1
|
Lai KY, Hsu CH, Lin YC, Tsai CH, An KN, Su FC, Kuo LC. Effect of induced extrinsic and intrinsic hand and forearm muscular fatigue on the control of finger force during piano playing. Hum Mov Sci 2025; 99:103319. [PMID: 39798224 DOI: 10.1016/j.humov.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025]
Abstract
This study aimed to investigate the effect of hand muscle fatigue on finger control and force efficiency during piano performance, which is crucial for skilled piano playing among professional pianists engaged in prolonged periods of high-intensity practice or concert preparation. Thirty-one professional pianists were recruited as participants. This study was divided into three sequential experimental parts: pre-fatigue test, fatigue protocol, and post-fatigue test. Each participant was assigned eight piano skills and instructed to perform two fatigue tasks: finger extension and finger grasping exercises. The study recorded and analyzed the finger force of professional pianists using a sensor-embedded kinetic assessment piano system; wrist movements were assessed using a three-dimensional motion capture system. Paired t-tests were used to determine the differences between the pre- and post-tests. The findings showed that the average peak striking force of most fingers in Chords 1, 2, 4, 5, 6, and 7 decreased significantly after the fatigue task, indicating a reduction in the finger-striking force following fatigue across the various chord fingerings. The analysis of wrist movements demonstrated strategic adjustments made by pianists after experiencing fatigue, particularly in the ulnar/radial deviation movements. This study highlights the influence of muscle fatigue on finger control and wrist movements of pianists across different fingerings. We recommend that pianists focus on strengthening the extrinsic and intrinsic muscles of the hand and the muscle groups responsible for controlling ulnar/radial movements to mitigate the effects of muscular fatigue on hand performance.
Collapse
Affiliation(s)
- Kuan-Yin Lai
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-Hsiang Hsu
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
| | - Chung-Hung Tsai
- Department of Family Medicine, An-Nan Hospital, China Medical University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Nan An
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Fong-Chin Su
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Li-Chieh Kuo
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
3
|
Takemi M, Akahoshi M, Ushiba J, Furuya S. Behavioral and physiological fatigue-related factors influencing timing and force control learning in pianists. Sci Rep 2023; 13:21646. [PMID: 38062126 PMCID: PMC10703774 DOI: 10.1038/s41598-023-49226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Optimizing the training regimen depending on neuromuscular fatigue is crucial for the well-being of professionals intensively practicing motor skills, such as athletes and musicians, as persistent fatigue can hinder learning and cause neuromuscular injuries. However, accurate assessment of fatigue is challenging because of the dissociation between subjective perception and its impact on motor and cognitive performance. To address this issue, we investigated the interplay between fatigue and learning development in 28 pianists during three hours of auditory-motor training, dividing them into two groups subjected to different resting conditions. Changes in behavior and muscle activity during training were measured to identify potential indicators capable of detecting fatigue before subjective awareness. Our results indicate that motor learning and fatigue development are independent of resting frequency and timing. Learning indices, such as reduction in force and timing errors throughout training, did not differ between the groups. No discernible distinctions emerged in fatigue-related behavioral and physiological indicators between the groups. Regression analysis revealed that several fatigue-related indicators, such as tapping speed variability and electromyogram amplitude per unit force, could explain the learning of timing and force control. Our findings suggest the absence of a universal resting schedule for optimizing auditory-motor learning.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| | - Mai Akahoshi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| | | |
Collapse
|
4
|
Spatiotemporal Modeling of Grip Forces Captures Proficiency in Manual Robot Control. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010059. [PMID: 36671631 PMCID: PMC9854605 DOI: 10.3390/bioengineering10010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
New technologies for monitoring grip forces during hand and finger movements in non-standard task contexts have provided unprecedented functional insights into somatosensory cognition. Somatosensory cognition is the basis of our ability to manipulate and transform objects of the physical world and to grasp them with the right amount of force. In previous work, the wireless tracking of grip-force signals recorded from biosensors in the palm of the human hand has permitted us to unravel some of the functional synergies that underlie perceptual and motor learning under conditions of non-standard and essentially unreliable sensory input. This paper builds on this previous work and discusses further, functionally motivated, analyses of individual grip-force data in manual robot control. Grip forces were recorded from various loci in the dominant and non-dominant hands of individuals with wearable wireless sensor technology. Statistical analyses bring to the fore skill-specific temporal variations in thousands of grip forces of a complete novice and a highly proficient expert in manual robot control. A brain-inspired neural network model that uses the output metric of a self-organizing pap with unsupervised winner-take-all learning was run on the sensor output from both hands of each user. The neural network metric expresses the difference between an input representation and its model representation at any given moment in time and reliably captures the differences between novice and expert performance in terms of grip-force variability.Functionally motivated spatiotemporal analysis of individual average grip forces, computed for time windows of constant size in the output of a restricted amount of task-relevant sensors in the dominant (preferred) hand, reveal finger-specific synergies reflecting robotic task skill. The analyses lead the way towards grip-force monitoring in real time. This will permit tracking task skill evolution in trainees, or identify individual proficiency levels in human robot-interaction, which represents unprecedented challenges for perceptual and motor adaptation in environmental contexts of high sensory uncertainty. Cross-disciplinary insights from systems neuroscience and cognitive behavioral science, and the predictive modeling of operator skills using parsimonious Artificial Intelligence (AI), will contribute towards improving the outcome of new types of surgery, in particular the single-port approaches such as NOTES (Natural Orifice Transluminal Endoscopic Surgery) and SILS (Single-Incision Laparoscopic Surgery).
Collapse
|
5
|
The plyometric activity as a conditioning to enhance strength and precision of the finger movements in pianists. Sci Rep 2022; 12:22267. [PMID: 36564388 PMCID: PMC9789105 DOI: 10.1038/s41598-022-26025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Stability of timing and force production in repetitive movements characterizes skillful motor behaviors such as surgery and playing musical instruments. However, even trained individuals such as musicians undergo further extensive training for the improvement of these skills. Previous studies that investigated the lower extremity movements such as jumping and sprinting demonstrated enhancement of the maximum force and rate of force development immediately after the plyometric exercises. However, it remains unknown whether the plyometric exercises enhance the stability of timing and force production of the dexterous finger movements in trained individuals. Here we address this issue by examining the effects of plyometric exercise specialized for finger movements on piano performance. We compared the training-related changes in the piano-key motion and several physiological features of the finger muscles (e.g., electromyography, rate of force development, and muscle temperature) by well-trained pianists. The conditioning demonstrated a decrease of the variation in timing and velocity of successive keystrokes, along with a concomitant increase in the rate of force development of the four fingers, but not the thumb, although there was no change in the finger muscular activities through the activity. By contrast, such a conditioning effect was not evident following a conventional repetitive piano practice. In addition, a significant increase in the forearm muscle temperature was observed specifically through performing the plyometric exercise with the fingers, implying its association with improved performance. These results indicate effectiveness of the plyometric exercises for improvement of strength, precision, and physiological efficiency of the finger movements even in expert pianists, which implicates that ways of practicing play a key role in enhancing experts' expertise.
Collapse
|
6
|
Dresp-Langley B. Grip force as a functional window to somatosensory cognition. Front Psychol 2022; 13:1026439. [DOI: 10.3389/fpsyg.2022.1026439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Analysis of grip force signals tailored to hand and finger movement evolution and changes in grip force control during task execution provide unprecedented functional insight into somatosensory cognition. Somatosensory cognition is the basis of our ability to act upon and to transform the physical world around us, to recognize objects on the basis of touch alone, and to grasp them with the right amount of force for lifting and manipulating them. Recent technology has permitted the wireless monitoring of grip force signals recorded from biosensors in the palm of the human hand to track and trace human grip forces deployed in cognitive tasks executed under conditions of variable sensory (visual, auditory) input. Non-invasive multi-finger grip force sensor technology can be exploited to explore functional interactions between somatosensory brain mechanisms and motor control, in particular during learning a cognitive task where the planning and strategic execution of hand movements is essential. Sensorial and cognitive processes underlying manual skills and/or hand-specific (dominant versus non-dominant hand) behaviors can be studied in a variety of contexts by probing selected measurement loci in the fingers and palm of the human hand. Thousands of sensor data recorded from multiple spatial locations can be approached statistically to breathe functional sense into the forces measured under specific task constraints. Grip force patterns in individual performance profiling may reveal the evolution of grip force control as a direct result of cognitive changes during task learning. Grip forces can be functionally mapped to from-global-to-local coding principles in brain networks governing somatosensory processes for motor control in cognitive tasks leading to a specific task expertise or skill. Under the light of a comprehensive overview of recent discoveries into the functional significance of human grip force variations, perspectives for future studies in cognition, in particular the cognitive control of strategic and task relevant hand movements in complex real-world precision task, are pointed out.
Collapse
|
7
|
Oku T, Furuya S. Noncontact and High-Precision Sensing System for Piano Keys Identified Fingerprints of Virtuosity. SENSORS 2022; 22:s22134891. [PMID: 35808395 PMCID: PMC9269260 DOI: 10.3390/s22134891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Dexterous tool use is typically characterized by fast and precise motions performed by multiple fingers. One representative task is piano playing, which involves fast performance of a sequence of complex motions with high spatiotemporal precision. However, for several decades, a lack of contactless sensing technologies that are capable of precision measurement of piano key motions has been a bottleneck for unveiling how such an outstanding skill is cultivated. Here, we developed a novel sensing system that can record the vertical position of all piano keys with a time resolution of 1 ms and a spatial resolution of 0.01 mm in a noncontact manner. Using this system, we recorded the piano key motions while 49 pianists played a complex sequence of tones that required both individuated and coordinated finger movements to be performed as fast and accurately as possible. Penalized regression using various feature variables of the key motions identified distinct characteristics of the key-depressing and key-releasing motions in relation to the speed and accuracy of the performance. For the maximum rate of the keystrokes, individual differences across the pianists were associated with the peak key descending velocity, the key depression duration, and key-lift timing. For the timing error of the keystrokes, the interindividual differences were associated with the peak ascending velocity of the key and the inter-strike variability of both the peak key descending velocity and the key depression duration. These results highlight the importance of dexterous control of the vertical motions of the keys for fast and accurate piano performance.
Collapse
Affiliation(s)
- Takanori Oku
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo 1410022, Japan;
- NeuroPiano Institute, 13-1 Hontorocho, Shimogyo Ward, Kyoto 6008086, Japan
- Yotsuya Campus, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 1028554, Japan
- Correspondence:
| | - Shinichi Furuya
- Sony Computer Science Laboratories Inc., 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo 1410022, Japan;
- NeuroPiano Institute, 13-1 Hontorocho, Shimogyo Ward, Kyoto 6008086, Japan
- Yotsuya Campus, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 1028554, Japan
| |
Collapse
|
8
|
Kawasaki A, Hayashi N. Playing a musical instrument increases blood flow in the middle cerebral artery. PLoS One 2022; 17:e0269679. [PMID: 35675278 PMCID: PMC9176837 DOI: 10.1371/journal.pone.0269679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Studies using functional magnetic resonance imaging and positron-emission tomography suggest that many regions of the brain are activated by such complex muscle activity. Although these studies demonstrated relative increases in blood flow in some brain regions with increased neural activity, whether or not the absolute value of cerebral blood flow increases has yet to be elucidated. It also remains unknown whether playing musical instruments affects cerebral blood flow. The aim of this study was to determine the impact of playing a musical instrument on blood flow velocity in the middle cerebral artery (MCAv) by using Doppler ultrasound to measure absolute values of arterial flow velocity. Methods Thirteen musicians performed three pieces of music with different levels of difficulty: play for the first time (FS), music in practice (PR) and already mastered (MS) on either piano or violin. MCAv was recorded continuously from 10 min before until 10 min after playing. Associations between the cerebral blood flow response and blood pressure and gas-exchange variables were examined. Results PR and MS significantly increased the MCAv. The blood pressure increased significantly in performances of all difficulty levels except for MS. There were no significant changes in exhaled gas variables during the performance. Conclusion These findings suggest that playing a musical instrument increases MCAv, and that this change is influenced by the difficulty of the performance.
Collapse
Affiliation(s)
- Ai Kawasaki
- Department of Social and Human Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Naoyuki Hayashi
- Department of Social and Human Sciences, Tokyo Institute of Technology, Tokyo, Japan.,Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
9
|
Shafti A, Haar S, Mio R, Guilleminot P, Faisal AA. Playing the piano with a robotic third thumb: assessing constraints of human augmentation. Sci Rep 2021; 11:21375. [PMID: 34725355 PMCID: PMC8560761 DOI: 10.1038/s41598-021-00376-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Contemporary robotics gives us mechatronic capabilities for augmenting human bodies with extra limbs. However, how our motor control capabilities pose limits on such augmentation is an open question. We developed a Supernumerary Robotic 3rd Thumbs (SR3T) with two degrees-of-freedom controlled by the user’s body to endow them with an extra contralateral thumb on the hand. We demonstrate that a pianist can learn to play the piano with 11 fingers within an hour. We then evaluate 6 naïve and 6 experienced piano players in their prior motor coordination and their capability in piano playing with the robotic augmentation. We show that individuals’ augmented performance with the SR3T could be explained by our new custom motor coordination assessment, the Human Augmentation Motor Coordination Assessment (HAMCA) performed pre-augmentation. Our work demonstrates how supernumerary robotics can augment humans in skilled tasks and that individual differences in their augmentation capability are explainable by their individual motor coordination abilities.
Collapse
Affiliation(s)
- Ali Shafti
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Department of Computing, Imperial College London, London, SW7 2AZ, UK.,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK
| | - Shlomi Haar
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK.,Department of Brain Sciences and UK Dementia Research Institute - Care Research and Technology Centre, Imperial College London, London, W12 0BZ, UK
| | - Renato Mio
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Pierre Guilleminot
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A Aldo Faisal
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. .,Department of Computing, Imperial College London, London, SW7 2AZ, UK. .,Behaviour Analytics Laboratory, Data Science Institute, London, SW7 2AZ, UK. .,UKRI CDT in AI for Healthcare, Imperial College London, London, SW7 2AZ, UK. .,MRC London Institute of Medical Sciences, London, W12 0NN, UK.
| |
Collapse
|
10
|
Hirano M, Kimoto Y, Furuya S. Specialized Somatosensory-Motor Integration Functions in Musicians. Cereb Cortex 2021; 30:1148-1158. [PMID: 31342056 DOI: 10.1093/cercor/bhz154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory-motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile-motor and proprioceptive-motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory-motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory-motor integration functions so as to enable fine control of dexterous finger movements during piano performances.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
11
|
Kim S, Park JM, Rhyu S, Nam J, Lee K. Quantitative analysis of piano performance proficiency focusing on difference between hands. PLoS One 2021; 16:e0250299. [PMID: 34010289 PMCID: PMC8133499 DOI: 10.1371/journal.pone.0250299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/05/2021] [Indexed: 11/30/2022] Open
Abstract
Quantitative evaluation of piano performance is of interests in many fields, including music education and computational performance rendering. Previous studies utilized features extracted from audio or musical instrument digital interface (MIDI) files but did not address the difference between hands (DBH), which might be an important aspect of high-quality performance. Therefore, we investigated DBH as an important factor determining performance proficiency. To this end, 34 experts and 34 amateurs were recruited to play two excerpts on a Yamaha Disklavier. Each performance was recorded in MIDI, and handcrafted features were extracted separately for the right hand (RH) and left hand (LH). These were conventional MIDI features representing temporal and dynamic attributes of each note and computed as absolute values (e. g., MIDI velocity) or ratios between performance and corresponding scores (e. g., ratio of duration or inter-onset interval (IOI)). These note-based features were rearranged into additional features representing DBH by simple subtraction between features of both hands. Statistical analyses showed that DBH was more significant in experts than in amateurs across features. Regarding temporal features, experts pressed keys longer and faster with the RH than did amateurs. Regarding dynamic features, RH exhibited both greater values and a smoother change along melodic intonations in experts that in amateurs. Further experiments using principal component analysis (PCA) and support vector machine (SVM) verified that hand-difference features can successfully differentiate experts from amateurs according to performance proficiency. Moreover, existing note-based raw feature values (Basic features) and DBH features were tested repeatedly via 10-fold cross-validation, suggesting that adding DBH features to Basic features improved F1 scores to 93.6% (by 3.5%) over Basic features. Our results suggest that differently controlling both hands simultaneously is an important skill for pianists; therefore, DBH features should be considered in the quantitative evaluation of piano performance.
Collapse
Affiliation(s)
- Sarah Kim
- Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea
| | - Jeong Mi Park
- Department of Transdisciplinary Studies, Seoul National University, Seoul, South Korea
| | - Seungyeon Rhyu
- Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea
| | - Juhan Nam
- Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyogu Lee
- Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
12
|
Turner C, Visentin P, Oye D, Rathwell S, Shan G. Pursuing Artful Movement Science in Music Performance: Single Subject Motor Analysis With Two Elite Pianists. Percept Mot Skills 2021; 128:1252-1274. [PMID: 33775176 PMCID: PMC8107507 DOI: 10.1177/00315125211003493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Piano performance motor learning research requires more “artful” methodologies if it is to meaningfully address music performance as a corporeal art. To date, research has been sparse and it has typically constrained multiple performance variables in order to isolate specific phenomena. This approach has denied the fundamental ethos of music performance which, for elite performers, is an act of interpretation, not mere reproduction. Piano performances are intentionally manipulated for artistic expression. We documented motor movements in the complex task of performance of the first six measures of Chopin’s “Revolutionary” Etude by two anthropometrically different elite pianists. We then discussed their motor strategy selections as influenced by anthropometry and the composer’s musical directives. To quantify the joint angles of the trunk, shoulders, elbows, and wrists, we used a VICON 3 D motion capture system and biomechanical modeling. A Kistler force plate (1 N, Swiss) quantified center of gravity (COG) shifts. Changes in COG and trunk angles had considerable influence on the distal segments of the upper limbs. The shorter pianist used an anticipatory strategy, employing larger shifts in COG and trunk angles to produce dynamic stability as compensation for a smaller stature. Both pianists took advantage of low inertial left shoulder internal rotation and adduction to accommodate large leaps in the music. For the right arm, motor strategizing was confounded by rests in the music. These two cases illustrated, in principle, that expert pianists’ individualized motor behaviors can be explained as compensatory efforts to accommodate both musical goals and anthropometric constraints. Motor learning among piano students can benefit from systematic attention to motor strategies that consider both of these factors.
Collapse
Affiliation(s)
- Craig Turner
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Peter Visentin
- Department of Music, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Deanna Oye
- Department of Music, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Scott Rathwell
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gongbing Shan
- Department of Kinesiology and Physical Education, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
13
|
Dresp-Langley B, Nageotte F, Zanne P, de Mathelin M. Correlating Grip Force Signals from Multiple Sensors Highlights Prehensile Control Strategies in a Complex Task-User System. Bioengineering (Basel) 2020; 7:E143. [PMID: 33182694 PMCID: PMC7711794 DOI: 10.3390/bioengineering7040143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022] Open
Abstract
Wearable sensor systems with transmitting capabilities are currently employed for the biometric screening of exercise activities and other performance data. Such technology is generally wireless and enables the non-invasive monitoring of signals to track and trace user behaviors in real time. Examples include signals relative to hand and finger movements or force control reflected by individual grip force data. As will be shown here, these signals directly translate into task, skill, and hand-specific (dominant versus non-dominant hand) grip force profiles for different measurement loci in the fingers and palm of the hand. The present study draws from thousands of such sensor data recorded from multiple spatial locations. The individual grip force profiles of a highly proficient left-hander (expert), a right-handed dominant-hand-trained user, and a right-handed novice performing an image-guided, robot-assisted precision task with the dominant or the non-dominant hand are analyzed. The step-by-step statistical approach follows Tukey's "detective work" principle, guided by explicit functional assumptions relating to somatosensory receptive field organization in the human brain. Correlation analyses (Person's product moment) reveal skill-specific differences in co-variation patterns in the individual grip force profiles. These can be functionally mapped to from-global-to-local coding principles in the brain networks that govern grip force control and its optimization with a specific task expertise. Implications for the real-time monitoring of grip forces and performance training in complex task-user systems are brought forward.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- ICube UMR 7357, Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Florent Nageotte
- ICube UMR 7357 Robotics Department, University of Strasbourg, 67081 Strasbourg, France; (F.N.); (P.Z.); (M.d.M.)
| | - Philippe Zanne
- ICube UMR 7357 Robotics Department, University of Strasbourg, 67081 Strasbourg, France; (F.N.); (P.Z.); (M.d.M.)
| | - Michel de Mathelin
- ICube UMR 7357 Robotics Department, University of Strasbourg, 67081 Strasbourg, France; (F.N.); (P.Z.); (M.d.M.)
| |
Collapse
|
14
|
Hirano M, Sakurada M, Furuya S. Overcoming the ceiling effects of experts' motor expertise through active haptic training. SCIENCE ADVANCES 2020; 6:6/47/eabd2558. [PMID: 33219034 PMCID: PMC7679166 DOI: 10.1126/sciadv.abd2558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
One of the most challenging issues among experts is how to improve motor skills that have already been highly trained. Recent studies have proposed importance of both genetic predisposition and accumulated amount of practice for standing at the top of fields of sports and performing arts. In contrast to the two factors, what is unexplored is how one practices impacts on experts' expertise. Here, we show that training of active somatosensory function (active haptic training) enhances precise force control in the keystrokes and somatosensory functions specifically of expert pianists, but not of untrained individuals. By contrast, training that merely repeats the task with provision of error feedback, which is a typical training method, failed to improve the force control in the experts, but not in the untrained. These findings provide evidence that the limit of highly trained motor skills could be overcome by optimizing training methods.
Collapse
Affiliation(s)
- M Hirano
- Sony Computer Science Laboratories Inc. (SONY CSL), Tokyo, Japan.
- Sophia University, Tokyo, Japan
| | - M Sakurada
- Sony Computer Science Laboratories Inc. (SONY CSL), Tokyo, Japan
- Sophia University, Tokyo, Japan
| | - S Furuya
- Sony Computer Science Laboratories Inc. (SONY CSL), Tokyo, Japan
- Sophia University, Tokyo, Japan
| |
Collapse
|
15
|
Kuo YL, Fisher BE. Relationship between interhemispheric inhibition and bimanual coordination: absence of instrument specificity on motor performance in professional musicians. Exp Brain Res 2020; 238:2921-2930. [PMID: 33057870 DOI: 10.1007/s00221-020-05951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Functional reorganization in a musician's brain has long been considered strong evidence of experience-dependent neuroplasticity. Highly coordinated bimanual movements require abundant communication between bilateral hemispheres. Interhemispheric inhibition (IHI) is the communication between bilateral primary motor cortices, and there is beginning evidence to suggest that IHI is modified according to instrument type, possibly due to instrument-dependent motor training. However, it is unknown whether IHI adaptations are associated with non-musical bimanual tasks that resemble specific musical instruments. Therefore, we aimed to investigate the relationship between IHI and bimanual coordination in keyboard players compared with string players. Bimanual coordination was measured by a force tracking task, categorized as symmetric and asymmetric conditions. Ipsilateral silent period (iSP) was obtained using transcranial magnetic stimulation to index IHI in both left (L) and right (R) hemispheres. Canonical correlation analysis was performed to identify linear relationships between the IHI and bimanual coordination outcomes. There was no difference in bimanual coordination outcomes between keyboard and string players. Increased iSP from the L to R hemisphere was found in string players compared to keyboard players. There appeared to be different instrument-dependent relationships between IHI and bimanual coordination, regardless of symmetric or asymmetric task. Laboratory motor assessments resembling specific features of musical instruments (symmetric vs. asymmetric hand use) did not distinctly characterize bimanual motor skills between keyboard and string players. The relationships between IHI and bimanual coordination in these two instrument types were independent of task condition. Instrument-dependent neuroplasticity may be evident only within the context of musical instrument playing.
Collapse
Affiliation(s)
- Yi-Ling Kuo
- Department of Physical Therapy Education, SUNY Upstate Medical University, 750 East Adams Street, 3316 Academic Building, Syracuse, NY, 13210, USA. .,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Seven Properties of Self-Organization in the Human Brain. BIG DATA AND COGNITIVE COMPUTING 2020. [DOI: 10.3390/bdcc4020010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: (1) modular connectivity, (2) unsupervised learning, (3) adaptive ability, (4) functional resiliency, (5) functional plasticity, (6) from-local-to-global functional organization, and (7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward.
Collapse
|
17
|
Tuttle N, Hazle C. Spinal PA movements behave 'as if' there are limitations of local segmental mobility and are large enough to be perceivable by manual palpation: A synthesis of the literature. Musculoskelet Sci Pract 2018; 36:25-31. [PMID: 29680511 DOI: 10.1016/j.msksp.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Posterio-anterior (PA) movements are one type of passive intervertebral movement used to assess and treat perceived deficits in localized segmental mobility. OBJECTIVES To describe: 1) The specific effects that reductions in segmental mobility would be expected to have on PA movements; 2) How differences in PA movements in clinical situations compare to what would be expected with reduced segmental mobility; and 3) Whether such differences in PA movements are likely to be perceivable by manual palpation. METHODS Multiple modelling studies and in vivo measurements of PA movements are described. RESULTS The findings indicate the differences in PA movements present in clinical conditions corresponds with the differences that would be expected with decreased segmental mobility. The differences both predicted from the modelling and found in clinical conditions were greatest at low levels of force. Additionally, the differences are large enough that individuals with training are likely to be capable of 1) consistently producing controlled movements with sufficiently small magnitudes of force to assess the movements, and 2) detecting the differences in stiffness expected from modelling and found in clinical situations. CONCLUSIONS Implications for clinical practice and teaching include the need to attend to the stiffness of PA movements at lower levels of force than those typically described. The authors recommend a three tiered approach to assessment of PA movements which may assist in both clinical practice and teaching manual therapy skills.
Collapse
|
18
|
Jones CA, Meisner EL, Broadfoot CK, Rosen SP, Samuelsen CR, McCulloch TM. Methods for measuring swallowing pressure variability using high-resolution manometry. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2018; 4:23. [PMID: 30687729 PMCID: PMC6345545 DOI: 10.3389/fams.2018.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Any movement performed repeatedly will be executed with inter-trial variability. Oropharyngeal swallowing is a complex sensorimotor action, and swallow-to-swallow variability can have consequences that impact swallowing safety. Our aim was to determine an appropriate method to measure swallowing pressure waveform variability. An ideal variability metric must be sensitive to known deviations in waveform amplitude, duration, and overall shape, without being biased by waveforms that have both positive and sub-atmospheric pressure profiles. Through systematic analysis of model waveforms, we found a coefficient of variability (CV) parameter on waveforms adjusted such that the overall mean was 0 to be best suited for swallowing pressure variability analysis. We then investigated pharyngeal swallowing pressure variability using high-resolution manometry data from healthy individuals to assess impacts of waveform alignment, pharyngeal region, and number of swallows investigated. The alignment that resulted in the lowest overall swallowing pressure variability was when the superior-most sensor in the upper esophageal sphincter reached half its maximum pressure. Pressures in the tongue base region of the pharynx were least variable and pressures in the hypopharynx region were most variable. Sets of 3 - 10 consecutive swallows had no overall difference in variability, but sets of 2 swallows resulted in significantly less variability than the other dataset sizes. This study identified variability in swallowing pressure waveform shape throughout the pharynx in healthy adults; we discuss implications for swallowing motor control.
Collapse
Affiliation(s)
- Corinne A. Jones
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
- Neuroscience Training Program; University of Wisconsin – Madison; Madison, WI, USA
| | - Ellen L. Meisner
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Physical Therapy, Mayo Clinic School of Health Sciences, Rochester, MN, USA
| | - Courtney K. Broadfoot
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| | - Sarah P. Rosen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Christine R. Samuelsen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Timothy M. McCulloch
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| |
Collapse
|
19
|
|