1
|
Fu Y, Wang C, Zhang L, Ji D, Xiang A, Qi J, Zhao R, Wu L, Jin S, Zhang Q. The effectiveness of theta burst stimulation for motor recovery after stroke: a systematic review. Eur J Med Res 2024; 29:568. [PMID: 39609900 PMCID: PMC11605871 DOI: 10.1186/s40001-024-02170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Stroke is the second leading cause of death and the third leading cause of disability worldwide. Motor dysfunction is a common sequela, which seriously affects the lives of patients. Theta burst stimulation (TBS) is a new transcranial magnetic therapy for improving motor dysfunction after stroke. However, there remains a lack of studies on the mechanism, theoretical model, and effectiveness of TBS in improving motor dysfunction following stroke. OBJECTIVE This paper provides a comprehensive overview and assessment of the current impact of TBS on motor rehabilitation following stroke and analyzes potential factors contributing to treatment effect disparities. The aim is to offer recommendations for further refining the TBS treatment approach in subsequent clinical studies while also furnishing evidence for devising tailored rehabilitation plans for stroke patients. METHODS This study was conducted following PRISMA guidelines. PubMed, Embase, Web of Science, and the Cochrane Library were searched systematically from the establishment of the database to February 2024. Relevant studies using TBS to treat patients with motor dysfunction after stroke will be included. Data on study characteristics, interventions, outcome measures, and primary outcomes were extracted. The Modified Downs and Black Checklist was used to assess the potential bias of the included studies, and a narrative synthesis of the key findings was finally conducted. RESULTS The specific mechanism of TBS in improving motor dysfunction after stroke has not been fully elucidated, but it is generally believed that TBS can improve the functional prognosis of patients by regulating motor cortical excitability, inducing neural network reorganization, and regulating cerebral circulation metabolism. Currently, most relevant clinical studies are based on the interhemispheric inhibition model (IHI), the vicariation model, and the bimodal balance-recovery model. Many studies have verified the effectiveness of TBS in improving the motor function of stroke patients, but the therapeutic effect of some studies is controversial. CONCLUSION Our results show that TBS has a good effect on improving motor function in stroke patients, but more large-scale, high-quality, multicenter studies are still necessary in the future to further clarify the mechanism of TBS and explore the optimal TBS treatment.
Collapse
Affiliation(s)
- Yanxin Fu
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Chengshuo Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Dongqi Ji
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Aomeng Xiang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Jingman Qi
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Ruoxuan Zhao
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Shasha Jin
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Qin Zhang
- Beijing Xiaotangshan Hospital, Beijing, China.
| |
Collapse
|
2
|
Li XY, Hu R, Lou TX, Liu Y, Ding L. Global research trends in transcranial magnetic stimulation for stroke (1994-2023): promising, yet requiring further practice. Front Neurol 2024; 15:1424545. [PMID: 39268062 PMCID: PMC11390666 DOI: 10.3389/fneur.2024.1424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Rong Hu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Tian-Xiao Lou
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Yang Liu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Ling Ding
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| |
Collapse
|
3
|
Bonnal J, Ozsancak C, Prieur F, Auzou P. Video mirror feedback induces more extensive brain activation compared to the mirror box: an fNIRS study in healthy adults. J Neuroeng Rehabil 2024; 21:78. [PMID: 38745322 PMCID: PMC11092069 DOI: 10.1186/s12984-024-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION NCT04738851.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France.
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France.
- CIAMS, Université d'Orléans, Orléans, 45067, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France
- CIAMS, Université d'Orléans, Orléans, 45067, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| |
Collapse
|
4
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
5
|
Qi S, Tian M, Rao Y, Sun C, Li X, Qiao J, Huang ZG. Applying transcranial magnetic stimulation to rehabilitation of poststroke lower extremity function and an improvement: Individual-target TMS. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1636. [PMID: 36437474 DOI: 10.1002/wcs.1636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Stroke is the leading cause of disability globally in need of novel and effective methods of rehabilitation. Intermittent theta burst stimulation (iTBS) has been adopted as a Level B recommendation for lower limb spasticity in guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Nonetheless, the methodological differences and deficits of existing work bring about heterogenous results and therefore limit the universal clinical use of rTMS in lower extremity (LE) rehabilitation. The variation of stimulated targets across motor cortex contributes mainly to these heterogeneities. This narrative review includes studies of rTMS on LE motor function rehabilitation in patients after stroke until now. Some analyses of brain imaging and electromagnetic simulation and quantification through computational modeling were also performed. rTMS appears capable of fostering LE motor rehabilitation after stroke, but the actually stimulated targets are considerably bias making it difficult to confirm effectiveness. The main reason for this phenomenon is probably inaccurate targeting of motor cortical leg representation. An underlying updated method is proposed as Individual-Target TMS (IT-TMS) combined with brain imaging. rTMS is a promising validated method for LE function regaining. Future studies should systematically compare the effects of IT-TMS with traditional rTMS using large samples in random clinical trials. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Shun Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Meng Tian
- National TCM Academic School Inheritance Studio Project-Chang'an Mi Shi Internal Medicine School Inheritance Studio, Xi'an, Shaanxi, People's Republic of China
| | - Yang Rao
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Chuanzhu Sun
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Jin Qiao
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Tian D, Izumi SI. TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity. JAPANESE JOURNAL OF COMPREHENSIVE REHABILITATION SCIENCE 2023; 14:1-9. [PMID: 37859791 PMCID: PMC10585015 DOI: 10.11336/jjcrs.14.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 10/21/2023]
Abstract
Tian D, Izumi S. TMS and neocortical neurons: an integrative review on the micro-macro connection in neuroplasticity. Jpn J Compr Rehabil Sci 2023; 14: 1-9. Neuroplasticity plays a pivotal role in neuroscience and neurorehabilitation as it bridges the organization and reorganization properties of the brain. Among the numerous neuroplastic protocols, transcranial magnetic stimulation (TMS) is a well-established non-invasive protocol to induce plastic changes in the brain. Here, we review the findings of four plasticity-inducing TMS protocols in the human motor cortex with relatively evident mechanisms: conventional repetitive TMS (rTMS), theta-burst stimulation (TBS), quadripulse stimulation (QPS) and paired associative stimulation (PAS). Based on the reviewed evidence and a preliminary TMS neurocytological model proposed in our previous report, we further integrate the neurophysiological evidence and plasticity rules of these protocols to present an updated micro-macro connection model between neocortical neurons and the neurophysiological evidence in TMS. This prototypical model will guide further efforts to understand the neural circuit of the motor cortex, the mechanisms of TMS, and the advance of neuroplasticity technologies and their outcomes.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|