1
|
Wei SQ, Wei JX, Zhao S, Cao DY, Liang L. Downregulation of lysine-specific histone demethylase 1A (KDM1A/LSD1) in medial prefrontal cortex facilitates chronic stress-induced pain and emotional dysfunction in female mice. Neuropharmacology 2024; 254:109992. [PMID: 38723742 DOI: 10.1016/j.neuropharm.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Chronic primary pain, characterized by overlapping symptoms of chronic pain, anxiety, and depression, is strongly associated with stress and is particularly prevalent among females. Recent research has convincingly linked epigenetic modifications in the medial prefrontal cortex (mPFC) to chronic pain and chronic stress. However, our understanding of the role of histone demethylation in the mPFC in chronic stress-induced pain remains limited. In this study, we investigated the function of lysine-specific histone demethylase 1A (KDM1A/LSD1) in the context of chronic overlapping pain comorbid with anxiety and depression in female mice. We employed a chronic variable stress model to induce pain hypersensitivity in the face and hindpaws, as well as anxiety-like and depression-like behaviors, in female mice. Our findings revealed that chronic stress led to a downregulation of KDM1A mRNA and protein expression in the mPFC. Notably, overexpressing KDM1A in the mPFC alleviated the pain hypersensitivity, anxiety-like behaviors, and depression-like behaviors in female mice, without affecting basal pain responses or inducing emotional distress. Conversely, conditional knockout of KDM1A in the mPFC exacerbated pain sensitivity and emotional distress specifically in females. In summary, this study highlights the crucial role of KDM1A in the mPFC in modulating chronic stress-induced overlapping pain, anxiety, and depression in females. Our findings suggest that KDM1A may serve as a potential therapeutic target for treating chronic stress-related overlap pain and associated negative emotional disorders.
Collapse
Affiliation(s)
- Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, 710061, PR China
| | - Jian-Xiong Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China
| | - Shijie Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, 710061, PR China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, 710061, PR China.
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
2
|
Argenbright CM, Bertlesman AM, Russell IM, Greer TL, Peng YB, Fuchs PN. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024; 12:778. [PMID: 38672134 PMCID: PMC11048409 DOI: 10.3390/biomedicines12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alysia M. Bertlesman
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Izabella M. Russell
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Tracy L. Greer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Yuan B. Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Perry N. Fuchs
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
3
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
4
|
Piriyaprasath K, Kakihara Y, Kurahashi A, Taiyoji M, Kodaira K, Aihara K, Hasegawa M, Yamamura K, Okamoto K. Preventive Roles of Rice- koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients 2023; 15:3989. [PMID: 37764773 PMCID: PMC10535605 DOI: 10.3390/nu15183989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This study determined the effect of daily administration of Rice-koji on anxiety and nociception in mice subjected to repeated forced swim stress (FST). In a parallel experiment, it was determined whether ergothioneine (EGT) contained in Rice-koji displayed similar effects. Anxiety and nociception were assessed behaviorally using multiple procedures. c-Fos and FosB immunoreactivities were quantified to assess the effect of both treatments on neural responses in the paraventricular nucleus of the hypothalamus (PVN), nucleus raphe magnus (NRM), and lumbar spinal dorsal horn (DH). FST increased anxiety- and pain-like behaviors in the hindpaw. Rice-koji or EGT significantly prevented these behaviors after FST. In the absence of formalin, both treatments prevented decreased FosB expressions in the PVN after FST, while no effect was seen in the NRM and DH. In the presence of formalin, both treatments prevented changes in c-Fos and FosB expressions in all areas in FST mice. Further, in vitro experiments using SH-SY5Y cells were conducted. Rice-koji and EGT did not affect cell viability but changed the level of brain-derived neurotrophic factor. In conclusion, Rice-koji could reduce anxiety and pain associated with psychophysical stress, possibly mediated by the modulatory effects of EGT on neural functions in the brain.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Atsushi Kurahashi
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Mayumi Taiyoji
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Kazuya Kodaira
- Hakkaisan Brewery Co., Ltd., Minamiuonuma, Niigata 949-7112, Japan; (A.K.); (K.K.)
| | - Kotaro Aihara
- Food Research Center, Niigata Agricultural Research Institute, Kamo 959-1381, Japan; (M.T.); (K.A.)
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan or (K.P.); (M.H.); (K.Y.)
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
5
|
Piriyaprasath K, Hasegawa M, Kakihara Y, Iwamoto Y, Kamimura R, Saito I, Fujii N, Yamamura K, Okamoto K. Effects of stress contagion on anxiogenic- and orofacial inflammatory pain-like behaviors with brain activation in mice. Eur J Oral Sci 2023:e12942. [PMID: 37377104 DOI: 10.1111/eos.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
The conditions of stress contagion are induced in bystanders without direct experiences of stressful events. This study determined the effects of stress contagion on masseter muscle nociception in mice. Stress contagion was developed in the bystanders after cohabitating with a conspecific mouse subjected to social defeat stress for 10 days. On Day 11, stress contagion increased anxiety- and orofacial inflammatory pain-like behaviors. The c-Fos and FosB immunoreactivities evoked by masseter muscle stimulation were increased in the upper cervical spinal cord, while c-Fos expressions were increased in the rostral ventromedial medulla, including the lateral paragigantocellular reticular nucleus and nucleus raphe magnus in stress contagion mice. The level of serotonin in the rostral ventromedial medulla was increased under stress contagion, while the number of serotonin positive cells was increased in the lateral paragigantocellular reticular nucleus. Stress contagion increased c-Fos and FosB expressions in the anterior cingulate cortex and insular cortex, both of which were positively correlated with orofacial inflammatory pain-like behaviors. The level of brain-derived neurotrophic factor was increased in the insular cortex under stress contagion. These results indicate that stress contagion can cause neural changes in the brain, resulting in increased masseter muscle nociception, as seen in social defeat stress mice.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Rantaro Kamimura
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata City, Japan
| |
Collapse
|
6
|
Hasegawa M, Piriyaprasath K, Otake M, Kamimura R, Saito I, Fujii N, Yamamura K, Okamoto K. Effect of daily treadmill running exercise on masseter muscle nociception associated with social defeat stress in mice. Eur J Oral Sci 2022; 130:e12882. [DOI: 10.1111/eos.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mana Hasegawa
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
- Department of Restorative Dentistry Faculty of Dentistry Naresuan University Phitsanulok Thailand
| | - Masanori Otake
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Rantaro Kamimura
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Isao Saito
- Division of Orthodontics Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Kensuke Yamamura
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata City Japan
| |
Collapse
|
7
|
Okamoto K, Hasegawa M, Piriyaprasath K, Kakihara Y, Saeki M, Yamamura K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:231-241. [PMID: 34815817 PMCID: PMC8593658 DOI: 10.1016/j.jdsr.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic pain in temporomandibular disorder (TMD) is a common health problem. Cumulating evidence indicates that the etiology of TMD pain is complex with multifactorial experience that could hamper the developments of treatments. Preclinical research is a resource to understand the mechanism for TMD pain, whereas limitations are present as a disease-specific model. It is difficult to incorporate multiple risk factors associated with the etiology that could increase pain responses into a single animal. This article introduces several rodent models which are often employed in the preclinical studies and discusses their validities for TMD pain after the elucidations of the neural mechanisms based on the clinical reports. First, rodent models were classified into two groups with or without inflammation in the deep craniofacial tissues. Next, the characteristics of each model and the procedures to identify deep craniofacial pain were discussed. Emphasis was directed on the findings of the effects of chronic psychological stress, a major risk factor for chronic pain, on the deep craniofacial nociception. Preclinical models have provided clinically relevant information, which could contribute to better understand the basis for TMD pain, while efforts are still required to bridge the gap between animal and human studies.
Collapse
Affiliation(s)
- Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan.,Division of Dental Clinical Education, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kajita Piriyaprasath
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, 951-8514, Japan
| |
Collapse
|
8
|
Chung MK, Wang S, Yang J, Alshanqiti I, Wei F, Ro JY. Neural Pathways of Craniofacial Muscle Pain: Implications for Novel Treatments. J Dent Res 2020; 99:1004-1012. [PMID: 32374638 DOI: 10.1177/0022034520919384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Craniofacial muscle pain is highly prevalent in temporomandibular disorders but is difficult to treat. Enhanced understanding of neurobiology unique to craniofacial muscle pain should lead to the development of novel mechanism-based treatments. Herein, we review recent studies to summarize neural pathways of craniofacial muscle pain. Nociceptive afferents in craniofacial muscles are predominantly peptidergic afferents enriched with TRPV1. Signals from peripheral glutamate receptors converge onto TRPV1, leading to mechanical hyperalgesia. Further studies are needed to clarify whether hyperalgesic priming in nonpeptidergic afferents or repeated acid injections also affect craniofacial muscle pain. Within trigeminal ganglia, afferents innervating craniofacial muscles interact with surrounding satellite glia, which enhances the sensitivity of the inflamed neurons as well as nearby uninjured afferents, resulting in hyperalgesia and ectopic pain originating from adjacent orofacial tissues. Craniofacial muscle afferents project to a wide area within the trigeminal nucleus complex, and central sensitization of medullary dorsal horn neurons is a critical factor in muscle hyperalgesia related to ectopic pain and emotional stress. Second-order neurons project rostrally to pathways associated with affective pain, such as parabrachial nucleus and medial thalamic nucleus, as well as sensory-discriminative pain, such as ventral posteromedial thalamic nuclei. Abnormal endogenous pain modulation can also contribute to chronic muscle pain. Descending serotonergic circuits from the rostral ventromedial medulla facilitate activation of second-order neurons in the trigeminal nucleus complex, which leads to the maintenance of mechanical hyperalgesia of inflamed masseter muscle. Patients with temporomandibular disorders exhibit altered brain networks in widespread cortical and subcortical regions. Recent development of methods for neural circuit manipulation allows silencing of specific hyperactive neural circuits. Chemogenetic silencing of TRPV1-expressing afferents or rostral ventromedial medulla neurons attenuates hyperalgesia during masseter inflammation. It is likely, therefore, that further delineation of neural circuits mediating craniofacial muscle hyperalgesia potentially enhances treatment of chronic muscle pain conditions.
Collapse
Affiliation(s)
- M K Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - S Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - J Yang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - I Alshanqiti
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - F Wei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - J Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| |
Collapse
|
9
|
Shimizu S, Nakatani Y, Kurose M, Imbe H, Ikeda N, Takagi R, Yamamura K, Okamoto K. Modulatory effects of repeated psychophysical stress on masseter muscle nociception in the nucleus raphe magnus of rats. J Oral Sci 2020; 62:231-235. [PMID: 32074544 DOI: 10.2334/josnusd.19-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Psychophysical stress can cause neural changes that increase nociception in the orofacial region, particularly the masseter muscle (MM). The nucleus raphe magnus (NRM), which is located in the brain stem, serves the crucial role of regulating nociception through descending modulatory pain control. However, it remains unclear if neural activities in the NRM are affected under psychophysical stress conditions. This study conducted experiments to assess (1) whether neural activity, indicated by Fos expression in an NRM that has experienced MM injury, is affected by the stress of repeated forced swim tests (FST); and (2) whether the selective serotonin reuptake inhibitor fluoxetine administered daily after an FST could affect the number of Fos-positive neurons in the NRM. Results revealed that the stress from repeated FSTs significantly increased the number of Fos-positive neurons in an NRM that had been affected by MM injury. Fluoxetine inhibited increases in the number of Fos-positive neurons in the NRM that occurred as a result of FSTs, but this was not observed in sham rats. These findings indicate that the stress from FSTs could increase nociceptive neural activity in an NRM that has experienced MM injury. This could be due, in part, to changes in serotonergic mechanisms.
Collapse
Affiliation(s)
- Shiho Shimizu
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences
| | - Yosuke Nakatani
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences
| | - Hiroki Imbe
- Department of Physiology, Wakayama Medical University
| | - Nobuyuki Ikeda
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences
| | - Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
10
|
Shimizu S, Nakatani Y, Kakihara Y, Taiyoji M, Saeki M, Takagi R, Yamamura K, Okamoto K. Daily administration of Sake Lees (Sake Kasu) reduced psychophysical stress-induced hyperalgesia and Fos responses in the lumbar spinal dorsal horn evoked by noxious stimulation to the hindpaw in the rats. Biosci Biotechnol Biochem 2020; 84:159-170. [DOI: 10.1080/09168451.2019.1662278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
We tested whether Sake Lees (SL) had inhibitory effects on hyperalgesia in the hindpaw under psychophysical stress conditions. Male rats were subjected to repeated forced swim stress treatments (FST) from Day −3 to Day −1. Intraperiotoneal administration of SL which contained low concentration of ethanol (SLX) was conducted after each FST. On Day 0, formalin-evoked licking behaviors and Fos responses in the lumbar spinal cord (DH) and several areas within the rostral ventromedial medulla (RVM) were quantified as nociceptive responses. FST-induced hyperalgesia in the hindpaw was prevented by repeated SL and SLX treatments. Fos expression was significantly increased in DH and some areas within the RVM under FST, which was prevented by repeated SL or SLX. These findings indicated that daily administration of SL had the potential to alleviate stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Shiho Shimizu
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
- Division of Oral and Maxillofacial Surgery Niigata University, Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yosuke Nakatani
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
- Division of Oral and Maxillofacial Surgery Niigata University, Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
- Department of Sakeology, Niigata University, Niigata City, Japan
| | - Mayumi Taiyoji
- Food Research Center, Niigata Agricultural Research Institute, Kamo City, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery Niigata University, Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
- Department of Sakeology, Niigata University, Niigata City, Japan
| |
Collapse
|
11
|
Nakatani Y, Kakihara Y, Shimizu S, Kurose M, Sato T, Kaneoke M, Saeki M, Takagi R, Yamamura K, Okamoto K. Japanese Rice Wine can reduce psychophysical stress-induced depression-like behaviors and Fos expression in the trigeminal subnucleus caudalis evoked by masseter muscle injury in the rats. Biosci Biotechnol Biochem 2018; 83:155-165. [PMID: 30286696 DOI: 10.1080/09168451.2018.1524705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We determined if Japanese Rice Wine (Sake) had inhibitory effects on stress-induced enhancement of masseter muscle (MM) nociception in the rats. Male rats were subjected to the repeated forced swim stress (FS) or sham conditionings from Day -3 to -1. Daily administration of Sake or saline was conducted after each stress conditioning. At Day 0 the number of Fos positive cells, a marker for neural activity, was quantified at the trigeminal subnucleus caudalis (Vc) region by MM injury with formalin. FS increased MM-evoked Fos expression in the Vc region, which was inhibited by Sake compared to saline administration. Sake did not alter the number of Fos positive cells under sham conditions, indicating that inhibitory roles of Sake on neural activity in the Vc region were seen under FS conditions. These findings indicated that Sake had inhibitory roles on stress-induced MM nociception at the Vc region in our experimental conditions.
Collapse
Affiliation(s)
- Yosuke Nakatani
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.,Sakeology Center, Niigata University, Niigata City, Japan
| | - Shiho Shimizu
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.,Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Tsutomu Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Graduate School of Science and Technology, Niigata University, Niigata City, Japan
| | - Mitsuoki Kaneoke
- Sakeology Center, Niigata University, Niigata City, Japan.,Niigata Prefectural Sake Research Institute, Niigata City, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.,Sakeology Center, Niigata University, Niigata City, Japan
| |
Collapse
|