1
|
Grundei M, Schmidt TT, Blankenburg F. A multimodal cortical network of sensory expectation violation revealed by fMRI. Hum Brain Mapp 2023; 44:5871-5891. [PMID: 37721377 PMCID: PMC10619418 DOI: 10.1002/hbm.26482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The brain is subjected to multi-modal sensory information in an environment governed by statistical dependencies. Mismatch responses (MMRs), classically recorded with EEG, have provided valuable insights into the brain's processing of regularities and the generation of corresponding sensory predictions. Only few studies allow for comparisons of MMRs across multiple modalities in a simultaneous sensory stream and their corresponding cross-modal context sensitivity remains unknown. Here, we used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, somatosensory and visual modality. Participants (N = 29) were simultaneously presented with sequences of low and high intensity stimuli in each of the three senses while actively observing the tri-modal input stream and occasionally reporting the intensity of the previous stimulus in a prompted modality. The sequences were based on a probabilistic model, defining transition probabilities such that, for each modality, stimuli were more likely to repeat (p = .825) than change (p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transition was conditional on the configuration of the other two modalities comprising global (cross-modal) predictive properties of the sequences. We identified a shared mismatch network of modality general inferior frontal and temporo-parietal areas as well as sensory areas, where the connectivity (psychophysiological interaction) between these regions was modulated during mismatch processing. Further, we found deviant responses within the network to be modulated by local stimulus repetition, which suggests highly comparable processing of expectation violation across modalities. Moreover, hierarchically higher regions of the mismatch network in the temporo-parietal area around the intraparietal sulcus were identified to signal cross-modal expectation violation. With the consistency of MMRs across audition, somatosensation and vision, our study provides insights into a shared cortical network of uni- and multi-modal expectation violation in response to sequence regularities.
Collapse
Affiliation(s)
- Miro Grundei
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany
| | | | - Felix Blankenburg
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Mijic M, Jung A, Schoser B, Young P. Use of peripheral electrical stimulation on healthy individual and patients after stroke and its effects on the somatosensory evoked potentials. A systematic review. Front Neurol 2022; 13:1036891. [PMID: 36468059 PMCID: PMC9716063 DOI: 10.3389/fneur.2022.1036891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION To date, a few studies have used somatosensory evoked potentials (SEP) to demonstrate cortical sensory changes among healthy subjects or to estimate cortical plasticity and rehabilitation prognosis in stroke patients after peripheral electrical stimulation (PES) intervention. The primary aim was to systematically review whether PES has a role in changing latencies and amplitudes of SEPs in healthy subjects and stroke patients. Moreover, we searched for a correlation between sensory and motor function assessments and changes in SEP components of included studies. METHODS The following databases were searched: Pubmed/MEDLINE, Scopus/ScienceDirect, Web of Science/Clarivate, Cochrane Library, The Physiotherapy Evidence Database (PEDro), and ClinicalTrials.gov. Titles and abstracts, as well as full-text reports, were screened for eligibility by two independent reviewers according to a priori defined eligibility criteria. There were no study limitations concerning the treatment of the upper limb, lower limb, or torso with PES. RESULTS The final systematic search resulted in 11,344 records, however only 10 were evaluated. We could not find enough evidence to confirm use of SEP as a predictor to estimate the rehabilitation prognosis after stroke. However, we found a correlation between different sensory and motor function assessments and changes in SEP components. The stroke studies involving PES that initiate a voluntary contraction used for a specific movement or task indicate a positive relationship and correlation to assessments of motor function. It could be indicated that PES have a predictive impact of sensory reorganization, as mirrored by the change in SEP amplitude and latency. However, it is not possible to verify the degree of connectivity between SEP and cortical plasticity. To confirm this hypothesis, we propose the conduction of randomized controlled trials in healthy volunteers and stroke patients. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/U7PSY.
Collapse
Affiliation(s)
- Marko Mijic
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Andres Jung
- Institute of Health Sciences, Universität zu Lübeck, Luebeck, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Young
- Clinic for Neurology, Medical Park, Bad Feilnbach, Germany
| |
Collapse
|
3
|
Kangas ES, Vuoriainen E, Li X, Lyyra P, Astikainen P. Somatosensory Deviance Detection ERPs and Their Relationship to Analogous Auditory ERPs and Interoceptive Accuracy. J PSYCHOPHYSIOL 2021. [DOI: 10.1027/0269-8803/a000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Automatic deviance detection has been widely explored in terms of mismatch responses (mismatch negativity or mismatch response) and P3a components of event-related potentials (ERPs) under a predictive coding framework; however, the somatosensory mismatch response has been investigated less often regarding the different types of changes than its auditory counterpart. It is not known whether the deviance detection responses from different modalities correlate, reflecting a general prediction error mechanism of the central nervous system. Furthermore, interoceptive functions have been associated with predictive coding theory, but whether interoceptive accuracy correlates with deviance detection brain responses has rarely been investigated. Here, we measured ERPs to changes in somatosensory stimuli’s location and intensity and in sound intensity in healthy adults ( n = 34). Interoceptive accuracy was measured with a heartbeat discrimination task, where participants indicated whether their heartbeats were simultaneous or non-simultaneous with sound stimuli. We found a mismatch response and a P3a response to somatosensory location and auditory intensity changes, but for somatosensory intensity changes, only a P3a response was found. Unexpectedly, there were neither correlations between the somatosensory location deviance and intensity deviance brain responses nor between auditory and somatosensory brain responses. In addition, the brain responses did not correlate with interoceptive accuracy. The results suggest that although deviance detection in the auditory and somatosensory modalities are likely based on similar neural mechanisms at a cellular level, their ERP indexes do not indicate a linear association in sensitivity for deviance detection between the modalities. Furthermore, although sensory deviance detection and interoceptive detection are both associated with predictive coding functions, under these experimental settings, functional relationships were not observed. These results should be taken into account in the future development of theories related to human sensory functions and in extensions of the predictive coding theory in particular.
Collapse
Affiliation(s)
| | - Elisa Vuoriainen
- Human Information Processing Laboratory, Faculty of Social Sciences/Psychology, Tampere University, Finland
| | - Xueqiao Li
- Department of Psychology, University of Jyvaskyla, Finland
| | - Pessi Lyyra
- Department of Psychology, University of Jyvaskyla, Finland
| | | |
Collapse
|
4
|
Xu Q, Ye C, Hämäläinen JA, Ruohonen EM, Li X, Astikainen P. Magnetoencephalography Responses to Unpredictable and Predictable Rare Somatosensory Stimuli in Healthy Adult Humans. Front Hum Neurosci 2021; 15:641273. [PMID: 33935671 PMCID: PMC8079819 DOI: 10.3389/fnhum.2021.641273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mismatch brain responses to unpredicted rare stimuli are suggested to be a neural indicator of prediction error, but this has rarely been studied in the somatosensory modality. Here, we investigated how the brain responds to unpredictable and predictable rare events. Magnetoencephalography responses were measured in adults frequently presented with somatosensory stimuli (FRE) that were occasionally replaced by two consecutively presented rare stimuli [unpredictable rare stimulus (UR) and predictable rare stimulus (PR); p = 0.1 for each]. The FRE and PR were electrical stimulations administered to either the little finger or the forefinger in a counterbalanced manner between the two conditions. The UR was a simultaneous electrical stimulation to both the forefinger and the little finger (for a smaller subgroup, the UR and FRE were counterbalanced for the stimulus properties). The grand-averaged responses were characterized by two main components: one at 30-100 ms (M55) and the other at 130-230 ms (M150) latency. Source-level analysis was conducted for the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII). The M55 responses were larger for the UR and PR than for the FRE in both the SI and the SII areas and were larger for the UR than for the PR. For M150, both investigated areas showed increased activity for the UR and the PR compared to the FRE. Interestingly, although the UR was larger in stimulus energy (stimulation of two fingers at the same time) and had a larger prediction error potential than the PR, the M150 responses to these two rare stimuli did not differ in source strength in either the SI or the SII area. The results suggest that M55, but not M150, can possibly be associated with prediction error signals. These findings highlight the need for disentangling prediction error and rareness-related effects in future studies investigating prediction error signals.
Collapse
Affiliation(s)
- Qianru Xu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Chaoxiong Ye
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Elisa M Ruohonen
- Human Information Processing Laboratory, Psychology, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Xueqiao Li
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Piia Astikainen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli. Neuroimage 2019; 192:52-65. [PMID: 30669009 PMCID: PMC6503155 DOI: 10.1016/j.neuroimage.2019.01.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 01/25/2023] Open
Abstract
How pain emerges from cortical activities remains an unresolved question in pain neuroscience. A first step toward addressing this question consists in identifying brain activities that occur preferentially in response to painful stimuli in comparison to non-painful stimuli. A key confound that has affected this important comparison in many previous studies is the intensity of the stimuli generating painful and non-painful sensations. Here, we compared the brain activity during iso-intense painful and tactile sensations sampled by functional MRI in 51 healthy participants. Specifically, the perceived intensity was recorded for every stimulus and only the stimuli with rigorously matched perceived intensity were selected and compared between painful and tactile conditions. We found that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Neural responses in these areas were correlated with the perceived stimulus intensity, regardless of stimulus modality. More importantly, among these activated areas, we further identified a number of brain regions showing stronger responses to painful stimuli than to tactile stimuli when perceived intensity was carefully matched, including the bilateral opercular cortex, the left supplementary motor area and the right frontal middle and inferior areas. Among these areas, the right frontal middle area still responded more strongly to painful stimuli even when painful stimuli were perceived less intense than tactile stimuli, whereas in this condition other regions showed stronger responses to tactile stimuli. In contrast, the left postcentral gyrus, the visual cortex, the right parietal inferior gyrus, the left parietal superior gyrus and the right cerebellum had stronger responses to tactile stimuli than to painful stimuli when perceived intensity was matched. When tactile stimuli were perceived less intense than painful stimuli, the left postcentral gyrus and the right parietal inferior gyrus still responded more strongly to tactile stimuli while other regions now showed similar responses to painful and tactile stimuli. These results suggest that different brain areas may be engaged differentially when processing painful and tactile information, although their neural activities are not exclusively dedicated to encoding information of only one modality but are strongly determined by perceived stimulus intensity regardless of stimulus modality. Transient painful and tactile stimuli activate the same brain areas. Neural activity in these areas encode stimulus intensity. Among these areas, a few may be engaged differentially in pain and touch processing.
Collapse
|
6
|
Zhou L, Wei H, Zhang H, Li X, Bo C, Wan L, Lu X, Hu L. The Influence of Expectancy Level and Personal Characteristics on Placebo Effects: Psychological Underpinnings. Front Psychiatry 2019; 10:20. [PMID: 30804816 PMCID: PMC6370695 DOI: 10.3389/fpsyt.2019.00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Placebo effects benefit a wide range of clinical practice, which can be profoundly influenced by expectancy level and personal characteristics. However, research on the issue of whether these factors independently or interdependently affect the placebo effects is still in its infancy. Here, we adopted a 3-day between-subject placebo analgesia paradigm (2-day conditioning and 1-day test) to investigate the influence of expectancy levels (i.e., No, Low, and High) and personal characteristics (i.e., gender, dispositional optimism, and anxiety state) on placebo effects in 120 healthy participants (60 females). Our results showed that the reduction of pain intensity in the test phase was influenced by the interaction between expectancy and gender, as mainly reflected by greater reductions of pain intensity in females at Low expectancy level than females at No/High expectancy levels, and greater reductions of pain intensity in males than in females at High expectancy level. Additionally, the reduction of pain unpleasantness was not only modulated by the interaction between expectancy and gender, but also by the interaction between expectancy and dispositional optimism, as well as the interaction between expectancy and anxiety state. Specifically, participants who were more optimistic in Low expectancy group, or those who were less anxious in High expectancy group showed greater reductions of pain unpleasantness. To sum up, we emphasized on regulating the expectancy level individually based on the assessment of personal characteristics to maximize placebo effects in clinical conditions.
Collapse
Affiliation(s)
- Lili Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Cunju Bo
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wan
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Milne E, Dunn S, Zhao C, Jones M. Altered neural dynamics in people who report spontaneous out of body experiences. Cortex 2018; 111:87-99. [PMID: 30472385 DOI: 10.1016/j.cortex.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
Abstract
It has been suggested that individual differences in cortical excitability leading to disruption of the timing and integration of sensory information processing may explain why some people have out of body experiences (OBE) in the absence of any known pathological or psychiatric condition. Here we recorded EEG from people who either had, or had not experienced an OBE in order to investigate the neural dynamics of OBE in the non-clinical population. A screening questionnaire was completed by 551 people, 24% of whom reported having at least one OBE. Participants who were free of any psychiatric or neurological diagnoses, including migraines, were invited to take part in subsequent EEG recording. EEG data were obtained from 19 people who had had an OBE and 20 who had not. Amplitude of the visual P1 ERP deflection and consistency of alpha-band phase locking were significantly reduced in the participants who had had an OBE. We did not find any group differences in resting state power or in visually induced gamma oscillations. These results provide support for the claim that cortical differences, particularly with respect to the timing of visual information processing, may give rise to OBE in clinically healthy individuals. To our knowledge, this study is the first to compare EEG variables obtained from people who have, and have not, had an OBE.
Collapse
Affiliation(s)
- Elizabeth Milne
- Department of Psychology, The University of Sheffield, Sheffield, UK.
| | - Stephanie Dunn
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Chen Zhao
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Myles Jones
- Department of Psychology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Hautasaari P, Kujala UM, Tarkka IM. Detecting differences with magnetoencephalography of somatosensory processing after tactile and electrical stimuli. J Neurosci Methods 2018; 311:331-337. [PMID: 30218670 DOI: 10.1016/j.jneumeth.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deviant stimuli within a standard, frequent stimulus train induce a cortical somatosensory mismatch response (SMMR). The SMMR reflects the brain's automatic mechanism for the detection of change in a somatosensory domain. It is usually elicited by electrical stimulation, which activates nerve fibers and receptors in superficial and deep skin layers, whereas tactile stimulation is closer to natural stimulation and activates uniform fiber types. We recorded SMMRs after electrical and tactile stimuli. METHOD 306-channel magnetoencephalography recordings were made with 16 healthy adults under two conditions: electrical (eSMMR) and tactile (tSMMR) stimulations. The SMMR protocol consisted of 1000 stimuli with 10% deviants to fingers. RESULTS Sensor-level analysis revealed stronger activation after deviant stimulation in bilateral channel locations approximately corresponding to parietal cortical areas within both stimulation conditions. Between conditions, deviant tSMMR showed stronger activation in the ipsilateral channels. Based on sensor-level results, two components, M50 and SMMR (40-58 and 110-185 ms), were compared at the source-level. Deviant stimulation elicited stronger contralateral SI activation during M50 component in both conditions. SMMR was observed with both conditions, activating contralateral SII after deviant stimulation. However, only tSMMR showed long latency activation in bilateral SI cortices. This suggests that there is an integration of both body sides during the automatic stages of tactile processing in SI cortices. CONCLUSIONS This study indicates that tactile stimulation (tSMMR) is a feasible method for investigating the brain's mechanism for detecting somatosensory changes; this may extend the clinical utility of tSMMR for assessing disorders involving altered somatosensory processing.
Collapse
Affiliation(s)
- Pekka Hautasaari
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Urho M Kujala
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Pfeiffer C, Nguissi NAN, Chytiris M, Bidlingmeyer P, Haenggi M, Kurmann R, Zubler F, Accolla E, Viceic D, Rusca M, Oddo M, Rossetti AO, De Lucia M. Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma. Ann Clin Transl Neurol 2018; 5:1016-1024. [PMID: 30250859 PMCID: PMC6144443 DOI: 10.1002/acn3.600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022] Open
Abstract
Objective Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients. Methods Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset. Results Multivariate decoding analysis revealed an above chance‐level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single‐day sensory discrimination was unrelated to patients’ outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52–0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58–0.68). Interpretation Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma‐outcome prediction.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Nathalie Ata Nguepnjo Nguissi
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Magali Chytiris
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Phanie Bidlingmeyer
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Rebekka Kurmann
- Department of Neurology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Frédéric Zubler
- Department of Neurology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Ettore Accolla
- Neurology Unit Department of Medicine Hôpital Cantonal Fribourg (HFR) Fribourg Switzerland.,Laboratory for Cognitive and Neurological Sciences Department of Medicine University of Fribourg Fribourg Switzerland
| | | | - Marco Rusca
- Intensive Care Medicine Hôpital du Valais Sion Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Andrea O Rossetti
- Neurology Service University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| |
Collapse
|
10
|
The Influence of Expectation on Nondeceptive Placebo and Nocebo Effects. Pain Res Manag 2018; 2018:8459429. [PMID: 29755621 PMCID: PMC5884148 DOI: 10.1155/2018/8459429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
Nondeceptive placebo has demonstrated its efficiency in clinical practice. Although the underlying mechanisms are still unclear, nondeceptive placebo effect and nondeceptive nocebo effect may be mediated by expectation. To examine the extent to which expectation influences these effects, the present study compared nondeceptive placebo and nocebo effects with different expectation levels. Seventy-two healthy female participants underwent a standard conditioning procedure to establish placebo and nocebo effects. Sequentially, participants were randomized to one of the four experimental groups—baseline (BL), no expectation intervention (NoEI), expectation increasing (EI), and expectation decreasing (ED) groups, to receive either no intervention or interventions through different verbal suggestions that modulated their expectation. Placebo and nocebo effects were established in all four groups after the conditioning phase. However, after disclosing the placebo and nocebo, the analgesic and the hyperalgesic effects only persisted in the EI group, when compared with the BL group. Our results provide evidence highlighting the critical role of increased expectation in nondeceptive placebo and nocebo effects. The finding suggests that open-label placebo or nocebo per se might be insufficient to induce strong analgesic or hyperalgesic response and sheds insights into administrating open-label placebo and avoiding open-label nocebo in clinical practice.
Collapse
|
11
|
Pfeiffer C, De Lucia M. Cardio-audio synchronization drives neural surprise response. Sci Rep 2017; 7:14842. [PMID: 29093486 PMCID: PMC5665990 DOI: 10.1038/s41598-017-13861-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Successful prediction of future events depends on the brain’s capacity to extract temporal regularities from sensory inputs. Neuroimaging studies mainly investigated regularity processing for exteroceptive sensory inputs (i.e. from outside the body). Here we investigated whether interoceptive signals (i.e. from inside the body) can mediate auditory regularity processing. Human participants passively listened to sound sequences presented in synchrony or asynchrony to their heartbeat while concomitant electroencephalography was recorded. We hypothesized that the cardio-audio synchronicity would induce a brain expectation of future sounds. Electrical neuroimaging analysis revealed a surprise response at 158–270 ms upon omission of the expected sounds in the synchronous condition only. Control analyses ruled out that this effect was trivially based on expectation from the auditory temporal structure or on differences in heartbeat physiological signals. Implicit neural monitoring of temporal regularities across interoceptive and exteroceptive signals drives prediction of future events in auditory sequences.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Laboratoire de Recherche en Neuroimagerie (LREN), University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN), University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
12
|
Pfeiffer C, Nguissi NAN, Chytiris M, Bidlingmeyer P, Haenggi M, Kurmann R, Zubler F, Oddo M, Rossetti AO, De Lucia M. Auditory discrimination improvement predicts awakening of postanoxic comatose patients treated with targeted temperature management at 36 °C. Resuscitation 2017; 118:89-95. [DOI: 10.1016/j.resuscitation.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 11/24/2022]
|
13
|
Valentini E, Nicolardi V, Aglioti SM. Painful engrams: Oscillatory correlates of working memory for phasic nociceptive laser stimuli. Brain Cogn 2017; 115:21-32. [PMID: 28390217 DOI: 10.1016/j.bandc.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/28/2017] [Accepted: 03/23/2017] [Indexed: 11/15/2022]
Abstract
Research suggests that working memory (WM) is impaired in chronic pain. Yet, information on how potentially noxious stimuli are maintained in memory is limited in patients as well as in healthy people. We recorded electroencephalography (EEG) in healthy volunteers during a modified delayed match-to-sample task where maintenance in memory of relevant attributes of nociceptive laser stimuli was essential for subsequent cued-discrimination. Participants performed in high and low load conditions (i.e. three vs. two stimuli to keep in WM). Modulation of EEG oscillations in the beta band during the retention interval and in the alpha band during the pre-retention interval reflected performance in the WM task. Importantly, both a non-verbal and a verbal neuropsychological WM test predicted oscillatory modulations. Moreover, these two neuropsychological tests and self-reported personality measures predicted the performance in the nociceptive WM task. Results demonstrate (i) that beta and alpha EEG oscillations can represent WM for nociceptive stimuli; (ii) the association between neuropsychological measures of WM and the brain representation of phasic nociceptive painful stimuli; and (iii) that personality factors can predict memory for nociceptive stimuli at the behavioural level. Altogether, our findings offer a promising approach for investigating cortical correlates of nociceptive memory in clinical pain conditions.
Collapse
Affiliation(s)
- Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy; Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, Italy.
| | - Valentina Nicolardi
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| |
Collapse
|
14
|
Fardo F, Auksztulewicz R, Allen M, Dietz MJ, Roepstorff A, Friston KJ. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex. Neuroimage 2017; 153:109-121. [PMID: 28341164 PMCID: PMC5460976 DOI: 10.1016/j.neuroimage.2017.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/08/2017] [Accepted: 03/20/2017] [Indexed: 10/27/2022] Open
Abstract
The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception.
Collapse
Affiliation(s)
- Francesca Fardo
- Danish Pain Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom.
| | - Ryszard Auksztulewicz
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX3 7JX, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Micah Allen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Martin J Dietz
- Center for Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Roepstorff
- Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark; Center for Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
15
|
Peng WW, Guo XL, Jin QQ, Wei H, Xia XL, Zhang Y, Huang PC, Wang WC, Li SL, Wang JS, Chen J, Hu L. Biological mechanism of post-herpetic neuralgia: Evidence from multiple patho-psychophysiological measures. Eur J Pain 2016; 21:827-842. [PMID: 27977069 DOI: 10.1002/ejp.985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Post-herpetic neuralgia (PHN), which develops after the resolution of a herpes zoster eruption, is an exceptionally drug-resistant neuropathic pain. The unsatisfactory management of PHN partly results from the difficulty in dissecting out its contributing factors due to the complexity of PHN mechanism. METHODS Here, to elaborate our understanding of the PHN mechanism and to establish a basis for effective therapeutic strategies, we comprehensively investigated the contributions of multiple factors to PHN severity. RESULTS Based on the comparison of somatosensory detection thresholds (C, Aδ and Aβ fibre thresholds) between affected and unaffected sides, 16 PHN patients with significant sensory deficits and 13 PHN patients without significant sensory deficits were identified and assigned to different groups. The different extents of lesions in the nociceptive system between patients with and without sensory deficits were confirmed using laser-evoked brain responses. Moreover, patients with sensory deficits had more severe pain and psychological disorders, e.g. anxiety and depression. Importantly, chronic pain severity was significantly influenced by various psychophysiological factors (sleep disturbances, psychological disorders and hypothalamic-pituitary-adrenal axis dysfunction) for patients with sensory deficits. CONCLUSIONS Our findings demonstrated the contribution of multiple patho-psychophysiological factors to PHN severity, which could help establish a basis for the development of a rational, patient-centred therapeutic strategy. SIGNIFICANCE This study revealed the contribution of multiple patho-psychophysiological factors to PHN severity, which expanded our understanding of the underlying PHN mechanism, and helped develop a rational, patient-centred therapeutic strategy targeting towards the corresponding etiology and psychophysiological disorders for individual patient.
Collapse
Affiliation(s)
- W W Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - X L Guo
- Department of Pain Medicine, Daping Hospital & Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Q Q Jin
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
| | - H Wei
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
| | - X L Xia
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
| | - Y Zhang
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
| | - P C Huang
- Department of Pain Medicine, Daping Hospital & Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - W C Wang
- Department of Pain Medicine, Daping Hospital & Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - S L Li
- Department of Pain Medicine, Daping Hospital & Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - J S Wang
- Department of Pain Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - J Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - L Hu
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
16
|
Stancak A, Cook S, Wright H, Fallon N. Mapping multidimensional pain experience onto electrophysiological responses to noxious laser heat stimuli. Neuroimage 2016; 125:244-255. [PMID: 26477652 DOI: 10.1016/j.neuroimage.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/30/2022] Open
Abstract
The origin of the conscious experience of pain in the brain is a continuing enigma in neuroscience. To shed light on the brain representation of a multifaceted pain experience in humans, we combined multivariate analysis of subjective aspects of pain sensations with detailed, single-trial analysis of electrophysiological brain responses. Participants were asked to fully focus on any painful or non-painful sensations occurring in their left hand during an interval surrounding the onset of noxious laser heat stimuli, and to rate their sensations using a set of visual analogue scales. Statistical parametric mapping was used to compute a multivariate regression analysis of subjective responses and single-trial laser evoked potentials (LEPs) at subject and group levels. Standardized Low Resolution Electromagnetic Tomography method was used to reconstruct sources of LEPs. Factor analysis of subjective responses yielded five factors. Factor 1, representing pain, mapped firstly as a negative potential at the vertex and a positive potential at the fronto-temporal region during the 208-260ms interval, and secondly as a strong negative potential in the right lateral frontal and prefrontal scalp regions during the 1292-1340ms interval. Three other factors, labelled "anticipated pain", "stimulus onset time", and "body sensations", represented non-specific aspects of the pain experience, and explained portions of LEPs in the latency range from 200ms to 700ms. The subjective space of pain during noxious laser stimulation is represented by one large factor featuring pain intensity, and by other factors accounting for non-specific parts of the sensory experience. Pain is encoded in two separate latency components with different scalp and brain representations.
Collapse
Affiliation(s)
- Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK.
| | - Stephanie Cook
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - Hazel Wright
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 7ZA, UK
| |
Collapse
|
17
|
Jia H, Peng W, Hu L. A novel approach to identify time-frequency oscillatory features in electrocortical signals. J Neurosci Methods 2015; 253:18-27. [PMID: 26057113 DOI: 10.1016/j.jneumeth.2015.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sensory, motor, and cognitive events could not only evoke phase-locked event-related potentials in ongoing electrocortical signals, but also induce non-phase-locked changes of oscillatory activities. These oscillatory activities, whose functional significances differ greatly according to their temporal, spectral, and spatial characteristics, are commonly detected when single-trial signals are transformed into time-frequency distributions (TFDs). Parameters characterizing oscillatory activities are normally measured from multi-channel TFDs within a time-frequency region-of-interest (TF-ROI), pre-defined using a hypothesis-driven or data-driven approach. However, both approaches could ignore the possibility that the pre-defined TF-ROI contains several spatially/functionally distinct oscillatory activities. NEW METHOD We proposed a novel approach based on topographic segmentation analysis to optimally and automatically identify detailed time-frequency features. This approach, which could effectively exploit the spatial information of oscillatory activities, has been validated in both simulation and real electrocortical studies. RESULTS Simulation study showed that the proposed approach could successfully identify noise-contaminated time-frequency features if their signal-to-noise ratio was relatively high. Real electrocortical study demonstrated that several time-frequency features with distinct scalp distributions and evident neurophysiological functions were identified when the same analysis was applied on stimulus-elicited TFDs. COMPARISON WITH EXISTING METHODS Unlike traditional approaches, the proposed approach could provide an optimal identification of detailed time-frequency features by making use of their distinct spatial distributions. CONCLUSIONS Our findings illustrated the validity and usefulness of the presented approach in isolating detailed time-frequency features, thus having wide applications in cognitive neuroscience to provide a precise assessment of the functional significance of oscillatory activities.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Weiwei Peng
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Li Hu
- Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|