1
|
De SD, Ambike S, Latash ML. Two aspects of feed-forward control of action stability: effects of action speed and unexpected events. Exp Brain Res 2024; 242:2177-2191. [PMID: 38992203 DOI: 10.1007/s00221-024-06892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
We explored two types of anticipatory synergy adjustments (ASA) during accurate four-finger total force production task. The first type is a change in the index of force-stabilizing synergy during a steady state when a person is expecting a signal to produce a quick force change, which is seen even when the signal does not come (steady-state ASA). The other type is the drop in in the synergy index prior to a planned force change starting at a known time (transient ASA). The subjects performed a task of steady force production at 10% of maximal voluntary contraction (MVC) followed by a ramp to 20% MVC over 1 s, 3 s, and as a step function (0 s). In another task, in 50% of the trials during the steady-state phase, an unexpected signal could come requiring a quick force pulse to 20% MVC (0-surprise). Inter-trial variance in the finger force space was used to quantify the index of force-stabilizing synergy within the uncontrolled manifold hypothesis. We observed significantly lower synergy index values during the steady state in the 0-ramp trials compared to the 1-ramp and 3-ramp trials. There was also larger transient ASA during the 0-ramp trials. In the 0-surprise condition, the synergy index was significantly higher compared to the 0-ramp condition whereas the transient ASA was significantly larger. The finding of transient ASA scaling is of importance for clinical studies, which commonly involve populations with slower actions, which can by itself be associated with smaller ASAs. The participants varied the sharing pattern of total force across the fingers more in the task with "surprises". This was coupled to more attention to precision of performance, i.e., inter-trial deviations from the target as reflected in smaller variance affecting total force, possibly reflecting higher concentration on the task, which the participants perceived as more challenging compared to a similar task without surprise targets.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268N, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Benamati A, Ricotta JM, De SD, Latash ML. Three Levels of Neural Control Contributing to Performance-stabilizing Synergies in Multi-finger Tasks. Neuroscience 2024; 551:262-275. [PMID: 38838976 DOI: 10.1016/j.neuroscience.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
We tested a hypothesis on force-stabilizing synergies during four-finger accurate force production at three levels: (1) The level of the reciprocal and coactivation commands, estimated as the referent coordinate and apparent stiffness of all four fingers combined; (2) The level of individual finger forces; and (3) The level of firing of individual motor units (MU). Young, healthy participants performed accurate four-finger force production at a comfortable, non-fatiguing level under visual feedback on the total force magnitude. Mechanical reflections of the reciprocal and coactivation commands were estimated using small, smooth finger perturbations applied by the "inverse piano" device. Firing frequencies of motor units in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) were estimated using surface recording. Principal component analysis was used to identify robust MU groups (MU-modes) with parallel changes in the firing frequency. The framework of the uncontrolled manifold hypothesis was used to compute synergy indices in the spaces of referent coordinate and apparent stiffness, finger forces, and MU-mode magnitudes. Force-stabilizing synergies were seen at all three levels. They were present in the MU-mode spaces defined for MUs in FDS, in EDC, and pooled over both muscles. No effects of hand dominance were seen. The synergy indices defined at different levels of analysis showed no correlations across the participants. The findings are interpreted within the theory of control with spatial referent coordinates for the effectors. We conclude that force stabilization gets contributions from three levels of neural control, likely associated with cortical, subcortical, and spinal circuitry.
Collapse
Affiliation(s)
- Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Piscitelli D, Buttram A, Abernathy K, Canelón J, Knighten D, Solnik S. Clinically relevant estimation of minimal number of trials for the uncontrolled manifold analysis. J Biomech 2024; 171:112195. [PMID: 38878344 DOI: 10.1016/j.jbiomech.2024.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Movement biomarkers are crucial for assessing sensorimotor impairments and tracking the effects of interventions over time. The Uncontrolled Manifold (UCM) analysis has been proposed as a novel biomarker for evaluating movement stability and coordination in various motor tasks across neurological and musculoskeletal disorders. Through inter-trial analysis, the UCM partitions the variance of elemental variables (e.g., finger forces) into components that affect (VORT) and do not affect (VUCM) a performance variable (e.g., total force). A third index, ΔV, is computed as the normalized difference between VORT and VUCM. However, the minimum number of trials required to achieve stable UCM estimates, considering its clinimetric properties, is unknown. This study aimed to determine the minimal number (N) of trials for UCM estimates by computing bootstrap estimates of standard errors (SE) at different N trials using thresholds based on the minimal detectable change (MDC, i.e., the minimum change in an outcome measure beyond measurement error). Thirteen adults (24.6 ± 1.1 years old) performed a finger-pressing coordination task. We computed the 95 % confidence intervals (CI) of bootstrap SE distributions for each UCM estimate and detected the lowest number of trials with the 95 % CI of SE below each MDC threshold. We found the minimal N of trials required was VUCM = 14, VORT = 4 and ΔV = 18. Our findings highlight that a relatively low number of trials (i.e., N = 18) are sufficient to compute all UCM estimates beyond the MDC, supporting the use of the UCM framework in clinical settings where many repetitions of a motor task are not practical.
Collapse
Affiliation(s)
| | - Adrien Buttram
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Karlie Abernathy
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - José Canelón
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Damon Knighten
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Stanislaw Solnik
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA.
| |
Collapse
|
4
|
Piscitelli D, Buttram A, Gibson S, Hager J, Thomas B, Solnik S. Test-Retest reliability and measurement error of the uncontrolled manifold analysis: A step towards the clinical translation. J Biomech 2024; 162:111902. [PMID: 38103314 DOI: 10.1016/j.jbiomech.2023.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The uncontrolled manifold (UCM) analysis has gained broad application in biomechanics and neuroscience for investigating the structure of motor variability in functional tasks. The UCM utilizes inter-trial analysis to partition the variance of elemental variables (e.g., finger forces, joint angles) that affect (VORT) and do not affect (VUCM) a performance variable (e.g., total force, end-effector position). However, to facilitate the translation of UCM into clinical settings, it is crucial to demonstrate the reliability of UCM estimates: VORT, VUCM, and their normalized difference, ΔV. This study aimed to determine the test-retest reliability using the intraclass correlation coefficient (ICC3,K), Bland-Altman plots, the standard error of measurement (SEM), and the minimal detectable change (MDC) of UCM estimate. Fifteen healthy individuals (24.8 ± 1.2 yrs old) performed a finger coordination task, with sessions separated by one hour, one day, and one week. Excellent reliability was found for VORT (ICC3,K = 0.97) and VUCM (ICC3,K = 0.92), whereas good reliability was observed for ΔV (ICC3,K = 0.84). Bland-Altman plots reveled no systematic differences. SEM% values were 24.57 %, 26.80 % and 12.49 % for VORT, VUCM and ΔV respectively, while the normalized MDC% values were 68.12 %, 74.30 % and 34.61 % for VORT, VUCM and ΔV respectively. Our results support the use of UCM as a reliable method for investigating the structure of movement variability. The excellent measurement properties make the UCM a promising tool for tracking changes in motor behavior over time (i.e., effects of interventions in prospective studies).
Collapse
Affiliation(s)
| | - Adrien Buttram
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Stephanie Gibson
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Joel Hager
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Ben Thomas
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Stanislaw Solnik
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA.
| |
Collapse
|
5
|
Falaki A, Cuadra C, Lewis MM, Prado-Rico JM, Huang X, Latash ML. Multi-muscle synergies in preparation for gait initiation in Parkinson's disease. Clin Neurophysiol 2023; 154:12-24. [PMID: 37524005 DOI: 10.1016/j.clinph.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE We investigated changes in indices of muscle synergies prior to gait initiation and the effects of gaze shift in patients with Parkinson's disease (PD). A long-term objective of the study is to develop a method for quantitative assessment of gait-initiation problems in PD. METHODS PD patients without clinical signs of postural instability and two control groups (age-matched and young) performed a gait initiation task in a self-paced manner, with and without a quick prior gaze shift produced by turning the head. Muscle groups with parallel scaling of activation levels (muscle modes) were identified as factors in the muscle activation space. Synergy index stabilizing center of pressure trajectory in the anterior-posterior and medio-lateral directions (indices of stability) was quantified in the muscle mode space. A drop in the synergy index in preparation to gait initiation (anticipatory synergy adjustment, ASA) was quantified. RESULTS Compared to the control groups, PD patients showed significantly smaller synergy indices and ASA for both directions of the center of pressure shift. Both PD and age-matched controls, but not younger controls, showed detrimental effects of the prior gaze shift on the ASA indices. CONCLUSIONS PD patients without clinically significant posture or gait disorders show impaired stability of the center of pressure and its diminished adjustment during gait initiation. SIGNIFICANCE The indices of stability and ASA may be useful to monitor pre-clinical gait disorders, and lower ASA may be relevant to emergence of freezing of gait in PD.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Cristian Cuadra
- Department of Physical Therapy, Emory University, Atlanta, GA, USA; Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538 Santiago, Chile
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Azimi R, Abdoli B, Sanjari MA, Khosrowabadi R. Variability of Postural Coordination in Dual-Task Paradigm. J Mot Behav 2023; 56:22-29. [PMID: 37429586 DOI: 10.1080/00222895.2023.2226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Postural control is influenced by cognition. In most studies, variability of motor output has been considered regardless of variability in patterns of joint coordination. Uncontrolled manifold framework has been applied to decompose the joint's variance in two components. The first component leaves position of the center of mass in anterior-posterior direction (CoMAP) unchanged (VUCM) while the second component is in charge of variations of CoM (VORT). In this study, 30 healthy young volunteers were recruited. The experimental protocol consisted of three random conditions: quiet standing on a narrow wooden block without a cognitive task (NB), quiet standing on a narrow wooden block with an easy cognitive task (NBE), and quiet standing on a narrow wooden block with a difficult cognitive task (NBD). Results showed that CoMAP sway in NB condition was higher than both NBE and NBD conditions (p = .001). VORT in NB condition was higher than NBE and NBD conditions (p = .003). VORT in NB condition was higher than NBE and NBD conditions (p = .003). VUCM was unchanged in all conditions (p = 1.00) and synergy index in NB condition was smaller than NBE and NBD conditions (p = .006). These results showed that postural synergies increased under dual-task conditions.
Collapse
Affiliation(s)
- Rezvan Azimi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Behrouz Abdoli
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Sanjari
- Department of Basic Rehabilitation Sciences, School of Rehabilitation Sciences and Biomechanics Lab, Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Shoja O, Shojaei M, Hassanlouei H, Towhidkhah F, Amiri M, Boroomand H, Rahimi N, Zhang L. Lack of visual information alters lower limb motor coordination to control center of mass trajectory during walking. J Biomech 2023; 155:111650. [PMID: 37245385 DOI: 10.1016/j.jbiomech.2023.111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Vision, as queen of the senses, plays a critical role in guiding locomotion. Little is known about the effects of vision on gait coordination in terms of variability. The uncontrolled manifold (UCM) approach offers a window to the structure of motor variability that has been difficult to obtain from the traditional correlation analysis. In this study, we used the UCM analysis to quantify how the lower limb motion is coordinated to control the center of mass (COM) while walking under different visual conditions. We also probed how synergy strength evolved along the stance phase. Ten healthy participants walked on the treadmill with and without visual information. Leg joint angle variance with respect to the whole-body COM was partitioned into good (i.e., the one that kept the COM) and bad (i.e., the one that changed the COM) variances. We observed that after vision was eliminated, both variances increased throughout the stance phase while the strength of the synergy (the normalized difference between the two variances) decreased significantly and even reduced to zero at heel contact. Thus, walking with restricted vision alters the strength of the kinematic synergy to control COM in the plane of progression. We also found that the strength of this synergy varied across different walking phases and gait events in both visual conditions. We concluded that the UCM analysis can quantify altered coordination of COM when vision is blocked and sheds insights on the role of vision in the synergistic control of locomotion.
Collapse
Affiliation(s)
- Otella Shoja
- Department of Motor Behavior, Faculty of Sport Sciences, Alzahra University, Tehran, Iran; Department of Neuroscience, University of Montreal, Montreal, QC, Canada.
| | - Masoumeh Shojaei
- Department of Motor Behavior, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Hamidollah Hassanlouei
- Department of Motor Behavior, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohsen Amiri
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hesam Boroomand
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Negar Rahimi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Lei Zhang
- Institute for Neural Computation, Ruhr University Bochum, Germany
| |
Collapse
|
8
|
Intra-muscle Synergies Stabilizing Reflex-mediated Force Changes. Neuroscience 2022; 505:59-77. [DOI: 10.1016/j.neuroscience.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022]
|
9
|
Uncontrolled Manifold Analysis of the Effects of Different Fatigue Locations on Kinematic Coordination During a Repetitive Upper-Limb Task. Motor Control 2022; 26:713-728. [PMID: 36087930 DOI: 10.1123/mc.2021-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Fatigue at individual joints is known to affect interjoint coordination during repetitive multijoint tasks. However, how these coordination adjustments affect overall task stability is unknown. Twelve participants completed a repetitive pointing task at rest and after fatigue of the shoulder, elbow, and trunk. Upper-limb and trunk kinematics were collected. Uncontrolled manifold framework was applied to a kinematic model to link elemental variables to endpoint fingertip position. Mixed and one-way analysis of variances determined effects (phase and fatigue location) on variance components and synergy index, respectively. The shoulder fatigue condition had the greatest impact in causing increases in variance components and a decreased synergy index in the late phase of movement, suggesting more destabilization of the interjoint task caused by shoulder fatigue.
Collapse
|
10
|
Motor Control: A Conceptual Framework for Rehabilitation. Motor Control 2022; 26:497-517. [PMID: 35894963 DOI: 10.1123/mc.2022-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
Abstract
There is a lack of conceptual and theoretical clarity among clinicians and researchers regarding the control of motor actions based on the use of the term "motor control." It is important to differentiate control processes from observations of motor output to improve communication and to make progress in understanding motor disorders and their remediation. This article clarifies terminology related to theoretical concepts underlying the control of motor actions, emphasizing how the term "motor control" is applied in neurorehabilitation. Two major opposing theoretical frameworks are described (i.e., direct and indirect), and their strengths and pitfalls are discussed. Then, based on the proposition that sensorimotor rehabilitation should be predicated on one comprehensive theory instead of an eclectic mix of theories and models, several solutions are offered about how to address controversies in motor learning, optimality, and adaptability of movement.
Collapse
|
11
|
Madarshahian S, Latash ML. Effects of hand muscle function and dominance on intra-muscle synergies. Hum Mov Sci 2022; 82:102936. [PMID: 35217391 DOI: 10.1016/j.humov.2022.102936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
The goal of the study was to explore the effects of hand dominance and muscle function (prime mover vs. supporting muscle) on recently discovered intra-muscle synergies as potential windows into their neural origin. Healthy right-handed subjects performed accurate cyclical force production tasks while pressing with the middle phalanges and distal phalanges of the fingers of the dominant and non-dominant hand. Surface electromyography was used to identify individual motor unit action potentials in two muscles, flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Stable motor unit groups (MU-modes) were defined in each muscle and in both muscles together. The composition of the MU-modes allowed linking them to the reciprocal and co-activation command. Force-stabilizing synergies were quantified in each hand and during force production at both sites using the framework of the uncontrolled manifold hypothesis. Force-stabilizing synergies were seen in the spaces of MU-modes from FDS and EDC separately, but not of MU-modes defined for both muscles together. Synergy indices were similar for both hands and both sites of force application. In contrast, force-stabilizing synergies in the space of finger forces were present in the non-dominant hand and absent in the dominant hand. The data suggest existence of distributed mechanisms of synergic control. Finger force synergies are likely to reflect functioning of subcortical loops involving the basal ganglia and cerebellum, while MU-mode synergies are likely to reflect spinal circuitry. Studies of both force-based and motor-unit-based synergies may be clinically valuable for distinguishing effects of spinal and supraspinal disorders.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Glass SM, Wildman L, Brummitt C, Ratchford K, Westbrook GM, Aron A. Effects of global postural alignment on posture-stabilizing synergy and intermuscular coherence in bipedal standing. Exp Brain Res 2022; 240:841-851. [DOI: 10.1007/s00221-021-06291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
|
13
|
Madarshahian S, Latash ML. Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 2021; 240:321-340. [PMID: 34725732 DOI: 10.1007/s00221-021-06255-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
We explored the synergic organization of motor units in extrinsic finger muscles, flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC). Healthy subjects produced accurate cyclical force by pressing with the middle phalanges of one of the three fingers (Index, Middle, and Ring) and all three together. Two wireless sensor arrays were used to record and identify motor unit action potentials in FDS and EDC. Stable motor unit groups were identified within each muscle and across both muscles. Analysis of motor units combined over the two muscles showed one of the first two motor unit groups with consistently opposite signs of the loading factors for the FDS and EDC motor units, and the other group with consistently same signs of the loading factors for the two muscles. We interpret the two motor unit groups as reflections of the reciprocal and co-activation commands within the theory of control with spatial referent coordinates. Force changes within the cycle were primarily associated with the modulation of the co-activation motor unit group. Analysis of inter-cycle variance within the spaces of motor unit groups defined for FDS and EDC separately showed force-stabilizing synergies across both single-finger and three-finger tasks. In contrast, analysis within the motor unit groups defined across both muscles failed to show force-stabilizing synergies. We interpret these results as a reflection of the trade-off across levels within a hierarchical control system.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Number of Trials Necessary to Apply Analysis Within the Framework of the Uncontrolled Manifold Hypothesis at Different Levels of Hierarchical Synergy Control. J Hum Kinet 2021; 76:131-143. [PMID: 33603930 PMCID: PMC7877275 DOI: 10.2478/hukin-2021-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uncontrolled manifold hypothesis is a method used to quantify motor synergies, defined as a specific central nervous system organization that maintains the task-specific stability of motor actions. The UCM allows for inter-trial variance analysis between consecutive trials. However, despite the large body of literature within this framework, there is no report on the number of movement repetitions required for reliable results. Based on the hypothetical hierarchical control of motor synergies, this study aims to determine the minimum number of trials necessary to achieve a good to excellent level of reliability. Thirteen young, healthy participants performed fifteen bilateral isometric contractions of elbow flexion when visual feedback was provided. The force and electromyography data were recorded to investigate synergies at different levels of hierarchical control. The intraclass correlation coefficient was used to determine the reliability of the variance indices. Based on the obtained results, at least twelve trials are required to analyze the inter-trial variance in both force and muscle synergies within the UCM framework.
Collapse
|
15
|
Freitas SMSF, de Freitas PB, Falaki A, Corson T, Lewis MM, Huang X, Latash ML. Synergic control of action in levodopa-naïve Parkinson's disease patients: II. Multi-muscle synergies stabilizing vertical posture. Exp Brain Res 2020; 238:2931-2945. [PMID: 33068173 PMCID: PMC7644647 DOI: 10.1007/s00221-020-05947-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
Postural instability is a major disabling feature in Parkinson's disease (PD). We quantified the organization of leg and trunk muscles into synergies stabilizing the center of pressure (COP) coordinate within the uncontrolled manifold hypothesis in levodopa-naïve patients with PD and age-matched control subjects. The main hypothesis was that changes in the synergic control of posture are present early in the PD process even before levodopa exposure. Eleven levodopa-naïve patients with PD and 11 healthy controls performed whole-body cyclical voluntary sway tasks and a self-initiated load-release task during standing on a force plate. Surface electromyographic activity in 13 muscles on the right side of the body was analyzed to identify muscle groups with parallel scaling of activation levels (M-modes). Data were collected both before ("off-drug") and approximately 60 min after the first dose of 25/100 carbidopa/levodopa ("on-drug"). COP-stabilizing synergies were quantified for the load-release task. Levodopa-naïve patients with PD showed no COP-stabilizing synergy "off-drug", whereas controls showed posture-stabilizing multi-M-mode synergy. "On-drug", patients with PD demonstrated a significant increase in the synergy index. There were no significant drug effects on the M-mode composition, anticipatory postural adjustments, indices of motor equivalence, or indices of COP variability. The results suggest that levodopa-naïve patients with PD already show impaired posture-stabilizing multi-muscle synergies that may be used as promising behavioral biomarkers for emerging postural disorders in PD. Moreover, levodopa modified synergy metrics differently in these levodopa-naïve patients compared to a previous study of patients on chronic antiparkinsonian medications (Falaki et al. in J Electromyogr Kinesiol 33:20-26, 2017a), suggesting different neurocircuitry involvement.
Collapse
Affiliation(s)
- Sandra M S F Freitas
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Paulo B de Freitas
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Interdisciplinary Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ali Falaki
- Department of Physiology, University of Montreal, Montreal, QC, Canada
| | - Tyler Corson
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
- Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Solnik S, Furmanek MP, Piscitelli D. Movement Quality: A Novel Biomarker Based on Principles of Neuroscience. Neurorehabil Neural Repair 2020; 34:1067-1077. [PMID: 33185150 DOI: 10.1177/1545968320969936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A major problem in neurorehabilitation is the lack of objective outcomes to measure movement quality. Movement quality features, such as coordination and stability, are essential for everyday motor actions. These features allow reacting to continuously changing environment or to resist external perturbations. Neurological disorders affect movement quality, leading to functionally impaired movements. Recent findings suggest that the central nervous system organizes motor elements (eg, muscles, joints, fingers) into task-specific ensembles to stabilize motor tasks performance. A method to quantify this feature has been previously developed based on the uncontrolled manifold (UCM) hypothesis. UCM quantifies movement quality in a spatial-temporal domain using intertrial analysis of covariation between motor elements. In this point-of-view article, we first describe major obstacles (eg, the need for group analysis) that interfere with UCM application in clinical settings. Then, we propose a process of quantifying movement quality for a single individual with a novel use of bootstrapping simulations and UCM analysis. Finally, we reanalyze previously published data from individuals with neurological disorders performing a wide range of motor tasks, that is, multi-digit pressing and postural balance tasks. Our method allows one to assess motor quality impairments in a single individual and to detect clinically important motor behavior changes. Our solution may be incorporated into a clinical setting to assess sensorimotor impairments, evaluate the effects of specific neurological treatments, or track movement quality recovery over time. We also recommended the proposed solution to be used jointly with a typical statistical analysis of UCM parameters in cohort studies.
Collapse
Affiliation(s)
- Stanislaw Solnik
- University of North Georgia, Dahlonega, GA, USA.,University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Mariusz P Furmanek
- Northeastern University, Boston, MA, USA.,The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Daniele Piscitelli
- McGill University, Montreal, Quebec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Quebec, Canada
| |
Collapse
|
17
|
Biryukova E, Sirotkina I. Forward to Bernstein: Movement Complexity as a New Frontier. Front Neurosci 2020; 14:553. [PMID: 32581691 PMCID: PMC7283918 DOI: 10.3389/fnins.2020.00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
The paper attempts to demonstrate that the "old-school" approach in motor control studies suggested over a century ago by I. M. Sechenov (1866/1968, 1901) and, later, N. A. Bernstein (1923, 1929, 1940, 1961) remains valid and relevant. Their methodology was to study the motor "periphery" in order to determine "central" mechanisms of motor control. The approach, which can be termed "bottom-up," is contrasted with the "top-down" methodology of first making models of brain control and then investigating the functioning of muscles and joint torques. The earlier progress in motor control studies was, to a great extent, due to the fact that Bernstein developed procedures to register multiple degrees of freedom and thus to analyze in detail the structure of natural movement. The analysis of multi-joint goal-directed movement per se, in its own right, could be the starting point for productive studies of both muscular system functioning and its central control by the nervous system. The article reports on how, in some of his less well known works, Bernstein analyzed complex multi-joint movements. The article's main focus is on movements of the arm as a model example of multi-joint goal-directed movements. It reviews a body of research that follows the "bottom-up" tradition by summarizing contemporary research on two contrasting cases: (1) of a highly coordinated motor skill, as achieved in musical performance or in a precise stroke; and (2) of pathological arm movement in post-stroke neurological patients who have lost capacity as a result of damage to the central nervous system. The paper demonstrates the need for inclusive analyses of all existing degrees of freedom of the moving arm. In the first case, this is important in order to identify some features of learning skills. In the second case, it is important in order to adequately assess the restoration of movements in the process of rehabilitation. The paper concludes by arguing that the "bottom-up" approach in studying the nervous control of complex movements possess a heuristic potential that has not been exhausted.
Collapse
Affiliation(s)
- Elena Biryukova
- Laboratory of Mathematical Neurobiology of Learning of Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Research Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina Sirotkina
- Center for the History of Organization of Science and of Science Studies, S.I. Vavilov Institute for the History of Science and Technology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Rosenbaum DA, Sauerberger KS. End-state comfort meets pre-crastination. PSYCHOLOGICAL RESEARCH 2019; 83:205-215. [PMID: 30623239 DOI: 10.1007/s00426-018-01142-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/29/2018] [Indexed: 11/30/2022]
Abstract
Research on motor planning has revealed two seemingly contradictory phenomena. One is the end-state comfort effect, the tendency to grasp objects in physically awkward ways for the sake of comfortable or easy-to-control final postures (Rosenbaum et al., Attention and Performance XIII: Motor representation and control, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1990). The other is pre-crastination, the tendency to hasten the completion of tasks even at the expense of extra physical effort (Rosenbaum et al., Psychol Sci 25:1487-1496, 2014). End-state comfort seems to reflect emphasis on final states, whereas pre-crastination seems to reflect emphasis on initial states. How can both effects exist? We sought to resolve this seeming conflict by noting, first, that the effects have been tested in different contexts. End-state comfort has been tested with grasping, whereas pre-crastination has been tested with walking plus grasping. Second, both effects may reflect planning that aids aiming, as already demonstrated for end-state comfort but not yet tested for pre-crastination. We tested the two effects in a single walk-and-grasp task and found that demands on aiming influenced both effects, although precrastination was not fully influenced by changes in the demands of aiming. We conclude that end-state comfort and precrastination are both aiming-related, but that precrastination also reflects a desire to hasten early task completion.
Collapse
Affiliation(s)
- David A Rosenbaum
- Department of Psychology, University of California, Riverside, CA, 92521, USA.
| | - Kyle S Sauerberger
- Department of Psychology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
19
|
Eckardt N, Rosenblatt NJ. Healthy aging does not impair lower extremity motor flexibility while walking across an uneven surface. Hum Mov Sci 2018; 62:67-80. [DOI: 10.1016/j.humov.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/16/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
|
20
|
Dorman GR, Davis KC, Peaden AW, Charles SK. Control of redundant pointing movements involving the wrist and forearm. J Neurophysiol 2018; 120:2138-2154. [PMID: 29947599 DOI: 10.1152/jn.00449.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The musculoskeletal system can move in more ways than are strictly necessary, allowing many tasks to be accomplished with a variety of limb configurations. Why some configurations are preferred has been a focus of motor control research, but most studies have focused on shoulder-elbow or whole arm movements. This study focuses on movements involving forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar deviation (RUD) and elucidates how these three degrees of freedom (DOF) combine to perform the common task of pointing, which only requires two DOF. Although pointing is more sensitive to FE and RUD than to PS and could be easily accomplished with FE and RUD alone, subjects tend to involve a small amount of PS. However, why we choose this behavior has been unknown and is the focus of this paper. With the use of a second-order model with lumped parameters, we tested a number of plausible control strategies involving minimization of work, potential energy, torque, and path length. None of these control schemes robustly predicted the observed behavior. However, an alternative control scheme, hypothesized to control the DOF that were most important to the task (FE and RUD) and ignore the less important DOF (PS), matched the observed behavior well. In particular, the behavior observed in PS appears to be a mechanical side effect caused by unopposed interaction torques. We conclude that moderately sized pointing movements involving the wrist and forearm are controlled by ignoring forearm rotation even though this strategy does not robustly minimize work, potential energy, torque, or path length. NEW & NOTEWORTHY Many activities require us to point our hands in a given direction using wrist and forearm rotations. Although there are infinitely many ways to do this, we tend to follow a stereotyped pattern. Why we choose this pattern has been unknown and is the focus of this paper. After testing a variety of hypotheses, we conclude that the pattern results from a simplifying strategy in which we focus on wrist rotations and ignore forearm rotation.
Collapse
Affiliation(s)
| | - Kevin C Davis
- Neuroscience Center, Brigham Young University , Provo, Utah
| | - Allan W Peaden
- Department of Mechanical Engineering, Brigham Young University , Provo, Utah
| | - Steven K Charles
- Neuroscience Center, Brigham Young University , Provo, Utah.,Department of Mechanical Engineering, Brigham Young University , Provo, Utah
| |
Collapse
|
21
|
Yamagata M, Falaki A, Latash ML. Stability of vertical posture explored with unexpected mechanical perturbations: synergy indices and motor equivalence. Exp Brain Res 2018; 236:1501-1517. [PMID: 29564504 DOI: 10.1007/s00221-018-5239-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 01/05/2023]
Abstract
We explored the relations between indices of mechanical stability of vertical posture and synergy indices under unexpected perturbations. The main hypotheses predicted higher posture-stabilizing synergy indices and higher mechanical indices of center of pressure stability during perturbations perceived by subjects as less challenging. Healthy subjects stood on a force platform and held in fully extended arms a bar attached to two loads acting downward and upward. One of the loads was unexpectedly released by the experimenter causing a postural perturbations. In different series, subjects either knew or did not know which of the two loads would be released. Forward perturbations were perceived as more challenging and accompanied by co-activation patterns among the main agonist-antagonist pairs. Backward perturbation led to reciprocal muscle activation patterns and was accompanied by indices of mechanical stability and of posture-stabilizing synergy which indicated higher stability. Changes in synergy indices were observed as early as 50-100 ms following the perturbation reflecting involuntary mechanisms. In contrast, predictability of perturbation direction had weak or no effect on mechanical and synergy indices of stability. These observations are interpreted within a hierarchical scheme of synergic control of motor tasks and a hypothesis on the control of movements with shifts of referent coordinates. The findings show direct correspondence between stability indices based on mechanics and on the analysis of multi-muscle synergies. They suggest that involuntary posture-stabilizing mechanisms show synergic organization. They also show that predictability of perturbation direction has strong effects on anticipatory postural adjustment but not corrective adjustments. We offer an interpretation of co-activation patterns that questions their contribution to postural stability.
Collapse
Affiliation(s)
- Momoko Yamagata
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Cuadra C, Bartsch A, Tiemann P, Reschechtko S, Latash ML. Multi-finger synergies and the muscular apparatus of the hand. Exp Brain Res 2018. [PMID: 29532100 DOI: 10.1007/s00221-018-5231-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.,Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Calle Quillota 980, Viña del Mar, Chile
| | - Angelo Bartsch
- Escuela Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Paula Tiemann
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad de Viña del Mar, Agua Santa 7075 Rodelillo, Viña del Mar, Chile
| | - Sasha Reschechtko
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Jiang H, Duerstock BS, Wachs JP. Variability Analysis on Gestures for People With Quadriplegia. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:346-356. [PMID: 28113307 DOI: 10.1109/tcyb.2016.2635481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gesture-based interfaces have become an effective control modality within the human computer interaction realm to assist individuals with mobility impairments in accessing technologies for daily living to entertainment. Recent studies have shown that gesture-based interfaces in tandem with gaming consoles are being used to complement physical therapies at rehabilitation hospitals and in their homes. Because the motor movements of individuals with physical impairments are different from persons without disabilities, the gesture sets required to operate those interfaces must be customized. This limits significantly the number and quality of available software environments for users with motor impairments. Previous work presented an analytic approach to convert an existing gesture-based interface designed for individuals without disabilities to be usable by people with motor disabilities. The objective of this paper is to include gesture variability analysis into the existing framework using robotics as an additional validation framework. Based on this, a physical metric (referred as work) was empirically obtained to compare the physical effort of each gesture. An integration method was presented to determine the accessible gesture set based on stability and empirical robot execution. For all the gesture types, the accessible gestures were found to lie within 34% of the optimality of stability and work. Lastly, the gesture set determined by the proposed methodology was practically evaluated by target users in experiments while solving a spatial navigational problem.
Collapse
|
24
|
Potts CA, Brown AA, Solnik S, Rosenbaum DA. A method for measuring manual position control. Acta Psychol (Amst) 2017; 180:117-121. [PMID: 28938167 DOI: 10.1016/j.actpsy.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022] Open
Abstract
There is no generally accepted method for measuring manual position control. We developed a method for doing so. We asked university students to hold a handle that had one rotational degree of freedom. The angular position of the handle depended on the degree of pronation-supination of the forearm. The subjects' task was to hold the handle as steadily as possible to keep a needle positioned in a pie-shaped target zone on a computer screen. If the needle remained in the zone for 0.5s, the gain of the feedback loop increased; otherwise the gain decreased or remained at the starting value of 1. Through this adaptive procedure, we estimated the maximum gain that could be achieved at each of the four pronation-supination angles we tested (thumb up, thumb down, thumb in, and thumb out) for each hand. Consistent with previous research on manual control, and so validating our measure, we found that our participants, all of whom were right-handed, were better able to maintain the needle in the target zone when they used the right hand than when they used the left hand and when they used midrange wrist postures (thumb up or in) rather than extreme wrist postures (thumb down or out). The method provides a valid test of manual position control and holds promise for addressing basic-research and practical questions.
Collapse
Affiliation(s)
- Cory Adam Potts
- Department of Psychology, Pennsylvania State University, University Park, PA 16802, United States.
| | - Alexander A Brown
- Department of Mechanical Engineering, Lafayette College, Easton, PA 18042, United States
| | - Stanislaw Solnik
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA 30597, United States; University School of Physical Education, Wroclaw, Poland
| | - David A Rosenbaum
- Department of Psychology, Pennsylvania State University, University Park, PA 16802, United States; Department of Psychology, University of California, Riverside, CA 92521, United States
| |
Collapse
|
25
|
Furmanek MP, Solnik S, Piscitelli D, Rasouli O, Falaki A, Latash ML. Synergies and Motor Equivalence in Voluntary Sway Tasks: The Effects of Visual and Mechanical Constraints. J Mot Behav 2017; 50:492-509. [PMID: 28915097 DOI: 10.1080/00222895.2017.1367642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors used two analyses developed within the framework of the uncontrolled manifold hypothesis to quantify multimuscle synergies during voluntary body sway: analysis of intertrial variance and analysis of motor equivalence with respect to the center of pressure (COP) trajectory. Participants performed voluntary sway tasks in the anteroposterior direction at 0.33 and 0.66 Hz. Muscle groups were identified in the space of muscle activations and used as elemental variables in the synergy analyses. Changing mechanical and vision feedback-based constraints led to significant changes in indices of sway performance such as COP deviations in the uninstructed, mediolateral direction and indices of spontaneous postural sway. In contrast, there were no significant effects on synergy indices. These findings show that the neural control of performance and of its stability may involve different control variables and neurophysiological structures. There were strong correlations between the indices of motor equivalence and those computed using the intercycle variance analysis. This result is potentially important for studies of patients with movement disorders who may be unable to perform multiple trials (cycles) at any given task, making analysis of motor equivalence of single trials a viable alternative to explore changes in stability of actions.
Collapse
Affiliation(s)
- Mariusz P Furmanek
- a Department of Human Motor Behavior , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland.,b Department of Kinesiology , Pennsylvania State University , University Park
| | - Stanisław Solnik
- c Department of Physical Therapy, University of North Georgia , Dahlonega.,d University School of Physical Education , Wroclaw , Poland
| | - Daniele Piscitelli
- b Department of Kinesiology , Pennsylvania State University , University Park.,e School of Medicine and Surgery , University of Milano-Bicocca , Milan , Italy
| | - Omid Rasouli
- f Faculty of Health and Social Sciences , Norwegian University of Science and Technology , Trondheim
| | - Ali Falaki
- b Department of Kinesiology , Pennsylvania State University , University Park
| | - Mark L Latash
- b Department of Kinesiology , Pennsylvania State University , University Park
| |
Collapse
|
26
|
Alt Murphy M, Baniña MC, Levin MF. Perceptuo-motor planning during functional reaching after stroke. Exp Brain Res 2017; 235:3295-3306. [PMID: 28803362 PMCID: PMC5649389 DOI: 10.1007/s00221-017-5058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/04/2017] [Indexed: 11/28/2022]
Abstract
In healthy young adults, reaching movements are planned such that the initial grasp position on the object is modulated based on the final task goal. This perceptuo-motor coupling has been described as the end-state comfort effect. This study aimed to determine the extent to which visuo-perceptual and motor deficits, but not neglect, due to stroke impact end-state comfort measured as the grasp-height effect. Thirty-four older adults (17 controls, 17 chronic stroke) performed a functional goal-directed two-sequence task with each arm, consisting of reaching and moving a cylindrical object (drain plunger) from an initial to four target platform heights, standardized to body height, in a block randomized sequence. Arm motor impairment (Fugl-Meyer Assessment) and visual–perceptual deficits (Motor-Free Visual Perception Test) were assessed in stroke subjects, and arm and trunk kinematics were assessed in all subjects. The primary outcome measure of the grasp-height effect was the relationship between the grasp heights used at the home position and the final target platform heights. Mixed model analysis was used for data analysis. The grasp-height effect was present in all participants, but decreased in stroke subjects with visuo-perceptual impairments compared to controls. In stroke subjects with sensorimotor impairments alone, indicated by altered kinematics, the grasp-height effect was comparable to controls. This first study examining the grasp-height effect in individuals with stroke provides new knowledge of the impact of visuo-perceptual deficits on movement planning and execution, which may assist clinicians in selecting more effective treatment strategies to improve perceptuo-motor skills and enhance motor recovery.
Collapse
Affiliation(s)
- Margit Alt Murphy
- Institute of Neuroscience and Physiology, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, Plan 3, 41345, Gothenburg, Sweden. .,Center for Interdisciplinary Research in Rehabilitation (CRIR), McGill University, Montreal, QC, Canada.
| | - Melanie C Baniña
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation (CRIR), McGill University, Montreal, QC, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation (CRIR), McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Falaki A, Huang X, Lewis MM, Latash ML. Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson's disease. J Electromyogr Kinesiol 2017; 33:20-26. [PMID: 28110044 PMCID: PMC5357450 DOI: 10.1016/j.jelekin.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Postural instability is one of most disabling motor symptoms in Parkinson's disease. Indices of multi-muscle synergies are new measurements of postural stability. OBJECTIVES We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson's disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. METHODS Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. RESULTS Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. CONCLUSIONS Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson's disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Piscitelli D, Falaki A, Solnik S, Latash ML. Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction. Exp Brain Res 2017; 235:713-730. [PMID: 27866261 PMCID: PMC5316309 DOI: 10.1007/s00221-016-4835-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.
Collapse
Affiliation(s)
- Daniele Piscitelli
- School of Medicine and Surgery, PhD Program in Neuroscience, University of Milano-Bicocca, Milan, Italy
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stanislaw Solnik
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
- University School of Physical Education, Wroclaw, Poland
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
29
|
Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance. Exp Brain Res 2016; 235:457-470. [PMID: 27778048 DOI: 10.1007/s00221-016-4806-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger than the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.
Collapse
|
30
|
Parsa B, O'Shea DJ, Zatsiorsky VM, Latash ML. On the nature of unintentional action: a study of force/moment drifts during multifinger tasks. J Neurophysiol 2016; 116:698-708. [PMID: 27193319 DOI: 10.1152/jn.00180.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
We explored the origins of unintentional changes in performance during accurate force production in isometric conditions seen after turning visual feedback off. The idea of control with referent spatial coordinates suggests that these phenomena could result from drifts of the referent coordinate for the effector. Subjects performed accurate force/moment production tasks by pressing with the fingers of a hand on force sensors. Turning the visual feedback off resulted in slow drifts of both total force and total moment to lower magnitudes of these variables; these drifts were more pronounced in the right hand of the right-handed subjects. Drifts in individual finger forces could be in different direction; in particular, fingers that produced moments of force against the required total moment showed an increase in their forces. The force/moment drift was associated with a drop in the index of synergy stabilizing performance under visual feedback. The drifts in directions that changed performance (non-motor equivalent) and in directions that did not (motor equivalent) were of about the same magnitude. The results suggest that control with referent coordinates is associated with drifts of those referent coordinates toward the corresponding actual coordinates of the hand, a reflection of the natural tendency of physical systems to move toward a minimum of potential energy. The interaction between drifts of the hand referent coordinate and referent orientation leads to counterdirectional drifts in individual finger forces. The results also demonstrate that the sensory information used to create multifinger synergies is necessary for their presence over the task duration.
Collapse
Affiliation(s)
- Behnoosh Parsa
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Daniel J O'Shea
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Vladimir M Zatsiorsky
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
31
|
Falaki A, Huang X, Lewis MM, Latash ML. Impaired synergic control of posture in Parkinson's patients without postural instability. Gait Posture 2016; 44:209-15. [PMID: 27004660 PMCID: PMC4806225 DOI: 10.1016/j.gaitpost.2015.12.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 12/16/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postural instability is one of most disabling motor symptoms in Parkinson's disease. Indices of multi-muscle synergies are new measurements of movement and postural stability. OBJECTIVES Multi-muscle synergies stabilizing vertical posture were studied in Parkinson's disease patients without clinical symptoms of postural instability (Hoehn-Yahr ≤ II) and age-matched controls. We tested the hypothesis that both synergy indices during quiet standing and synergy adjustments to self-triggered postural perturbations would be reduced in patients. METHODS Eleven Parkinson's disease patients and 11 controls performed whole-body tasks while standing. Surface electromyography was used to quantify synergy indices stabilizing center of pressure shifts in the anterior-posterior direction during a load-release task. RESULTS Parkinson's disease patients showed a significantly lower percentage of variance in the muscle activation space accounted for by the first four principal components, significantly reduced synergy indices during steady state, and significantly reduced anticipatory synergy adjustments (a drop in the synergy index prior to the self-triggered unloading). CONCLUSIONS The study demonstrates for the first time that impaired synergic control in Parkinson's disease can be quantified in postural tasks, even in patients without clinical manifestations of postural instability. Synergy measurements may provide a biomarker sensitive for early problems with postural stability in Parkinson's disease.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xuemei Huang
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
32
|
Latash ML, Huang X. Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 2015; 301:39-48. [PMID: 26047732 DOI: 10.1016/j.neuroscience.2015.05.075] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
The concept of synergy provides a theoretical framework for movement stability resulting from the neural organization of multiple elements (digits, muscles, etc.) that all contribute to salient performance variables. Although stability of performance is obviously important for steady-state tasks leading to high synergy indices, a feed-forward drop in synergy indices is seen in preparation to a quick action (i.e., anticipatory synergy adjustments, ASAs). We review recent studies of multi-finger and multi-muscle synergies that show decreased indices of synergies and ASAs in patients with Parkinson's disease (PD) or multisystem atrophy. In PD, the impairments in synergies and ASAs are partially reversed by dopaminergic drugs, and changes in synergy indices are present even in PD patients at earliest diagnosis. Taken together, these results point at subcortical structures that are crucial for proper control of movement stability. It is timely to introduce the concept of impaired control of stability as an objective, quantifiable, and theory-based clinical descriptor of movement disorders that can increase our understanding of the neural control of movement with all of its implications for clinical practice.
Collapse
Affiliation(s)
- M L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - X Huang
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
33
|
Zhou T, Zhang L, Latash ML. Intentional and unintentional multi-joint movements: their nature and structure of variance. Neuroscience 2015; 289:181-93. [PMID: 25596318 DOI: 10.1016/j.neuroscience.2014.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/13/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
We tested predictions of a hierarchical scheme on the control of natural movements with referent body configurations. Subjects occupied an initial hand position against a bias force generated by a HapticMaster robot. A smooth force perturbation was applied to the hand consisting of an increase in the bias force, keeping it at a new level for 5s, and decreasing it back to the bias value. When the force returned to the bias value, the arm stopped at a position different from the initial one interpreted as an involuntary movement. We then asked subjects to make voluntary movements to targets corresponding to the measured end-position of the unintentional movements. No target for hand orientation was used. The joint configuration variance was compared between intentional and unintentional movements within the framework of the uncontrolled manifold hypothesis. Our central hypothesis was that both unintentional and intentional movements would be characterized by structure of joint configuration variance reflecting task-specific stability of salient performance variables, such as hand position and orientation. The analysis confirmed that most variance at the final steady states was compatible with unchanged values of both hand position and orientation following both intentional and unintentional movements. We interpret unintentional movements as consequences of back-coupling between the actual and referent configurations at the task level. The results suggested that both intentional and unintentional movements resulted from shifts of the body referent configuration produced intentionally or as a result of the hypothesized back-coupling. Inter-trial variance signature reflects similar task-specific stability properties of the system following both types of movements, intentional and unintentional.
Collapse
Affiliation(s)
- T Zhou
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - L Zhang
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - M L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Moscow Institute of Physics and Technology, Russia.
| |
Collapse
|
34
|
Zhou T, Solnik S, Wu YH, Latash ML. Unintentional movements produced by back-coupling between the actual and referent body configurations: violations of equifinality in multi-joint positional tasks. Exp Brain Res 2014; 232:3847-59. [PMID: 25150552 DOI: 10.1007/s00221-014-4059-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
We tested several predictions of a recent theory that combines the ideas of control with referent configurations, hierarchical control, and the uncontrolled manifold (UCM) hypothesis. In particular, we tested a hypothesis that unintentional changes in hand coordinate can happen following a long-lasting transient perturbation. The subjects grasped a handle with the right hand, occupied an initial position against a bias force produced by the HapticMaster robot, and then tried not to react to changes in the robot-produced force. Changes in the force were smooth and transient; they always ended with the same force as the bias force. The force-change amplitude and the time the force was kept at the new level (dwell time) varied across conditions. After the transient force change was over, the handle rested in a position that differed significantly from the initial position. The amplitude of this unintentional movement increased with the amplitude of transient force change and with the dwell time. In the new position, the across-trials joint configuration variance was mostly confined to a subspace compatible with the average handle coordinate and orientation (the UCMs for these variables). We view these results as the first experimental support for the hypothesis on back-coupling between the referent and actual body configurations during multi-joint actions. The results suggest that even under the instruction "not to react to transient force changes," the subjects may be unable to prevent unintentional drift of the referent configuration. The structure of joint configuration variance after such movements was similar to that in earlier reports on joint configuration variance after intentional movements. We conclude that the intentional and unintentional movements are products of a single neural system that can lead to intentional and unintentional shifts of the referent body configuration.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
35
|
Falaki A, Towhidkhah F, Zhou T, Latash ML. Task-specific stability in muscle activation space during unintentional movements. Exp Brain Res 2014; 232:3645-58. [PMID: 25092272 DOI: 10.1007/s00221-014-4048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
Abstract
We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Kinesiology, Rec. Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
36
|
Solnik S, Pazin N, Coelho CJ, Rosenbaum DA, Zatsiorsky VM, Latash ML. Postural sway and perceived comfort in pointing tasks. Neurosci Lett 2014; 569:18-22. [PMID: 24686189 DOI: 10.1016/j.neulet.2014.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway.
Collapse
Affiliation(s)
- Stanislaw Solnik
- Department of Kinesiology, Pennsylvania State University, USA; University School of Physical Education in Wroclaw, Poland.
| | - Nemanja Pazin
- Department of Kinesiology, Pennsylvania State University, USA; Faculty of Sport and Physical Education, University of Belgrade, Serbia
| | - Chase J Coelho
- Department of Psychology, Pennsylvania State University, USA; Lockheed Martin, ISS Flight Crew Integration, Operational Habitability Group, Johnson Space Center, Houston, TX, USA
| | | | | | - Mark L Latash
- Department of Kinesiology, Pennsylvania State University, USA
| |
Collapse
|
37
|
Rosenbaum DA, Chapman KM, Coelho CJ, Gong L, Studenka BE. Choosing actions. Front Psychol 2013; 4:273. [PMID: 23761769 PMCID: PMC3669743 DOI: 10.3389/fpsyg.2013.00273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 11/28/2022] Open
Abstract
Actions that are chosen have properties that distinguish them from actions that are not. Of the nearly infinite possible actions that can achieve any given task, many of the unchosen actions are irrelevant, incorrect, or inappropriate. Others are relevant, correct, or appropriate but are disfavored for other reasons. Our research focuses on the question of what distinguishes actions that are chosen from actions that are possible but are not. We review studies that use simple preference methods to identify factors that contribute to action choices, especially for object-manipulation tasks. We can determine which factors are especially important through simple behavioral experiments.
Collapse
Affiliation(s)
- David A Rosenbaum
- Department of Psychology, Pennsylvania State University , University Park, PA , USA
| | | | | | | | | |
Collapse
|