, Leuchter AF. The effect of psychotropic drugs on cortical excitability and plasticity measured with transcranial magnetic stimulation: Implications for psychiatric treatment. J Affect Disord 2019; 253:126-140. [PMID: 31035213 DOI: 10.1016/j.jad.2019.04.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/03/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for neuropsychiatric disorders. Patients in rTMS treatment typically receive concomitant psychotropic medications, which affect neuronal excitability and plasticity and may interact to affect rTMS treatment outcomes. A greater understanding of these drug effects may have considerable implications for optimizing multi-modal treatment of psychiatric patients, and elucidating the mechanism(s) of action (MOA) of rTMS. METHOD We summarized the empirical literature that tests how psychotropic drugs affect cortical excitability and plasticity, using varied experimental TMS paradigms. RESULTS Glutamate antagonists robustly attenuate plasticity, largely without changes in excitability per se; antiepileptic drugs show the opposite pattern of effects, while calcium channel blockers attenuate plasticity. Benzodiazepines have moderate and variable effects on plasticity, and negligible effects on excitability. Antidepressants with potent 5HT transporter inhibition reduce both excitability and alter plasticity, while antidepressants with other MOAs generally lack either effect. Catecholaminergic drugs, cholinergic agents and lithium have minimal effects on excitability but exhibit robust and complex, non-linear effects in TMS plasticity paradigms. LIMITATIONS These effects remain largely untested in sustained treatment protocols, nor in clinical populations. In addition, how these medications impact clinical response to rTMS remains largely unknown. CONCLUSIONS Psychotropic medications exert robust and varied effects on cortical excitability and plasticity. We encourage the field to more directly and fully investigate clinical pharmaco-TMS studies to improve outcomes.
Collapse
Affiliation(s)
- M J Minzenberg
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States.
| | - A F Leuchter
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States
| |
Collapse
|
3
|
Sorel M, Zrek N, Locko B, Armessen C, Ayache SS, Lefaucheur JP. A reappraisal of the mechanisms of action of ketamine to treat complex regional pain syndrome in the light of cortical excitability changes. Clin Neurophysiol 2018; 129:990-1000. [DOI: 10.1016/j.clinph.2018.02.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 01/02/2023]
|
4
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
5
|
Veronezi BP, Moffa AH, Carvalho AF, Galhardoni R, Simis M, Benseñor IM, Lotufo PA, Machado-Vieira R, Daskalakis ZJ, Brunoni AR. Evidence for increased motor cortical facilitation and decreased inhibition in atypical depression. Acta Psychiatr Scand 2016; 134:172-82. [PMID: 27028276 DOI: 10.1111/acps.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a clinically heterogeneous condition. However, the role of cortical glutamate and gamma-aminobutyric acid (GABA) receptor-mediated activity, implicated in MDD pathophysiology, has not been explored in different MDD subtypes. Our aim was to assess the atypical and melancholic depression subtypes regarding potential differences in GABA and glutamate receptor-mediated activity through established transcranial magnetic stimulation (TMS) neurophysiological measures from the motor cortex. METHOD We evaluated 81 subjects free of antidepressant medication, including 21 healthy controls and 20 patients with atypical, 20 with melancholic, and 20 with undifferentiated MDD. Single and paired-pulse TMS paradigms were used to evaluate intracortical facilitation (ICF), cortical silent period (CSP), and short intracortical inhibition (SICI), which index glutamate, GABAB receptor-, and GABAA receptor-mediated activity respectively. RESULTS Patients with MDD demonstrated significantly decreased mean CSP values than healthy controls (Cohen's d = 0.22-0.3, P < 0.01 for all comparisons). Atypical depression presented a distinct cortical excitability pattern of decreased cortical inhibition and increased cortical facilitation, that is, an increased mean ICF and SICI ratios than other depression subtypes (d = 0.22-0.33, P < 0.01 for all comparisons). CONCLUSION Different MDD subtypes may demonstrate different neurophysiology in relation to GABAA and glutamatergic activity. TMS as an investigational tool might be useful to distinguish between different MDD subtypes.
Collapse
Affiliation(s)
- B P Veronezi
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - A H Moffa
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - A F Carvalho
- Department of Psychiatry and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - R Galhardoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.,School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil.,Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil.,Medicine School of University City of São Paulo (UNICID), São Paulo, Brazil
| | - M Simis
- Institute of Physical Medicine and Rehabilitation, Clinics Hospital of the University of Sao Paulo Medical School, São Paulo, Brazil
| | - I M Benseñor
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - P A Lotufo
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil
| | - R Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health (NIH), Bethesda, MD, USA
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - A R Brunoni
- Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of Sao Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Weise D, Mann J, Rumpf JJ, Hallermann S, Classen J. Differential Regulation of Human Paired Associative Stimulation-Induced and Theta-Burst Stimulation-Induced Plasticity by L-type and T-type Ca2+Channels. Cereb Cortex 2016; 27:4010-4021. [DOI: 10.1093/cercor/bhw212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
7
|
Trebbastoni A, Pichiorri F, D’Antonio F, Campanelli A, Onesti E, Ceccanti M, de Lena C, Inghilleri M. Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease: Results from a 4-year Prospective Cohort Study. Front Aging Neurosci 2016; 7:253. [PMID: 26793103 PMCID: PMC4709411 DOI: 10.3389/fnagi.2015.00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD). MATERIALS AND METHODS Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time. RESULTS Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51). DISCUSSION aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.
Collapse
Affiliation(s)
| | - Floriana Pichiorri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
- Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabrizia D’Antonio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | - Emanuela Onesti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo de Lena
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maurizio Inghilleri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Mori F, Nisticò R, Nicoletti CG, Zagaglia S, Mandolesi G, Piccinin S, Martino G, Finardi A, Rossini PM, Marfia GA, Furlan R, Centonze D. RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Mult Scler 2016; 22:1405-1412. [PMID: 26733422 DOI: 10.1177/1352458515621796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/18/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alterations of synaptic transmission induced by inflammatory activity have been linked to the pathogenic mechanisms of multiple sclerosis (MS). Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a pro-inflammatory chemokine involved in MS pathophysiology, potentially able to regulate glutamate release and plasticity in MS brains, with relevant consequences on the clinical manifestations of the disease. OBJECTIVE To assess the role of RANTES in the regulation of cortical excitability. METHODS We explored the association of RANTES levels in the cerebrospinal fluid (CSF) of newly diagnosed MS patients with magnetic resonance imaging (MRI) and laboratory measures of inflammatory activity, as well its role in the control of cortical excitability and plasticity explored by means of transcranial magnetic stimulation (TMS), and in hippocampal mouse slices in vitro. RESULTS CSF levels of RANTES were remarkably high only in active MS patients and were correlated with the concentrations of interleukin-1β. RANTES levels were associated with TMS measures of cortical synaptic excitability, but not with long-term potentiation (LTP)-like plasticity. Similar findings were obtained in mouse hippocampal slices in vitro, where we observed that RANTES enhanced basal excitatory synaptic transmission with no effect on LTP. CONCLUSION RANTES correlates with inflammation and synaptic excitability in MS brains.
Collapse
Affiliation(s)
- Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Robert Nisticò
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, Roma, Italy/Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Sara Zagaglia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/Clinica di Neurologia, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Piccinin
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Roma, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo M Rossini
- Institute of Neurology, Catholic University, Rome, Italy/Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
9
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Ciampi de Andrade D, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-d-aspartate glutamate receptors. Pain 2014; 155:598-605. [DOI: 10.1016/j.pain.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022]
|
11
|
Corlett PR, Cambridge V, Gardner JM, Piggot JS, Turner DC, Everitt JC, Arana FS, Morgan HL, Milton AL, Lee JL, Aitken MRF, Dickinson A, Everitt BJ, Absalom AR, Adapa R, Subramanian N, Taylor JR, Krystal JH, Fletcher PC. Ketamine effects on memory reconsolidation favor a learning model of delusions. PLoS One 2013; 8:e65088. [PMID: 23776445 PMCID: PMC3680467 DOI: 10.1371/journal.pone.0065088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18 human subjects (8 female). Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant prediction error signal and lead to transient alterations in perception and belief) on the evolution of a fear memory over a 72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo administration, the conditioned stimulus (CS) was presented once, without reinforcement; memory strength was then tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine's psychotogenic effects and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive learning procedure (in 8 human subjects, 4 female). These results suggest a link between altered prediction error, memory strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but also their persistence.
Collapse
Affiliation(s)
- Philip R Corlett
- Department of Psychiatry, Ribicoff Research Facility, Yale University, New Haven, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|