1
|
Compton CT, Lockyer EJ, Benson RJ, Power KE. Interhemispheric inhibition is different during arm cycling than a position- and intensity-matched tonic contraction. Exp Brain Res 2022; 240:2425-2434. [DOI: 10.1007/s00221-022-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
|
2
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
3
|
Benson RJ, Lockyer EJ, Compton CT, Power KE. Interhemispheric inhibition to the biceps brachii during arm cycling. Appl Physiol Nutr Metab 2021; 46:186-189. [DOI: 10.1139/apnm-2020-0456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This is the first demonstration of interhemispheric inhibition (IHI) during a locomotor output, arm cycling. IHI was quantified by assessing the depth of the ipsilateral silent period (iSP) evoked via transcranial magnetic stimulation of the motor cortex. There was a significant reduction in electromyography (EMG) amplitude of the iSP during cycling compared with the control EMG (16.8% ± 17.1%; p < 0.001). Depth and area for measuring the iSP during arm cycling are discussed. Novelty: This is the first study to demonstrate activation of the cortical circuit, interhemispheric inhibition, during a locomotor output.
Collapse
Affiliation(s)
- Ryan J. Benson
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Evan J. Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Chris T. Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Kevin E. Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
4
|
Lockyer EJ, Hosel K, Nippard AP, Button DC, Power KE. Corticospinal-Evoked Responses from the Biceps Brachii during Arm Cycling across Multiple Power Outputs. Brain Sci 2019; 9:brainsci9080205. [PMID: 31430879 PMCID: PMC6721304 DOI: 10.3390/brainsci9080205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background: We examined corticospinal and spinal excitability across multiple power outputs during arm cycling using a weak and strong stimulus intensity. Methods: We elicited motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) in the biceps brachii using magnetic stimulation over the motor cortex and electrical stimulation of corticospinal axons during arm cycling at six different power outputs (i.e., 25, 50, 100, 150, 200 and 250 W) and two stimulation intensities (i.e., weak vs. strong). Results: In general, biceps brachii MEP and CMEP amplitudes (normalized to maximal M-wave (Mmax)) followed a similar pattern of modulation with increases in cycling intensity at both stimulation strengths. Specifically, MEP and CMEP amplitudes increased up until ~150 W and ~100 W when the weak and strong stimulations were used, respectively. Further increases in cycling intensity revealed no changes on MEP or CMEP amplitudes for either stimulation strength. Conclusions: In general, MEPs and CMEPs changed in a similar manner, suggesting that increases and subsequent plateaus in overall excitability are likely mediated by spinal factors. Interestingly, however, MEP amplitudes were disproportionately larger than CMEP amplitudes as power output increased, despite being initially matched in amplitude, particularly with strong stimulation. This suggests that supraspinal excitability is enhanced to a larger degree than spinal excitability as the power output of arm cycling increases.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Katarina Hosel
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anna P Nippard
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|