1
|
Daoud M, Villalon SM, Salvador R, Fratello M, Kanzari K, Pizzo F, Damiani G, Garnier E, Badier JM, Wendling F, Ruffini G, Bénar C, Bartolomei F. Local and network changes after multichannel transcranial direct current stimulation using magnetoencephalography in patients with refractory epilepsy. Clin Neurophysiol 2024; 170:145-155. [PMID: 39724789 DOI: 10.1016/j.clinph.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Non-invasive neuromodulation techniques, particularly transcranial direct current stimulation (tDCS), are promising for drug-resistant epilepsy (DRE), though the mechanisms of their efficacy remain unclear. This study aims to (i) investigate tDCS neurophysiological mechanisms using a personalized multichannel protocol with magnetoencephalography (MEG) and (ii) assess post-tDCS changes in brain connectivity, correlating them with clinical outcomes. METHODS Seventeen patients with focal DRE underwent three cycles of tDCS over five days, each consisting of 40-minute stimulations targeting the epileptogenic zone (EZ) identified via stereo-EEG. MEG was performed before and after sessions to assess functional connectivity (FC) and power spectral density (PSD),estimated at source level (beamforming). RESULTS Five of fourteen patients experienced a seizure frequency reduction > 50 %. Distinct PSD changes were seen across frequency bands, with reduced FC in responders and increased connectivity in non-responders (p < 0.05). No significant differences were observed between EZ network and non-involved networks. Responders also had higher baseline FC, suggesting it could predict clinical response to tDCS in DRE. CONCLUSIONS Personalized multichannel tDCS induces neurophysiological changes associated with seizure reduction in DRE. SIGNIFICANCE These results provide valuable insights into tDCS effects on epileptic brain networks, informing future clinical applications in epilepsy treatment.
Collapse
Affiliation(s)
- Maeva Daoud
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | | | | | - Maria Fratello
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Khoubeib Kanzari
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | | | - Elodie Garnier
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Jean-Michel Badier
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | | | | | - Christian Bénar
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.
| |
Collapse
|
2
|
Ai Y, Yin M, Zhang L, Hu H, Zheng H, Feng W, Ku Y, Hu X. Effects of different types of high-definition transcranial electrical stimulation on visual working memory and contralateral delayed activity. J Neuroeng Rehabil 2024; 21:201. [PMID: 39516946 PMCID: PMC11545573 DOI: 10.1186/s12984-024-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Working memory is critical for individuals and has been found to be improved by electrical stimulation of the left dorsolateral prefrontal cortex (DLPFC). However, the effects of different types of transcranial electrical stimulation on working memory are controversial, and the underlying mechanism remains uncertain. In this study, high-definition transcranial direct current stimulation (HD-tDCS) and high-definition transcranial random noise stimulation (HD-tRNS) were applied to the DLPFC to observe the different effects on visual working memory (VWM). The aim was to explore the causal relationship between the electrical activity of the DLPFC and the posterior parietal cortex (PPC) electrical activity and the contralateral delayed activity (CDA). METHODS Thirty-three healthy subjects received HD-tDCS, HD-tRNS and sham stimulation in a random order. Stimulation was applied to the left DLPFC for 20 min. The subjects underwent a color change-detection task as our VWM task and an auditory digit span test (DST) immediately after stimulation. Event-related potential (ERP) data were collected during the VWM task. RESULTS The results revealed significant differences between the different types of HD-tES. There was a remarkable increase in VWM capacity following HD-tDCS compared with both HD-tRNS (pa = 0.038) and sham stimulation (pa = 0.038). Additionally, the CDA from the PPC differed after stimulation of the DLPFC. Both HD-tDCS and HD-tRNS expanded the maximum CDA amplitude from set size of 4 to 6, whereas after sham stimulation, the maximum CDA was maintained at a set size of 4. Compared with the sham condition, only HD-tDCS induced a noteworthy increase in CDA amplitude (pa = 0.012). Notably, a significant correlation emerged between the mean CDA amplitude and VWM capacity (p < 0.001, r = - 0.402). CONCLUSION These findings underscore the ability of HD-tDCS to target the DLPFC to augment working memory capacity while concurrently amplifying CDA amplitudes in the PPC through the frontoparietal network. Trial registration ChiCTR2300074898.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Haojie Hu
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY, 10003, USA
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Xie T, Li M, Hao C, Peng Y, Luo W, Ma N. How the time-of-day affects the EEG signatures of vigilance fluctuation. Chronobiol Int 2023; 40:1059-1071. [PMID: 37605473 DOI: 10.1080/07420528.2023.2250439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Previous research suggested the homeostatic effect on the top-down control system as a major factor for daytime vigilance decrement, yet how it alters the cognitive processes of vigilance remains unclear. Using EEG, the current study measured the vigilance of 28 participants under three states: the morning, the midafternoon after napping and no-nap. The drift-diffusion model was applied to decompose vigilant reaction time into decision and non-decision components. From morning to midafternoon, vigilance declined during sustained wakefulness, but remained stable after midday napping. Increased sleep pressure negatively affected decision time and drift rate, but did not significantly alter the non-decision process. Frontocentral N2 amplitude decreased from morning to no-nap afternoon, associated with slowing decision time. In contrast, parietal P3 had no diurnal alterations during sustained wakefulness, but enhanced after napping. Pre-stimulus parietooccipital alpha power enhanced under high sleep pressure relative to low, accompanied by more lapses in no-nap vs. post-napping conditions. The homeostasis effect is a major contributor to daily vigilance fluctuation, specifically targeting top-down control processes during the pre-stimulus and decision-making stages. Under the influence of sleep homeostasis, the speed of decision-making declines with degradation in target monitoring from morning to afternoon, leading to post-noon vigilance decrement.
Collapse
Affiliation(s)
- Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Mingzhu Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Yudi Peng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Wei Luo
- School of Architecture and Urban Planning, Shenzhen University, Shenzhen, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
5
|
Zhou L, Xu Y, Song F, Li W, Gao F, Zhu Q, Qian Z. The effect of TENS on sleep: A pilot study. Sleep Med 2023; 107:126-136. [PMID: 37167876 DOI: 10.1016/j.sleep.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Insomnia is the second most common neuropsychiatric disorder, but the current treatments are not very effective. There is therefore an urgent need to develop better treatments. Transcutaneous electrical nerve stimulation (TENS) may be a promising means of treating insomnia. OBJECTIVE This work aims to explore whether and how TENS modulate sleep and the effect of stimulation waveforms on sleep. METHODS Forty-five healthy subjects participated in this study. Electroencephalography (EEG) data were recorded before and after four mode low-frequency (1 Hz) TENS with different waveforms, which were formed by superimposing sine waves of different high frequencies (60-210 Hz) and low frequencies (1-6 Hz). The four waveform modes are formed by combining sine waves of varying frequencies. Mode 1 (M1) consists of a combination of high frequencies (60-110 Hz) and low frequencies (1-6 Hz). Mode 2 (M2) is made up of high frequencies (60-210 Hz) and low frequencies (1-6 Hz). Mode 3 (M3) consists of high frequencies (110-160 Hz) and low frequencies (1-6 Hz), while mode 4 (M4) is composed of high frequencies (160-210 Hz) and low frequencies (1-6 Hz). For M1, M3 and M4, the high frequency portions of the stimulus waveforms account for 50%, while for M2, the high frequency portion of the waveform accounts for 65%. For each mode, the current intensities ranged from 4 mA to 7 mA, with values for each participant adjusted according to individual tolerance. During stimulation, the subjects were stimulated at the greater occipital nerve by the four mode TENS. RESULTS M1, M3, and M4 slowed down the frequency of neural activity, broadened the distribution of theta waves, and caused a decrease in activity in wakefulness-related regions and an increase in activity in sleep-related regions. However, M2 has the opposite modulation effect. CONCLUSION These results indicated that low-frequency TENS (1 Hz) may facilitate sleep in a waveform-specific manner. Our findings provide new insights into the mechanisms of sleep modulation by TENS and the design of effective insomnia treatments.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Yixuan Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fanlei Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|
6
|
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol Behav 2023; 261:114073. [PMID: 36608913 DOI: 10.1016/j.physbeh.2023.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The present review considers all papers published on the topic up to the end of the year 2022. Transcranial random noise stimulation (tRNS) is a non-invasive neuromodulation technique introduced about 15 years ago whose use is becoming increasingly widespread in neuroscience. It consists of the application over the scalp of a weak, white noise-like current, through electrodes having a surface of several square centimetres, for a duration ranging from seconds to minutes. Despite its relatively low spatial and temporal resolution, tRNS has well defined effects on central motor excitability, which critically depend on stimulation parameters. These effects seem to be chiefly based on an effect on neuronal membrane sodium channels and can last much longer than the stimulation itself. While the effects at the cellular level in the motor cortex are becoming progressively clear, much more studies are needed to understand the effects of tRNS on motor behaviour and performance, where initial research results are nevertheless promising, in both basic and applied research.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma "Foro Italico", Italy.
| | - Davide Rivolta
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Valerio Manippa
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
7
|
Transcranial high-frequency random noise stimulation does not modulate Nogo N2 and Go/Nogo reaction times in somatosensory and auditory modalities. Sci Rep 2023; 13:3014. [PMID: 36810889 PMCID: PMC9944265 DOI: 10.1038/s41598-023-30261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Transcranial random noise stimulation (tRNS) of the primary sensory or motor cortex can improve sensorimotor functions by enhancing circuit excitability and processing fidelity. However, tRNS is reported to have little effect on higher brain functions, such as response inhibition when applied to associated supramodal regions. These discrepancies suggest differential effects of tRNS on the excitability of the primary and supramodal cortex, although this has not been directly demonstrated. This study examined the effects of tRNS on supramodal brain regions on somatosensory and auditory Go/Nogo task performance, a measure of inhibitory executive function, while simultaneously recording event-related potentials (ERPs). Sixteen participants received sham or tRNS stimulation of the dorsolateral prefrontal cortex in a single-blind crossover design study. Neither sham nor tRNS altered somatosensory and auditory Nogo N2 amplitudes, Go/Nogo reaction times, or commission error rates. The results suggest that current tRNS protocols are less effective at modulating neural activity in higher-order cortical regions than in the primary sensory and motor cortex. Further studies are required to identify tRNS protocols that effectively modulate the supramodal cortex for cognitive enhancement.
Collapse
|
8
|
Yeh TC, Huang CCY, Chung YA, Im JJ, Lin YY, Ma CC, Tzeng NS, Chang HA. High-Frequency Transcranial Random Noise Stimulation Modulates Gamma-Band EEG Source-Based Large-Scale Functional Network Connectivity in Patients with Schizophrenia: A Randomized, Double-Blind, Sham-Controlled Clinical Trial. J Pers Med 2022; 12:jpm12101617. [PMID: 36294755 PMCID: PMC9605300 DOI: 10.3390/jpm12101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Schizophrenia is associated with increased resting-state large-scale functional network connectivity in the gamma frequency. High-frequency transcranial random noise stimulation (hf-tRNS) modulates gamma-band endogenous neural oscillations in healthy individuals through the application of low-amplitude electrical noises. Yet, it is unclear if hf-tRNS can modulate gamma-band functional connectivity in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS (N = 17) and sham stimulation (N = 18) for treating negative symptoms in 35 schizophrenia patients. Short continuous currents without neuromodulatory effects were applied in the sham group to mimic real-stimulation sensations. We used electroencephalography to investigate if a five-day, twice-daily hf-tRNS protocol modulates gamma-band (33-45 Hz) functional network connectivity in schizophrenia. Exact low resolution electromagnetic tomography (eLORETA) was used to compute intra-cortical activity from regions within the default mode network (DMN) and fronto-parietal network (FPN), and functional connectivity was computed using lagged phase synchronization. We found that hf-tRNS reduced gamma-band within-DMN and within-FPN connectivity at the end of stimulation relative to sham stimulation. A trend was obtained between the change in within-FPN functional connectivity from baseline to the end of stimulation and the improvement of negative symptoms at the one-month follow-up (r = -0.49, p = 0.055). Together, our findings suggest that hf-tRNS has potential as a network-level approach to modulate large-scale functional network connectivity pertaining to negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 21431, Korea
| | - Jooyeon Jamie Im
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 21431, Korea
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan
| | - Chin-Chao Ma
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei 112003, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
- Correspondence: ; Tel.: +011-886-2-8792-3311 (ext. 17389); Fax: +011-886-2-8792-7221
| |
Collapse
|
9
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
10
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
11
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
12
|
Vogeti S, Boetzel C, Herrmann CS. Entrainment and Spike-Timing Dependent Plasticity – A Review of Proposed Mechanisms of Transcranial Alternating Current Stimulation. Front Syst Neurosci 2022; 16:827353. [PMID: 35283735 PMCID: PMC8909135 DOI: 10.3389/fnsys.2022.827353] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Specific frequency bands of neural oscillations have been correlated with a range of cognitive and behavioral effects (e.g., memory and attention). The causal role of specific frequencies may be investigated using transcranial alternating current stimulation (tACS), a non-invasive brain stimulation method. TACS involves applying a sinusoidal current between two or more electrodes attached on the scalp, above neural regions that are implicated in cognitive processes of interest. The theorized mechanisms by which tACS affects neural oscillations have implications for the exact stimulation frequency used, as well as its anticipated effects. This review outlines two main mechanisms that are thought to underlie tACS effects – entrainment, and spike-timing dependent plasticity (STDP). Entrainment suggests that the stimulated frequency synchronizes the ongoing neural oscillations, and is thought to be most effective when the stimulated frequency is at or close to the endogenous frequency of the targeted neural network. STDP suggests that stimulation leads to synaptic changes based on the timing of neuronal firing in the target neural network. According to the principles of STDP, synaptic strength is thought to increase when pre-synaptic events occur prior to post-synaptic events (referred to as long-term potentiation, LTP). Conversely, when post-synaptic events occur prior to pre-synaptic events, synapses are thought to be weakened (referred to as long-term depression, LTD). In this review, we summarize the theoretical frameworks and critically review the tACS evidence for each hypothesis. We also discuss whether each mechanism alone can account for tACS effects or whether a combined account is necessary.
Collapse
Affiliation(s)
- Sreekari Vogeti
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
| | - Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
- *Correspondence: Christoph S. Herrmann,
| |
Collapse
|
13
|
Ghin F, Beste C, Stock AK. Neurobiological mechanisms of control in alcohol use disorder - moving towards mechanism-based non-invasive brain stimulation treatments. Neurosci Biobehav Rev 2021; 133:104508. [PMID: 34942268 DOI: 10.1016/j.neubiorev.2021.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is characterized by excessive habitual drinking and loss of control over alcohol intake despite negative consequences. Both of these aspects foster uncontrolled drinking and high relapse rates in AUD patients. Yet, common interventions mostly focus on the phenomenological level, and prioritize the reduction of craving and withdrawal symptoms. Our review provides a mechanistic understanding of AUD and suggests alternative therapeutic approaches targeting the mechanisms underlying dysfunctional alcohol-related behaviours. Specifically, we explain how repeated drinking fosters the development of rigid drinking habits and is associated with diminished cognitive control. These behavioural and cognitive effects are then functionally related to the neurobiochemical effects of alcohol abuse. We further explain how alterations in fronto-striatal network activity may constitute the neurobiological correlates of these alcohol-related dysfunctions. Finally, we discuss limitations in current pharmacological AUD therapies and suggest non-invasive brain stimulation (like TMS and tDCS interventions) as a potential addition/alternative for modulating the activation of both cortical and subcortical areas to help re-establish the functional balance between controlled and automatic behaviour.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany.
| |
Collapse
|