1
|
Forman GN, Melchiorre LP, Holmes MWR. Impact of repetitive mouse clicking on forearm muscle fatigue and mouse aiming performance. APPLIED ERGONOMICS 2024; 118:104284. [PMID: 38583318 DOI: 10.1016/j.apergo.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Exercise induced performance fatigue has been shown to impair many aspects of fine motor function in the distal upper limb. However, most fatiguing protocols do not reflect the conditions experienced with computer use. The purpose of this study was to determine how a prolonged, low-force mouse clicking fatigue protocol impacts performance fatigue of the distal upper limb for gamers and non-gamers. Participants completed a total of 1 h of mouse clicking at 5 clicks per second. Muscle fatigue and performance were intermittently assessed. RMS amplitude increased for the forearm flexors throughout the fatigue protocol. Accuracy decreased following the first bout of clicking and returned to baseline values after 40-min. EDC and ECU displayed the greatest muscle activity while aiming, producing 11.4% and 12.9% of MVC, respectively. These findings indicate that mouse clicking may not result in performance fatigue, however, high levels of extensor activity may explain common injuries among gamers.
Collapse
Affiliation(s)
- Garrick N Forman
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Lucas P Melchiorre
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michael W R Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
2
|
Cogliati M, Cudicio A, Orizio C. Using force or EMG envelope as feedback signal for motor control system. J Electromyogr Kinesiol 2024; 74:102851. [PMID: 38048656 DOI: 10.1016/j.jelekin.2023.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
PURPOSE This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). AIM to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF. METHOD Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition. RESULTS a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks. CONCLUSION The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system.
Collapse
Affiliation(s)
- M Cogliati
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - A Cudicio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - C Orizio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy.
| |
Collapse
|
3
|
Chen Y, Hu CL, Hong CK, Hsu KL, Kuan FC, Chen WL, Su WR, Chen YC, Hwang IS. Deficits in neuromuscular control of increasing force in patients with chronic lateral epicondylitis. Front Physiol 2023; 14:1178557. [PMID: 37637142 PMCID: PMC10450945 DOI: 10.3389/fphys.2023.1178557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Objective: This study investigated the neuromuscular control of increasing and releasing force in patients with chronic lateral epicondylitis (CLE). Methods: Fifteen patients with CLE (10 males, 5 females, 46.5 ± 6.3 years) and fifteen healthy participants (9 males, 6 females, 45.3 ± 2.5 years) participated in this study. In addition to power grip and maximal voluntary contraction (MVC) of wrist extension, force fluctuation dynamics and characteristics of inter-spike intervals (ISI) of motor units (MUs) with various recruitment thresholds in the extensor carpi radialis brevis (ECRB) and extensor carpi radialis longus (ECRL) during a designated force-tracking task with a trapezoidal target (0%-75%-0% MVC) were assessed. Results: Besides a smaller MVC of wrist extension, the patients exhibited significantly greater task errors (p = 0.007) and force fluctuations (p = 0.001) during force increment than the healthy counterparts. Nevertheless, no force variables significantly differed between groups during force release (p > 0.05). During force increment, the amplitudes of the motor unit action potential of the ECRB and ECRL muscles of the patients were smaller than those of the heathy counterparts (p < 0.001). The patient group also exhibited a higher percentage of motor units (MU) with lower recruitment threshold (<5% MVC) in the ECRL/ECRB muscles and a lower percentage of MU with higher recruitment threshold (>40% MVC) in the ECRB muscle, compared to the healthy group. During force increment, the patient group exhibited a higher rate of decrease in inter-spike intervals (ISIs) of motor units with lower recruitment thresholds (<10% MVC) in the ECRB and ECRL muscles, compared to the control group (p < 0.005). Conclusion: The patients with CLE exhibited more pronounced impairment in increasing force than in releasing force. This impairment in increasing force is attributed to deficits in tendon structure and degenerative changes in the larger motor units of the wrist extensors. To compensate for the neuromuscular deficits, the rate of progressive increase in discharge rate of the remaining smaller motor units (MUs) is enhanced to generate force. Significance: The deficits in neuromuscular control observed in CLE with degenerative changes cannot be fully explained by the experimental pain model, which predicts pain-related inhibition on low-threshold motor units.
Collapse
Affiliation(s)
- Yueh Chen
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Department of Orthopedics, Madou Sin-Lâu Hospital, Tainan, Taiwan
| | - Chia-Ling Hu
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Kai Hong
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Lan Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fa-Chuan Kuan
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Li Chen
- Department of Orthopedics, Madou Sin-Lâu Hospital, Tainan, Taiwan
| | - Wei-Ren Su
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Musculoskeletal Research Center, Innovation Headquarter, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Altorfer P, Adcock M, de Bruin ED, Graf F, Giannouli E. Feasibility of Cognitive-Motor Exergames in Geriatric Inpatient Rehabilitation: A Pilot Randomized Controlled Study. Front Aging Neurosci 2021; 13:739948. [PMID: 34912206 PMCID: PMC8667343 DOI: 10.3389/fnagi.2021.739948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: The aim of this pilot randomized clinical trial was to test the feasibility and efficacy of an exergame-based cognitive-motor training program in geriatric inpatients. Methods: The study participants were randomly allocated to either the exergame intervention group or the control group. The control group received the standard rehabilitation treatment offered in the clinic. In addition to the standard rehabilitation program, the intervention group conducted supervised exergame training on 5 days per week using the Dividat Senso, an exergame system specifically designed for older adults. The primary outcome was feasibility, as measured by e.g., adherence rate, attrition rate, occurrence of adverse events, System Usability Scale (SUS) and NASA-TLX score. Secondary outcomes included measures of physical and cognitive functioning such as comfortable walking speed, maximal walking speed, dual task walking speed, Short Physical Performance Battery (SPPB), Timed Up and Go test (TUG), Color-Word Interference test (D-KEFS), Trail Making test A and B (TMT), Go/No-Go test and Step Reaction Time test (SRTT). All secondary outcome measures were assessed pre- and post-intervention. Results: Thirty-nine persons were included in the study. Average adherence rate was 99%, there were no intervention-related dropouts and no adverse events. The mean System Usability Scale (SUS) score was 83.6 and the mean NASA-TLX score 45.5. Significant time-group interaction effects were found for the dual task walking speed, the Go/No-Go test and Step Reaction Time test (SRTT). Conclusion: Exergaming is a feasible, safe and effective cognitive-motor training approach in inpatient rehabilitation of geriatric patients. Incorporating exergaming in the rehabilitation program of geriatric patients offers potential to reduce fall risk factors and to increase patients' exercise motivation and rehabilitation success.
Collapse
Affiliation(s)
- Patrizia Altorfer
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Manuela Adcock
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Department of Health, OST – Eastern Swiss University of Applied Sciences, St. Gallen, Switzerland
| | - Florian Graf
- VAMED Rehaklinik Dussnang, Clinic for Geriatric and Orthopedic Rehabilitation, Dussnang, Switzerland
| | - Eleftheria Giannouli
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
- Department of Sport, Exercise and Health, Division of Sports and Exercise Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Mira RM, Molinari Tosatti L, Sacco M, Scano A. Detailed characterization of physiological EMG activations and directional tuning of upper-limb and trunk muscles in point-to-point reaching movements. Curr Res Physiol 2021; 4:60-72. [PMID: 34746827 PMCID: PMC8562137 DOI: 10.1016/j.crphys.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, several studies have investigated upper-limb motion in a variety of scenarios including motor control, physiology, rehabilitation and industry. Such applications assess people’s kinematics and muscular performances, focusing on typical movements that simulate daily-life tasks. However, often only a limited interpretation of the EMG patterns is provided. In fact, rarely the assessments separate phasic (movement-related) and tonic (postural) EMG components, as well as the EMG in the acceleration and deceleration phases. With this paper, we provide a comprehensive and detailed characterization of the activity of upper-limb and trunk muscles in healthy people point-to-point upper limb movements. Our analysis includes in-depth muscle activation magnitude assessment, separation of phasic (movement-related) and tonic (postural) EMG activations, directional tuning, distinction between activations in the acceleration and deceleration phases. Results from our study highlight a predominant postural activity with respect to movement related muscular activity. The analysis based on the acceleration phase sheds light on finer motor control strategies, highlighting the role of each muscle in the acceleration and deceleration phase. The results of this study are applicable to several research fields, including physiology, rehabilitation, design of robots and assistive solutions, exoskeletons. Upper-limb motion is assessed with kinematics and EMG in many scenarios: motor control, physiology, rehabilitation, industry Separation of phasic (movement-related) and tonic (postural) EMG, and of acceleration and deceleration phases Comprehensive and detailed characterization of the EMG of upper-limb and trunk muscles in point-to-point upper limb movements EMG magnitude assessment, phasic and tonic EMG activations, directional tuning, acceleration and deceleration phases
Collapse
Affiliation(s)
- Robert Mihai Mira
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), 23900, Lecco, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), 23900, Lecco, Italy
| | - Marco Sacco
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), 23900, Lecco, Italy
| | - Alessandro Scano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), 23900, Lecco, Italy
| |
Collapse
|
6
|
Cogliati M, Cudicio A, Martinez-Valdes E, Tarperi C, Schena F, Orizio C, Negro F. Half marathon induces changes in central control and peripheral properties of individual motor units in master athletes. J Electromyogr Kinesiol 2020; 55:102472. [DOI: 10.1016/j.jelekin.2020.102472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
|