1
|
Spatial Information of Somatosensory Stimuli in the Brain: Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data. Neural Plast 2020; 2020:8307580. [PMID: 32684924 PMCID: PMC7341392 DOI: 10.1155/2020/8307580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However, the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied. We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective We aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface, (2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain regions encoding the spatial information of somatosensory stimuli. Methods Fifteen healthy participants completed two functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper and lower limbs (two sites each) for 5 min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with randomly labeled training data (n = 10,000). Searchlight analysis was conducted to identify brain regions associated with significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results For the four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q < 0.01). The searchlight analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more accurate than those due to chance (p < 0.01). On the other hand, the same classifier did not predict stimulated locations accurately for touch stimulation (mean accuracy, 0.25; q = 0.66). For binary classification (discriminating between two stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both acupuncture (mean accuracy, 0.63; q < 0.001) and touch stimulation (mean accuracy, 0.60; q < 0.01). Searchlight analysis revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were significantly more accurate compared to predictions based on chance (p < 0.05). Conclusion Our findings suggest that the SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural biomarkers for pain and other sensory percepts in the future.
Collapse
|
2
|
Favril L, Mouraux A, Sambo CF, Legrain V. Shifting attention between the space of the body and external space: Electrophysiological correlates of visual-nociceptive crossmodal spatial attention. Psychophysiology 2014; 51:464-77. [DOI: 10.1111/psyp.12157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Louis Favril
- Department of Experimental Clinical and Health Psychology; Ghent University; Ghent Belgium
| | - André Mouraux
- Institute of Neuroscience; Université catholique de Louvain; Brussels Belgium
| | - Chiara F. Sambo
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
| | - Valéry Legrain
- Department of Experimental Clinical and Health Psychology; Ghent University; Ghent Belgium
- Institute of Neuroscience; Université catholique de Louvain; Brussels Belgium
| |
Collapse
|
3
|
Legrain V, Mancini F, Sambo C, Torta D, Ronga I, Valentini E. Cognitive aspects of nociception and pain. Bridging neurophysiology with cognitive psychology. Neurophysiol Clin 2012; 42:325-36. [DOI: 10.1016/j.neucli.2012.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 01/01/2023] Open
|
4
|
A supramodal representation of the body surface. Neuropsychologia 2010; 49:1194-1201. [PMID: 21199662 DOI: 10.1016/j.neuropsychologia.2010.12.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/01/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022]
Abstract
The ability to accurately localize both tactile and painful sensations on the body is one of the most important functions of the somatosensory system. Most accounts of localization refer to the systematic spatial relation between skin receptors and cortical neurons. The topographic organization of somatosensory neurons in the brain provides a map of the sensory surface. However, systematic distortions in perceptual localization tasks suggest that localizing a somatosensory stimulus involves more than simply identifying specific active neural populations within a somatotopic map. Thus, perceptual localization may depend on both afferent inputs and other unknown factors. In four experiments, we investigated whether localization biases vary according to the specific skin regions and subset of afferent fibers stimulated. We represented localization errors as a 'perceptual map' of skin locations. We compared the perceptual maps of stimuli that activate Aβ (innocuous touch), Aδ (pinprick pain), and C fibers (non-painful heat) on both the hairy and glabrous skin of the left hand. Perceptual maps exhibited systematic distortions that strongly depended on the skin region stimulated. We found systematic distal and radial (i.e., towards the thumb) biases in localization of touch, pain, and heat on the hand dorsum. A less consistent proximal bias was found on the palm. These distortions were independent of the population of afferent fibers stimulated, and also independent of the response modality used to report localization. We argue that these biases are likely to have a central origin, and result from a supramodal representation of the body surface.
Collapse
|
5
|
Mazzola L, Isnard J, Peyron R, Guénot M, Mauguière F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009; 146:99-104. [PMID: 19665303 DOI: 10.1016/j.pain.2009.07.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
The question whether pain encoding in the human insula shows some somatotopic organization is still pending. We studied 142 patients undergoing depth stereotactic EEG (SEEG) exploration of the insular cortex for pre-surgical evaluation of epilepsy. 472 insular electrical stimulations were delivered, of which only 49 (10.5%) elicited a painful sensation in 38 patients (27%). Most sites where low intensity electric stimulation produced pain, without after-discharge or concomitant visually detectable change in EEG activity outside the insula, were located in the posterior two thirds of the insula. Pain was located in a body area restricted to face, upper limb or lower limb for 27 stimulations (55%) and affected more than one of these regions for all others. The insular cortex being oriented parallel to the medial sagittal plane we found no significant difference between body segment representations in the medio-lateral axis. Conversely a somatotopic organization of sites where stimulation produced pain was observed along the rostro-caudal and vertical axis of the insula, showing a face representation rostral to those of upper and lower limbs, with an upper limb representation located above that of the lower limb. These data suggest that, in spite of large and often bilateral receptive fields, pain representation shows some degree of somatotopic organization in the human insula.
Collapse
Affiliation(s)
- L Mazzola
- INSERM U 879 (Central Integration of Pain), Lyon, St. Etienne, France.
| | | | | | | | | |
Collapse
|
6
|
Boyle Y, El-Deredy W, Montes EM, Bentley DE, Jones AK. Selective modulation of nociceptive processing due to noise distraction. Pain 2008; 138:630-640. [DOI: 10.1016/j.pain.2008.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 01/28/2008] [Accepted: 02/20/2008] [Indexed: 01/21/2023]
|
7
|
Abstract
Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related functional magnetic resonance imaging, here we compare the brain areas recruited, in female volunteers, by the observation of painful, disgusting, or neutral stimuli delivered to one hand or foot. Several cortical foci were activated by the observation of both painful and disgusting video clips, including portions of the medial prefrontal cortex, anterior, mid-, and posterior cingulate cortex, left posterior insula, and right parietal operculum. Signal changes in perigenual cingulate and left anterior insula were linearly related to the perceived unpleasantness, when the individual differences in susceptibility to aversive stimuli were taken into account. Painful scenes selectively induced activation of left parietal foci, including the parietal operculum, the postcentral gyrus, and adjacent portions of the posterior parietal cortex. In contrast, brain foci specific for disgusting scenes were found in the posterior cingulate cortex. These data show both similarities and differences between the brain patterns of activity related to the observation of noxious or disgusting stimuli. Namely, the parietal cortex appears to be particularly involved in the recognition of noxious environmental stimuli, suggesting that areas involved in sensory aspects of pain are specifically triggered by observing noxious events.
Collapse
|
8
|
Hatem SM, Plaghki L, Mouraux A. How response inhibition modulates nociceptive and non-nociceptive somatosensory brain-evoked potentials. Clin Neurophysiol 2007; 118:1503-16. [PMID: 17475550 DOI: 10.1016/j.clinph.2007.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/02/2007] [Accepted: 03/19/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To examine and compare the modulation of nociceptive somatosensory laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) by brain processes related to response inhibition. METHODS A warning auditory tone was followed by either an electrical or a laser stimulus. Subjects performed a Go/Nogo task in which they were instructed to respond to the laser stimulus and refrain from responding to the electrical stimulus in half of the runs. In the other half, they performed the opposite. The paradigm allowed a direct, within-subject comparison of the electrophysiological correlates of brain processes related to the Go/Nogo task in both somatosensory submodalities. RESULTS In the Nogo-condition, SEPs displayed an enhanced N120 (early Nogo-response), a reduced vertex P240 and enhanced frontal P3 (late Nogo-responses). In contrast, LEPs only displayed late Nogo-related responses (reduced vertex P350 and enhanced frontal P3). CONCLUSIONS The early Nogo-related enhancement of SEPs may reflect brain processes specific to the processing of non-nociceptive somatosensory stimuli. Later components of the Nogo-response may reflect cortical activity common to the processing of both nociceptive and non-nociceptive somatosensory stimuli. SIGNIFICANCE Response inhibition significantly modulates both LEPs and SEPs. Part of these activities may be specific of the eliciting stimulus modality.
Collapse
Affiliation(s)
- S M Hatem
- Unité de Réadaptation et de Médecine Physique, Université Catholique de Louvain, Belgium.
| | | | | |
Collapse
|
9
|
Kanda M. Event-related components of laser evoked potentials (LEPs) in pain stimulation: recognition of infrequency, location, and intensity of pain. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2006; 59:61-6. [PMID: 16893094 DOI: 10.1016/s1567-424x(09)70013-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Masutaro Kanda
- Department of Brain Pathophysiology, Human Brain Research Center Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
10
|
Kakigi R, Nakata H, Inui K, Hiroe N, Nagata O, Honda M, Tanaka S, Sadato N, Kawakami M. Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation. Eur J Pain 2005; 9:581-9. [PMID: 16139187 DOI: 10.1016/j.ejpain.2004.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 12/10/2004] [Indexed: 11/25/2022]
Abstract
We recorded magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) following noxious laser stimulation in a Yoga Master who claims not to feel pain when meditating. As for background MEG activity, the power of alpha frequency bands peaking at around 10 Hz was much increased during meditation over occipital, parietal and temporal regions, when compared with the non-meditative state, which might mean the subject was very relaxed, though he did not fall asleep, during meditation. Primary pain-related cortical activities recorded from primary (SI) and secondary somatosensory cortices (SII) by MEG were very weak or absent during meditation. As for fMRI recording, there were remarkable changes in levels of activity in the thalamus, SII-insula (mainly the insula) and cingulate cortex between meditation and non-meditation. Activities in all three regions were increased during non-meditation, similar to results in normal subjects. In contrast, activities in all three regions were weaker during meditation, and the level was lower than the baseline in the thalamus. Recent neuroimaging and electrophysiological studies have clarified that the emotional aspect of pain perception mainly involves the insula and cingulate cortex. Though we cannot clearly explain this unusual condition in the Yoga Master, a change of multiple regions relating to pain perception could be responsible, since pain is a complex sensory and emotional experience.
Collapse
Affiliation(s)
- Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Nishigo-Naka 38, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bingel U, Lorenz J, Glauche V, Knab R, Gläscher J, Weiller C, Büchel C. Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 2004; 23:224-32. [PMID: 15325369 DOI: 10.1016/j.neuroimage.2004.05.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 05/05/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022] Open
Abstract
The ability to locate pain plays a pivotal role in immediate defense and withdrawal behavior. However, how the brain localizes nociceptive information without additional information from somatotopically organized mechano-receptive pathways is not well understood. To investigate the somatotopic organization of the nociceptive system, we applied Thulium-YAG-laser evoked pain stimuli, which have no concomitant tactile component, to the dorsum of the left hand and foot in randomized order. We used single-trial functional magnetic resonance imaging (fMRI) to assess differential hemodynamic responses to hand and foot stimulation for the group and in a single subject approach. The primary somatosensory cortex (SI) shows a clear somatotopic organization ipsi- and contralaterally to painful stimulation. Furthermore, a differential representation of hand and foot stimulation appeared within the contralateral opercular--insular region of the secondary somatosensory cortex (SII). This result provides evidence that both SI and SII encode spatial information of nociceptive stimuli without additional information from the tactile system and highlights the concept of a redundant representation of basic discriminative stimulus features in human somatosensory cortices, which seems adequate in view of the evolutionary importance of pain perception.
Collapse
Affiliation(s)
- U Bingel
- Cognitive Neuroscience Laboratory, Department of Neurology, Hamburg University Medical School, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bentley DE, Watson A, Treede RD, Barrett G, Youell PD, Kulkarni B, Jones AKP. Differential effects on the laser evoked potential of selectively attending to pain localisation versus pain unpleasantness. Clin Neurophysiol 2004; 115:1846-56. [PMID: 15261863 DOI: 10.1016/j.clinph.2004.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2004] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine the effects on the laser evoked potential (LEP) of selectively attending to affective (unpleasantness) versus sensory-discriminative (localisation) components of pain. METHODS LEPs, elicited by painful CO2 laser stimulation of two areas of the right forearm, were recorded from 62 electrodes in 21 healthy volunteers, during three tasks that were matched for generalised attention: Localisation (report stimulus location), Unpleasantness (report stimulus unpleasantness), Control (report pain detection). LEP components are named by polarity, latency, and electrode. RESULTS N300-T7 peak amplitude was significantly greater during Localisation than Unpleasantness. The difference in N300-T7 amplitude between Localisation and Control approached significance, suggesting an increased amplitude in Localisation compared with Control, rather than a reduced amplitude in Unpleasantness. Peak amplitude, latency, and topography of N300-FCz, P450, P600-800 (early P3) and P800-1000 (late P3) did not differ significantly between tasks. CONCLUSIONS These results suggest that the N300-T7 LEP peak reflects the activity of cerebral generators involved in the localisation of pain. The topography of N300-T7 is consistent with a source in contralateral secondary somatosensory cortex/insula and maybe primary somatosensory cortex. SIGNIFICANCE This study confirms a role of the lateral pain system in the localisation of pain, and distinguishes it from stimulus novelty or attention.
Collapse
Affiliation(s)
- D E Bentley
- Human Pain Research Group, University of Manchester Rheumatic Diseases Centre, Clinical Sciences Building, Hope Hospital, Salford M6 8HD, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Mechanisms of human nociception can be studied by the use of CO2 laser stimulation, which selectively activates nociceptive receptors, and by the use of various noninvasive techniques. In addition to the contralateral thalamus, at least several cortical areas including the contralateral SI, bilateral SII, anterior cingulated cortex, and insular cortices are involved in the pain sensation/perception. Pain perception (Fig. 8) is unique because these cortical structures seem to be activated in parallel at nearly the same latency after the stimulus presentation. SI seems to play a role in basic pain processing while SII and insula are involved in higher functions of pain perception. Emotional aspects of pain perception are mediated by anterior cingulate cortex and posterior insula/parietal operculum.
Collapse
Affiliation(s)
- Hiroshi Shibasaki
- Department of Neurology and Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan.
| |
Collapse
|
14
|
Schlereth T, Baumgärtner U, Magerl W, Stoeter P, Treede RD. Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 2003; 20:441-54. [PMID: 14527605 DOI: 10.1016/s1053-8119(03)00345-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pain perception comprises sensory and emotional dimensions. While the emotional experience is thought to be represented in the right hemisphere, we here report a left-hemisphere dominance for the early sensory component of pain perception using brain electrical source analysis of laser-evoked potentials. Ten right-handed subjects underwent several series of laser radiant heat stimuli to pairs of parallel lines on the dorsum of the left or right hand. Stimulus location and intensity were randomised independently. The sensory-discriminative aspects of pain were emphasised by asking the subjects to perform either a spatial or an intensity discrimination task and were contrasted with active distraction by mental arithmetics. Pain ratings obtained after each of the laser stimulus series revealed an analgesic effect of distraction (27%, P < 0.001). Four equivalent dipole sources were active in the latency range of 100-200 ms (bilateral operculoinsular cortex, midcingulate gyrus, postcentral gyrus). The sources in the operculoinsular cortex exhibited (a) the shortest peak latency (155 +/- 6 ms), (b) the most pronounced enhancement during spatial and intensity discrimination tasks compared to active distraction (43%, P < 0.001), and (c) a significantly stronger source activity in the left hemisphere independent of stimulation side (23%, P < 0.05). The distribution of these sources extended into the dorsal insula. The postcentral source had the longest peak latency (180 +/- 7 ms); its source strength was task-dependent (25%, P = 0.051) but exhibited no hemisphere dominance. The midcingulate source had an intermediate peak latency (169 +/- 7 ms). Its source strength was modulated by tasks, but this modulation was significant only in the latency range >200 ms (46%, P < 0.001). These findings suggest a dominant role of the left frontal operculum and adjacent dorsal insula in the early sensory-discriminative dimensions of pain processing. This region has been proposed to be the cortical projection target of nociceptive pathways from the spinal cord to the ventroposteroinferior and ventromedial (its posterior part: VMpo) thalamic nuclei.
Collapse
Affiliation(s)
- Tanja Schlereth
- Institute of Physiology and Pathophysiology, Johannes-Gutenberg-University, Saarstrasse 21, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
15
|
Kanda M, Mima T, Oga T, Matsuhashi M, Toma K, Hara H, Satow T, Nagamine T, Rothwell JC, Shibasaki H. Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clin Neurophysiol 2003; 114:860-6. [PMID: 12738431 DOI: 10.1016/s1388-2457(03)00034-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Although recent neuroimaging studies have shown that painful stimuli can produce activity in multiple cortical areas, the question remains as to the role of each area in particular aspects of human pain perception. To solve this problem we used transcranial magnetic stimulation (TMS) as an 'interference approach' tool to test the consequence on pain perception of disrupting activity in several areas of cortex known to be activated by painful input. METHODS Weak CO(2) laser stimuli at an intensity around the threshold for pain were given to the dorsum of the left hand in 9 normal subjects. At variable delays (50, 150, 250, 350 ms) after the onset of the laser stimulus, pairs of TMS pulses (dTMS: interpulse interval of 50 ms, and stimulus intensity of 120% resting motor threshold) were applied in separate blocks of trials over either the right sensorimotor cortex (SMI), midline occipital cortex (OCC), second somatosensory cortex (SII), or medial frontal cortex (MFC). Subjects were instructed to judge whether or not the stimulus was painful and to point to the stimulated spot on a drawing of subject's hand. RESULTS Subjects judged that the stimulus was painful on more trials than control when dTMS was delivered over SMI at 150-200 ms after the laser stimulus; the opposite occurred when dTMS was delivered over MFC at 50-100 ms. dTMS over the SII or OCC failed to alter the pain threshold. CONCLUSIONS These results suggest that TMS to SMI can facilitate whereas stimulation over MFC suppresses central processing of pain perception. Since there was no effect of dTMS at any of the scalp sites on the localization task, the cortical locus for point localization of pain may be different from that for perception of pain intensity or may involve a more complex mechanism than the latter. SIGNIFICANCE This is the first report that TMS of SMI facilitates while that of MFC suppresses the central processing of pain perception. This raises the possibility of using TMS as a therapeutic device to control pain.
Collapse
Affiliation(s)
- Masutaro Kanda
- Human Brain Research Center, Kyoto University Graduate School of Medicine and Faculty of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kanda M, Matsuhashi M, Sawamoto N, Oga T, Mima T, Nagamine T, Shibasaki H. Cortical potentials related to assessment of pain intensity with visual analogue scale (VAS). Clin Neurophysiol 2002; 113:1013-24. [PMID: 12088694 DOI: 10.1016/s1388-2457(02)00125-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To elucidate brain mechanisms underlying the psychophysical processes to measure pain intensity, pain-related somatosensory evoked potentials (pain SEPs) following painful CO(2) laser stimulation were studied while employing a task to measure intensity of pain on a visual analogue scale (VAS). METHODS In 12 healthy subjects, 3 kinds of CO(2) laser stimuli, different in intensity as determined by irradiation duration of 40, 60 and 80ms, were randomly delivered to the left hand dorsum at an irregular interval of 4-6s. The subject was requested to assess the intensity of each pain stimulus and point to the VAS scale by moving a pointer held with the right hand according to the subjective feeling of pain sensation (pain intensity assessment (PIA) condition). For the control condition, the subject moved the pointer to the midpoint of the VAS line irrespective of the pain intensity (control motor task condition). Electroencephalograms were recorded from 21 scalp electrodes, referenced to the linked earlobes, and were averaged time-locked to the stimulus onset for each stimulus duration as well as for each task condition. RESULTS The VAS scores were 2.8+/-0.5/10 for the stimulus of 40ms duration, 4.8+/-0.8/10 for 60ms and 6.1+/-0.9/10 for 80ms, and showed a highly significant positive correlation with the stimulus duration. Following the early components of pain SEPs which were affected by stimulus duration but not modulated by task conditions, a surface-positive peak at latency of 612-642ms was identified exclusively under the PIA condition regardless of the stimulus intensity and was called 'intensity assessment-related potential (IAP)'. The IAP was maximal at the midline parietal area and symmetrically distributed over the scalp. Neither latency nor amplitude of the IAP was significantly different among the 3 different stimulus intensities. CONCLUSIONS IAP is an event-related potential (ERP) associated with assessment of pain intensity but not influenced by pain intensity itself. From its scalp distribution, it can be assumed that the assessment of pain intensity involves multiple areas in both hemispheres.
Collapse
Affiliation(s)
- Masutaro Kanda
- Department of Brain Pathophysiology, Human Brain Research Center, Kyoto University Graduate School of Medicine and Faculty of Medicine, Shogoin, Sakyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Bai O, Nakamura M, Kanda M, Nagamine T, Shibasaki H. Accurate identification of waveform of evoked potentials by component decomposition using discrete cosine transform modeling. Med Eng Phys 2001; 23:615-22. [PMID: 11755806 DOI: 10.1016/s1350-4533(01)00095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study introduces a method for accurate identification of the waveform of the evoked potentials by decomposing the component responses. The decomposition was achieved by zero-pole modeling of the evoked potentials in the discrete cosine transform (DCT) domain. It was found that the DCT coefficients of a component response in the evoked potentials could be modeled sufficiently by a second order transfer function in the DCT domain. The decomposition of the component responses was approached by using partial expansion of the estimated model for the evoked potentials, and the effectiveness of the decomposition method was evaluated both qualitatively and quantitatively. Because of the overlap of the different component responses, the proposed method enables an accurate identification of the evoked potentials, which is useful for clinical and neurophysiological investigations.
Collapse
Affiliation(s)
- O Bai
- Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, Honjomachi 1, Saga 840-8502, Japan.
| | | | | | | | | |
Collapse
|
18
|
Valeriani M, Restuccia D, Le Pera D, Fiaschetti L, Tonali P, Arendt-Nielsen L. Unmasking of an early laser evoked potential by a point localization task. Clin Neurophysiol 2000; 111:1927-33. [PMID: 11068224 DOI: 10.1016/s1388-2457(00)00439-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The investigation of the CO(2) laser evoked potential (LEP) modifications following a point localization task. METHODS LEPs were recorded from 10 healthy subjects in two different conditions. (1) Task condition: laser stimuli were shifted among 3 different locations on the right hand dorsum, and the subjects were asked to identify the stimulated area. The mean error rate in point localization was 4.5%. (2) Non-task condition: laser pulses were delivered on the first intermetacarpal space, and the subject was asked to count the number of stimuli. The mean error rate in counting was 5.8%. RESULTS In the task condition, the temporal traces contralateral to the stimulation showed an early positive component (eP, mean peak latency 83 ms) preceding the N1 negativity (mean peak latency 144 ms). At the eP peak latency, topographic maps showed a positivity highly focused on the contralateral temporal region. In the non-task recordings no reliable response was identifiable before the N1 potential. CONCLUSIONS While no LEP component earlier than the middle-latency N1 potential can be recorded in the non-task condition, a positive response (eP) preceding the N1 component is identifiable in the contralateral temporal region during the spatial localization of painful stimuli. The eP scalp distribution is compatible with its origin from a radial source in the second somatosensory (or insular) area, thus suggesting that the opercular cortex is involved not only in the middle-latency (N1 potential), but also in early pain processing.
Collapse
Affiliation(s)
- M Valeriani
- Department of Neurology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | | | | | | | | | | |
Collapse
|