1
|
Shenoy P, M VSK. Task demands modulate distal limb handedness: A comparative analysis of prehensile synergies of the dominant and non-dominant hand. Sci Rep 2024; 14:25565. [PMID: 39462144 PMCID: PMC11514032 DOI: 10.1038/s41598-024-75001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The dynamic dominance hypothesis of handedness suggests a distinct control strategy for the dominant and the non-dominant limb. The hypothesis demonstrated that the dominant proximal limb is tuned for optimal trajectory control while the non-dominant limb is tuned for a stable grasp. Whether the hypothesis can be extended to distal segments like fingers, especially during a five-fingered grasp, has been studied little. To examine this, an attempt was made to compare the prehensile synergies and force magnitudes of the dominant (DOM) and non-dominant hands (NDOM) during a 5-fingered prehension task. Participants traced a trapezoidal and inverse trapezoidal path with their thumbs on a sliding platform while holding a handle in static equilibrium. The DOM hand performed better only in the inverse trapezoid condition, exhibiting a reduced grip force and increased synergy index aligning with the dynamic dominance hypothesis. No differences were observed for the trapezoid condition, likely due to reduced task demands. The study also explored changes in anticipatory synergy adjustments between the DOM and NDOM hands, but the differences were non-significant. Overall, the DOM hand demonstrated better force coordination than the NDOM hand in challenging conditions. Applications of the study in the objective assessment of handedness were proposed.
Collapse
Affiliation(s)
- Prajwal Shenoy
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Varadhan S K M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Benamati A, Ricotta JM, De SD, Latash ML. Three Levels of Neural Control Contributing to Performance-stabilizing Synergies in Multi-finger Tasks. Neuroscience 2024; 551:262-275. [PMID: 38838976 DOI: 10.1016/j.neuroscience.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
We tested a hypothesis on force-stabilizing synergies during four-finger accurate force production at three levels: (1) The level of the reciprocal and coactivation commands, estimated as the referent coordinate and apparent stiffness of all four fingers combined; (2) The level of individual finger forces; and (3) The level of firing of individual motor units (MU). Young, healthy participants performed accurate four-finger force production at a comfortable, non-fatiguing level under visual feedback on the total force magnitude. Mechanical reflections of the reciprocal and coactivation commands were estimated using small, smooth finger perturbations applied by the "inverse piano" device. Firing frequencies of motor units in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) were estimated using surface recording. Principal component analysis was used to identify robust MU groups (MU-modes) with parallel changes in the firing frequency. The framework of the uncontrolled manifold hypothesis was used to compute synergy indices in the spaces of referent coordinate and apparent stiffness, finger forces, and MU-mode magnitudes. Force-stabilizing synergies were seen at all three levels. They were present in the MU-mode spaces defined for MUs in FDS, in EDC, and pooled over both muscles. No effects of hand dominance were seen. The synergy indices defined at different levels of analysis showed no correlations across the participants. The findings are interpreted within the theory of control with spatial referent coordinates for the effectors. We conclude that force stabilization gets contributions from three levels of neural control, likely associated with cortical, subcortical, and spinal circuitry.
Collapse
Affiliation(s)
- Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
de Freitas PB, Freitas SMSF, Dias MS. Synergic control of the minimum toe clearance in young and older adults during foot swing on treadmill walking in different speeds. Gait Posture 2024; 111:150-155. [PMID: 38703443 DOI: 10.1016/j.gaitpost.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The vertical toe position at minimum toe clearance (MTC) in the swing phase is critical for walking safety. Consequently, the joints involved should be strictly controlled and coordinated to stabilize the foot at MTC. The uncontrolled manifold (UCM) hypothesis framework has been used to determine the existence of synergies that stabilize relevant performance variables during walking. However, no study investigated the presence of a multi-joint synergy stabilizing the foot position at MTC and the effects of age and walking speed on this synergy. RESEARCH QUESTIONS Is there a multi-joint synergy stabilizing MTC during treadmill walking? Does it depend on the persons' age and walking speed? METHODS Kinematic data from 23 young and 15 older adults were analyzed using the UCM approach. The participants walked on a treadmill at three speeds: slow, self-selected, and fast. The sagittal and frontal joint angles from the swing and stance legs and pelvis obliquity were used as motor elements and the vertical toe position at MTC was the performance variable. The variances in the joint space that affected (VORT, 'bad' variance) and did not affect (VUCM, 'good' variance) the toe position at MTC and the synergy index (ΔV) were computed. RESULTS The ΔV>0 was revealed for all subjects. Walking speed did not affect ΔV in older adults, whereas ΔV reduced with speed in young adults. ΔV was higher for older than for young adults at self-selected and fast speeds, owing to a lower VORT in the older group. SIGNIFICANCE The vertical toe position at MTC was stabilized by a strong multi-joint synergy. In older adults, this synergy was stronger, as they were better at limiting VORT than young adults. Reduced VORT in older adults could be caused by more constrained walking, which may be associated with anxiety due to walking on a treadmill.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy. Universidade Cidade de São Paulo, São Paulo, Rua Cesário Galeno, 475, Tatuapé, São Paulo, SP 03071-000, Brazil.
| | - Mateus S Dias
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| |
Collapse
|
4
|
Pawłowski M, Ricotta JM, De SD, Latash ML. Force matching: motor effects that are not reported by the actor. Exp Brain Res 2024; 242:1439-1453. [PMID: 38652273 PMCID: PMC11108883 DOI: 10.1007/s00221-024-06829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
We explored unintentional drifts of finger forces during force production and matching task. Based on earlier studies, we predicted that force matching with the other hand would reduce or stop the force drift in instructed fingers while uninstructed (enslaved) fingers remain unaffected. Twelve young, healthy, right-handed participants performed two types of tasks with both hands (task hand and match hand). The task hand produced constant force at 20% of MVC level with the Index and Ring fingers pressing in parallel on strain gauge force sensors. The Middle finger force wasn't instructed, and its enslaved force was recorded. Visual feedback on the total force by the instructed fingers was either present throughout the trial or only during the first 5 s (no-feedback condition). The other hand matched the perceived force level of the task hand starting at either 4, 8, or 15 s from the trial initiation. No feedback was ever provided for the match hand force. After the visual feedback was removed, the task hand showed a consistent drift to lower magnitudes of total force. Contrary to our prediction, over all conditions, force matching caused a brief acceleration of force drift in the task hand, which then reached a plateau. There was no effect of matching on drifts in enslaved finger force. We interpret the force drifts within the theory of control with spatial referent coordinates as consequences of drifts in the command (referent coordinate) to the antagonist muscles. This command is not adequately incorporated into force perception.
Collapse
Affiliation(s)
- Michał Pawłowski
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Institute of Sport Science, Department of Human Motor Behavior, Academy of Physical Education in Katowice, 72A Mikołowska St, Katowice, 40-065, Poland.
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
De SD, Ricotta JM, Benamati A, Latash ML. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry. J Neurophysiol 2024; 131:152-165. [PMID: 38116603 DOI: 10.1152/jn.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
We explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production. Individual MUs were identified in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Principal component analysis was applied to motor unit frequencies to identify robust MU groups (MU-modes) with parallel scaling of the firing frequencies in FDS, in EDC, and the combined MUs of FDS + EDC. The framework of the uncontrolled manifold hypothesis was used to quantify force-stabilizing synergies when visual feedback on the force magnitude was available and 15 s after turning the visual feedback off. Removing visual feedback led to a force drift toward lower magnitudes, accompanied by the disappearance of multifinger synergies. In contrast, MU-mode synergies were minimally affected by removing visual feedback off and continued to be robust for the FDS and for the EDC, while being absent for the (FDS + EDC) analysis. We interpret the findings within the theory of hierarchical control of action with spatial referent coordinates. The qualitatively different behavior of the multifinger and MU-mode-based synergies likely reflects the difference in the involved neural circuitry, supraspinal for the former and spinal for the latter.NEW & NOTEWORTHY Two types of synergies, in the space of commands to individual fingers and in the space of motor unit groups, show qualitatively different behaviors during accurate multifinger force-production tasks. After removing visual feedback, finger force synergies disappear, whereas motor unit-based synergies persist. These results point at different neural circuitry involved in these two basic classes of synergies: supraspinal for multieffector synergies, and spinal for motor unit-based synergies.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
6
|
Ricotta JM, De SD, Nardon M, Benamati A, Latash ML. Effects of fatigue on intramuscle force-stabilizing synergies. J Appl Physiol (1985) 2023; 135:1023-1035. [PMID: 37732378 DOI: 10.1152/japplphysiol.00419.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
We applied the recently introduced concept of intramuscle synergies in spaces of motor units (MUs) to quantify indexes of such synergies in the tibialis anterior during ankle dorsiflexion force production tasks and their changes with fatigue. We hypothesized that MUs would be organized into robust groups (MU modes), which would covary across trials to stabilize force magnitude, and the indexes of such synergies would drop under fatigue. Healthy, young subjects (n = 15; 8 females) produced cyclical, isometric dorsiflexion forces while surface electromyography was used to identify action potentials of individual MUs. Principal component analysis was used to define MU modes. The framework of the uncontrolled manifold (UCM) was used to analyze intercycle variance and compute the synergy index, ΔVZ. Cyclical force production tasks were repeated after a nonfatiguing exercise (control) and a fatiguing exercise. Across subjects, fatigue led, on average, to a 43% drop in maximal force and fewer identified MUs per subject (29.6 ± 2.1 vs. 32.4 ± 2.1). The first two MU modes accounted for 81.2 ± 0.08% of variance across conditions. Force-stabilizing synergies were present across all conditions and were diminished after fatiguing exercise (1.49 ± 0.40) but not control exercise (1.76 ± 0.75). Decreased stability after fatigue was caused by an increase in the amount of variance orthogonal to the UCM. These findings contrast with earlier studies of multieffector synergies demonstrating increased synergy index under fatigue. We interpret the results as reflections of a drop in the gain of spinal reflex loops under fatigue. The findings corroborate an earlier hypothesis on the spinal nature of intramuscle synergies.NEW & NOTEWORTHY Across multielement force production tasks, fatigue of an element leads to increased indexes of force stability (synergy indexes). Here, however, we show that groups of motor units in the tibialis anterior show decreased indexes of force-stabilizing synergies after fatiguing exercise. These findings align intramuscle synergies with spinal mechanisms, in contrast to the supraspinal control of multimuscle synergies.
Collapse
Affiliation(s)
- Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Clinical and Translational Science Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Mauro Nardon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
7
|
Abolins V, Ormanis J, Latash ML. Unintentional drifts in performance during one-hand and two-hand finger force production. Exp Brain Res 2023; 241:699-712. [PMID: 36690719 DOI: 10.1007/s00221-023-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
We explored the phenomena of force drifts and unintentional finger force production (enslaving), and their dependence on visual feedback. Predictions have been drawn based on the theory of control with spatial referent coordinates for condition with feedback on instructed (master) finger force, enslaved finger force, and total force for one-hand and two-hand tasks. Subjects produced force under the different feedback conditions without their knowledge. No feedback condition was also used for the one-hand tasks. Overall, feedback of master finger force led to an increase in the enslaved force, feedback on the slave finger force led to a drop in the master force, feedback on the total force led to balanced drifts in the master force down and enslaved force up, and under the no-feedback condition, master and total force drifted down with large variability in the enslaved force drifts. The patterns were the same in both hands in the two-hand tasks when feedback was provided on the forces of one hand only (without subject's knowledge). The index of enslaving always drifted toward higher values. We interpret the findings as reflecting three main factors: drifts in the referent coordinates toward actual finger coordinates, spread of cortical excitation over representations of the fingers, and robust sharing of referent coordinates between the two hands in bimanual tasks. The large consistent drifts in enslaving toward higher values have to be considered in studies of multi-finger synergies.
Collapse
Affiliation(s)
- Valters Abolins
- Cyber-Physical Systems Laboratory, Institute of Electronics and Computer Science, Dzerbenes Iela 14, Riga, 1006, Latvia.
| | - Juris Ormanis
- Cyber-Physical Systems Laboratory, Institute of Electronics and Computer Science, Dzerbenes Iela 14, Riga, 1006, Latvia
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Optimality, Stability, and Agility of Human Movement: New Optimality Criterion and Trade-Offs. Motor Control 2023; 27:123-159. [PMID: 35279021 DOI: 10.1123/mc.2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
Abstract
This review of movement stability, optimality, and agility is based on the theory of motor control with changes in spatial referent coordinates for the effectors, the principle of abundance, and the uncontrolled manifold hypothesis. A new optimality principle is suggested based on the concept of optimal sharing corresponding to a vector in the space of elemental variables locally orthogonal to the uncontrolled manifold. Motion along this direction is associated with minimal components along the relatively unstable directions within the uncontrolled manifold leading to a minimal motor equivalent motion. For well-practiced actions, this task-specific criterion is followed in spaces of referent coordinates. Consequences of the suggested framework include trade-offs among stability, optimality, and agility, unintentional changes in performance, hand dominance, finger specialization, individual traits in performance, and movement disorders in neurological patients.
Collapse
|
9
|
de Freitas PB, Freitas SMSF, Prado-Rico JM, Lewis MM, Du G, Yanosky JD, Huang X, Latash ML. Synergic control in asymptomatic welders during multi-finger force exertion and load releasing while standing. Neurotoxicology 2022; 93:324-336. [PMID: 36309163 PMCID: PMC10398836 DOI: 10.1016/j.neuro.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Motor synergies, i.e., neural mechanisms that organize multiple motor elements to ensure stability of actions, are affected by several neurological condition. Asymptomatic welders showed impaired synergy controlling the stability of multi-finger action compared to non-welders and this impairment was associated with microstructural damage in the globus pallidus. We further explored the effect of welding-related metal exposure on multi-finger synergy and extended our investigation to posture-stabilizing synergy during a standing task. Occupational, MRI, and performance-stabilizing synergies during multi-finger accurate force production and load releasing while standing were obtained from 29 welders and 19 age- and sex-matched controls. R2* and R1 relaxation rate values were used to estimate brain iron and manganese content, respectively, and diffusion tensor imaging was used to reflect brain microstructural integrity. Associations of brain MRI (caudate, putamen, globus pallidus, and red nucleus), and motor synergy were explored by group status. The results revealed that welders had higher R2* values in the caudate (p = 0.03), putamen (p = 0.01), and red nucleus (p = 0.08, trend) than controls. No group effect was revealed on multi-finger synergy index during steady-state phase of action (ΔVZss). Compared to controls, welders exhibited lower ΔVZss (-0.106 ± 0.084 vs. 0.160 ± 0.092, p = 0.04) and variance that did not affect the performance variable (VUCM, 0.022 ± 0.003 vs. 0.038 ± 0.007, p = 0.03) in the load releasing, postural task. The postural synergy index, ΔVZss, was associated negatively with higher R2* in the red nucleus in welders (r = -0.44, p = 0.03), but not in controls. These results suggest that the synergy index in the load releasing during a standing task may reflect welding-related neurotoxicity in workers with chronic metals exposure. This finding may have important clinical and occupational health implications.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Science, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Science, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
10
|
Intra-muscle Synergies Stabilizing Reflex-mediated Force Changes. Neuroscience 2022; 505:59-77. [DOI: 10.1016/j.neuroscience.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022]
|
11
|
Madarshahian S, Latash ML. Effects of hand muscle function and dominance on intra-muscle synergies. Hum Mov Sci 2022; 82:102936. [PMID: 35217391 DOI: 10.1016/j.humov.2022.102936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
The goal of the study was to explore the effects of hand dominance and muscle function (prime mover vs. supporting muscle) on recently discovered intra-muscle synergies as potential windows into their neural origin. Healthy right-handed subjects performed accurate cyclical force production tasks while pressing with the middle phalanges and distal phalanges of the fingers of the dominant and non-dominant hand. Surface electromyography was used to identify individual motor unit action potentials in two muscles, flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Stable motor unit groups (MU-modes) were defined in each muscle and in both muscles together. The composition of the MU-modes allowed linking them to the reciprocal and co-activation command. Force-stabilizing synergies were quantified in each hand and during force production at both sites using the framework of the uncontrolled manifold hypothesis. Force-stabilizing synergies were seen in the spaces of MU-modes from FDS and EDC separately, but not of MU-modes defined for both muscles together. Synergy indices were similar for both hands and both sites of force application. In contrast, force-stabilizing synergies in the space of finger forces were present in the non-dominant hand and absent in the dominant hand. The data suggest existence of distributed mechanisms of synergic control. Finger force synergies are likely to reflect functioning of subcortical loops involving the basal ganglia and cerebellum, while MU-mode synergies are likely to reflect spinal circuitry. Studies of both force-based and motor-unit-based synergies may be clinically valuable for distinguishing effects of spinal and supraspinal disorders.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Abolins V, Latash ML. Unintentional force drifts across the human fingers: implications for the neural control of finger tasks. Exp Brain Res 2022; 240:751-761. [PMID: 35022805 DOI: 10.1007/s00221-021-06287-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022]
Abstract
We explored the unintentional force drift across the four fingers of the dominant hand during accurate force production in isometric conditions caused by turning the visual feedback on force off. Our hypotheses were that the Index finger would show smallest drifts and best ability to eliminate the drifts with knowledge of performance in previous trials. Young healthy subjects produced force at 20% of the maximal force level by one finger at a time. There was no significant difference among the fingers in the root mean square error of force during performance with visual feedback. Turning visual feedback off caused force drift to lower magnitudes. The magnitude of force drift was the largest during tasks performed by the Index finger. After each block of twelve trials, the subjects were given feedback on the drift magnitude in that block and used it to correct performance in future trials. There was a total of six blocks. The magnitude of drift correction between consecutive blocks correlated with the magnitude of drift in the earlier block only after the second and fourth blocks. The Index finger failed to improve its performance more than other fingers and demonstrated significant residual drifts to lower force magnitudes in the sixth block of trials. These findings falsified both our hypotheses. Taken together with earlier studies showing advantage of the Index finger across a variety of tasks that require quick and accurate changes in performance, our results suggest that effector specialization along the stability-agility continuum is not limited to the phenomenon of cortical arm/hand dominance but can also be seen across fingers of a hand controlled by the same hemisphere, possibly reflecting the differences in the finger role in prehensile tasks.
Collapse
Affiliation(s)
- Valters Abolins
- Cyber-Physical Systems Laboratory, Institute of Electronics and Computer Science, Dzerbenes iela 14, Riga, 1006, Latvia.
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
14
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
15
|
Optimality and stability of human behavior: Reply to comments on "Laws of nature that define biological action and perception". Phys Life Rev 2021; 38:145-149. [PMID: 34088609 DOI: 10.1016/j.plrev.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022]
|
16
|
Cuadra C, Gilmore R, Latash ML. Finger Force Matching and Verbal Reports: Testing Predictions of the Iso-Perceptual Manifold Concept. J Mot Behav 2020; 53:598-610. [PMID: 32883191 DOI: 10.1080/00222895.2020.1813681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We used force matching and verbal reports of finger force to explore a prediction of the iso-perceptual manifold concept, which assumes that stable percepts are associated with a manifold in the afferent-efferent space. Young subjects produced various force magnitudes with the index finger, middle finger, or both fingers together. Further, they reported the force level using a verbal scale and by matching the force with fingers of the contralateral hand. Force matching, but not verbal reports, showed larger variable errors for individual fingers in the two-finger task compared to the single-finger tasks. We discuss possible differences in afferent and efferent contributions to force perception at low and high forces based on the idea of motor control with referent coordinates for the effectors. The differences between the force matching and verbal reports are possibly related to neural circuitry differences between perceiving without action and perceiving-to-act.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.,Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Viña del Mar, Chile
| | - Rick Gilmore
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
What do people match when they try to match force? Analysis at the level of hypothetical control variables. Exp Brain Res 2020; 238:1885-1901. [PMID: 32537705 DOI: 10.1007/s00221-020-05850-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
We used the theory of control with spatial referent coordinates (RC) to explore how young, healthy persons modify finger pressing force and match forces between the two hands. Three specific hypotheses were tested related to patterns of RC and apparent stiffness (defined as the slope of force-coordinate relation) used in the presence of visual feedback on the force and in its absence. The subjects used the right hand to produce accurate force under visual feedback; further the force could be increased or decreased, intentionally or unintentionally (induced by controlled lifting or lowering of the fingertips). The left hand was used to match force without visual feedback before and after the force change; the match hand consistently underestimated the actual force change in the task hand. The "inverse piano" device was used to compute RC and apparent stiffness. We found very high coefficients of determination for the inter-trial hyperbolic regressions between RC and apparent stiffness in the presence of visual feedback; the coefficients of determination dropped significantly without visual feedback. There were consistent preferred sharing patterns in the space of RC and apparent stiffness between the task and match hands across subjects. In contrast, there was much less consistency between the task and match hands in the magnitudes of RC and apparent stiffness observed in individual trials. Compared to the task hand, the match hand showed consistently lower magnitudes of apparent stiffness and, correspondingly, larger absolute magnitudes of RC. Involuntary force changes produced by lifting and lowering the force sensors led to significantly lower force changes compared to what could be expected based on the computed values of apparent stiffness and sensor movement amplitude. The results confirm the importance of visual feedback for stabilization of force in the space of hypothetical control variables. They suggest the existence of personal traits reflected in preferred ranges of RC and apparent stiffness across the two hands. They also show that subjects react to external perturbations, even when instructed "not to interfere": Such perturbations cause unintentional and unperceived drifts in both RC and apparent stiffness.
Collapse
|
18
|
Cuadra C, Wojnicz W, Kozinc Z, Latash ML. Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task. Neuroscience 2020; 437:34-44. [DOI: 10.1016/j.neuroscience.2020.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
|