1
|
Huang Y, Zhang X, Mao R, Li D, Luo F, Wang L, Chen Y, Lu J, Ge X, Liu Y, Yang X, Fan Y, Zhang X, Wang K. Nucleation Domains in Biomineralization: Biomolecular Sequence and Conformational Features. Inorg Chem 2024; 63:689-705. [PMID: 38146716 DOI: 10.1021/acs.inorgchem.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biomolecules play a vital role in the regulation of biomineralization. However, the characteristics of practical nucleation domains are still sketchy. Herein, the effects of the representative biomolecular sequence and conformations on calcium phosphate (Ca-P) nucleation and mineralization are investigated. The results of computer simulations and experiments prove that the line in the arrangement of dual acidic/essential amino acids with a single interval (Bc (Basic) -N (Neutral) -Bc-N-Ac (Acidic)- NN-Ac-N) is most conducive to the nucleation. 2α-helix conformation can best induce Ca-P ion cluster formation and nucleation. "Ac- × × × -Bc" sequences with α-helix are found to be the features of efficient nucleation domains, in which process, molecular recognition plays a non-negligible role. It further indicates that the sequence determines the potential of nucleation/mineralization of biomolecules, and conformation determines the ability of that during functional execution. The findings will guide the synthesis of biomimetic mineralized materials with improved performance for bone repair.
Collapse
Affiliation(s)
- Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xinyue Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yue Liu
- Key Laboratory for Industrial Ceramics of Jiangxi Province, Pingxiang University, Pingxiang 337055 China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| |
Collapse
|
2
|
Matsuki-Fukushima M, Fujikawa K, Inoue S, Nakamura M. Expression and localization of CD63 in the intracellular vesicles of odontoblasts. Histochem Cell Biol 2022; 157:611-622. [PMID: 35175412 DOI: 10.1007/s00418-022-02072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
We hypothesized that odontoblasts release exosomes as well as dental pulp cells and focused on the exosome membrane marker CD63. Odontoblasts are well-differentiated mesenchymal cells that produce dentin. Dental pulp, a tissue complex formed with odontoblasts, releases exosomes to epithelial cells and stimulates their differentiation to ameloblasts. However, the localization of CD63 in differentiated odontoblasts is poorly understood. Therefore, herein, we aimed to reveal the expression of CD63 in odontoblasts during tooth development. We first investigated the localization of CD63 in mouse incisors and molars using immunofluorescence. In adult mouse incisors, the anti-CD63 antibody was positive in mature odontoblasts and dental pulp cells but not in pre-odontoblasts along the ameloblasts in the apical bud. Additionally, the anti-CD63 antibody was observed as a vesicular shape in the apical area of odontoblast cytosol and inside Tomes' fibers. The anti-CD63 antibody-positive vesicles were also observed using immunoelectron microscopy. Moreover, during mouse mandibular molar tooth morphogenesis (E16 to postnatal 6 weeks), labeling of anti-CD63 antibody was positive in the odontoblasts at E18. In contrast, the anti-CD63 antibody was positive in the dental pulp after postnatal day 10. Furthermore, anti-CD63 antibody was merged with the multivesicular body marker Rab7 in dental pulp tissues but not with the lysosome marker Lamp1. Finally, we determined the effect of a ceramide-generation inhibitor GW4869 on the mouse organ culture of tooth germ in vitro. After 28 days of GW4869 treatment, both CD63 and Rab7 were negative in Tomes' fibers, but were positive in control odontoblasts. These results suggest that CD63-positive vesicular organelles are important for mouse tooth morphogenesis.
Collapse
Affiliation(s)
- Miwako Matsuki-Fukushima
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Kaoru Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Inoue
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
3
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
4
|
Randilini A, Fujikawa K, Shibata S. Expression, localization and synthesis of small leucine-rich proteoglycans in developing mouse molar tooth germ. Eur J Histochem 2020; 64. [PMID: 32046476 PMCID: PMC7029624 DOI: 10.4081/ejh.2020.3092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
The gene expression and protein synthesis of small leucine-rich proteoglycans (SLRPs), including decorin, biglycan, fibromodulin, and lumican, was analyzed in the context of the hypothesis that they are closely related to tooth formation. In situ hybridization, immunohistochemistry, and organ culture with metabolic labeling of [35S] were carried out in mouse first molar tooth germs of different developmental stages using ICR mice at embryonic day (E) 13.5 to postnatal day (P)7.0. At the bud and cap stage, decorin mRNA was expressed only in the surrounding mesenchyme, but not within the tooth germ. Biglycan mRNA was then expressed in the condensing mesenchyme and the dental papilla of the tooth germ. At the apposition stage (late bell stage), both decorin and biglycan mRNA were expressed in odontoblasts, resulting in a switch of the pattern of expression within the different stages of odontoblast differentiation. Decorin mRNA was expressed earlier in newly differentiating odontoblasts than biglycan. With odontoblast maturation and dentin formation, decorin mRNA expression was diminished and localized to the newly differentiating odontoblasts at the cervical region. Simultaneously, biglycan mRNA took over and extended its expression throughout the new and mature odontoblasts. Both mRNAs were expressed in the dental pulp underlying the respective odontoblasts. At P7.0, both mRNAs were weakly expressed but maintained their spatial expression patterns. Immunostaining showed that biglycan was localized in the dental papillae and pulp. In addition, all four SLRPs showed clear immunostaining in predentin, although the expressions of fibromodulin and lumican mRNAs were not identified in the tooth germs examined. The organ culture data obtained supported the histological findings that biglycan is more predominant than decorin at the apposition stage. These results were used to identify biglycan as the principal molecule among the SLRPs investigated. Our findings indicate that decorin and biglycan show spatial and temporal differential expressions and play their own tissue-specific roles in tooth development.
Collapse
Affiliation(s)
- Angammana Randilini
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo .
| | | | | |
Collapse
|
5
|
Lin W, Gao L, Jiang W, Niu C, Yuan K, Hu X, Ma R, Huang Z. The role of osteomodulin on osteo/odontogenic differentiation in human dental pulp stem cells. BMC Oral Health 2019; 19:22. [PMID: 30670012 PMCID: PMC6341608 DOI: 10.1186/s12903-018-0680-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background Extracellular matrix secretion and odontoblastic differentiation in human dental pulp stem cells (hDPSCs) are the cellular bases for reparative dentinogenesis. Osteomodulin (OMD) is a member of the small leucine-rich proteoglycan family distributed in the extracellular matrix but little is known about its role in osteo/odontogenic differentiation. The objective of this study was to investigate the role of OMD during osteo/odontoblastic differentiation of hDPSCs. Methods hDPSCs were selected using immune-magnetic beads and their capability of multi-differentiation was identified. OMD knockdown was achieved using short hairpin RNA (shRNA) lentivirus and was confirmed by western blot. Gene expression was measured by real-time qPCR and osteo/odontoblastic differentiation of hDPSCs was determined by alizarin red S staining. Results Compared with uninduced cells, the transcription of OMD was up-regulated by 35-fold at the late stage of osteo/odontogenic differentiation. shRNA-mediated gene silencing of OMD decreased the expression of odontoblastic genes, such as alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1) and dentin sialophosphoprotein (DSPP). Besides, knockdown of OMD attenuated the mineralized nodules formation induced by osteo/odontogenic medium. Conclusions These results implied that OMD may play a pivotal role in modulating the osteo/odontoblastic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Wenzhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li Gao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenxin Jiang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xuchen Hu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
6
|
Bigoni S, Neri M, Scotton C, Farina R, Sabatelli P, Jiang C, Zhang J, Falzarano MS, Rossi R, Ognibene D, Selvatici R, Gualandi F, Bosshardt D, Perri P, Campa C, Brancati F, Salvatore M, De Stefano MC, Taruscio D, Trombelli L, Fang M, Ferlini A. Homozygous Recessive Versican Missense Variation Is Associated With Early Teeth Loss in a Pakistani Family. Front Genet 2019; 9:723. [PMID: 30740127 PMCID: PMC6357929 DOI: 10.3389/fgene.2018.00723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
Only a few genes involved in teeth development and morphology are known to be responsible for tooth abnormalities in Mendelian-inherited diseases. We studied an inbred family of Pakistani origin in which two first-cousin born brothers are affected by early tooth loss with peculiar teeth abnormalities characterized by the absence of cementum formation. Whole exome sequencing revealed a H2665L homozygous sequence variant in the VCAN gene. Dominant splicing mutations in VCAN are known to cause Wagner syndrome or vitreoretinopathy. We explored teeth morphology in these two patients, while versican expression was assessed by western blot analysis. Early signs of vitreoretinopathy were found in the elder brother while the parents were completely negative. Our findings suggest that the homozygous recessive H2665L missense sequence variant impairs the normal morphology of the teeth roots via loss of cementum synthesis, and is also associated with early onset, recessive, Wagner syndrome, thus expanding both the phenotype mutation scenario and the inheritance mode of VCAN mutations.
Collapse
Affiliation(s)
- Stefania Bigoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | | | | | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Ognibene
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Dieter Bosshardt
- Department of Periodontology and Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Paolo Perri
- Eye Clinic, Sant'Anna University Hospital, Ferrara, Italy
| | - Claudio Campa
- Eye Clinic, Sant'Anna University Hospital, Ferrara, Italy
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila Italy.,Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | | | | | | | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen, China.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Unit, University College London, London, United Kingdom
| |
Collapse
|
7
|
Malatesta M. Ultrastructural histochemistry in biomedical research: Alive and kicking. Eur J Histochem 2018; 62. [PMID: 30418011 PMCID: PMC6250102 DOI: 10.4081/ejh.2018.2990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
The high-resolution images provided by the electron microscopy has constituted a limitless source of information in any research field of life and materials science since the early Thirties of the last century. Browsing the scientific literature, electron microscopy was especially popular from the 1970’s to 80’s, whereas during the 90’s, with the advent of innovative molecular techniques, electron microscopy seemed to be downgraded to a subordinate role, as a merely descriptive technique. Ultra -structural histochemistry was crucial to promote the Renaissance of electron microscopy, when it became evident that a precise localization of molecules in the biological environment was necessary to fully understand their functional role. Nowadays, electron microscopy is still irreplaceable for ultrastructural morphology in basic and applied biomedical research, while the application of correlative light and electron microscopy and of refined ultrastructural histochemical techniques gives electron microscopy a central role in functional cell and tissue biology, as a really unique tool for high-resolution molecular biology in situ.
Collapse
Affiliation(s)
- Manuela Malatesta
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| |
Collapse
|
8
|
Nahás-Scocate ACR, de Moraes GFA, Nader HB, Vicente CM, Toma L. Analysis of proteoglycan expression in human dental pulp. Arch Oral Biol 2018; 90:67-73. [DOI: 10.1016/j.archoralbio.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
|
9
|
Stankoska K, Sarram L, Smith S, Bedran-Russo AK, Little CB, Swain MV, Bertassoni LE. Immunolocalization and distribution of proteoglycans in carious dentine. Aust Dent J 2017; 61:288-97. [PMID: 26435422 DOI: 10.1111/adj.12376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Collagen type I, proteoglycans (PG) and non-collagenous proteins represent important building blocks of the dentine matrix. While different PGs have been identified in dentine, changes in the distribution of these macromolecules with the progression of caries have been poorly characterized. The aim of this study was to compare the immunolocalization of three small collagen-binding PGs (biglycan, fibromodulin and lumican) as well as collagen (types I and VI) in healthy versus carious dentine. METHODS Longitudinal demineralized sections of extracted teeth were stained with antibodies recognizing specific PG core proteins and collagens, as well as glycosaminoglycans (GAGs) with toluidine blue. RESULTS In healthy dentine, PGs appeared to be more abundant near the tubule walls and directly under the cusps. Conversely, in carious dentine, specific locations appeared to be more prone to PG degradation than others. These degradation patterns were well correlated with the progression of caries into the tissue, and also appeared to trigger interesting morphological changes in the tissue structure, such as the deformation of dentine tubules near highly infected areas and the lower concentration of PG in tertiary dentine. CONCLUSIONS This study presents new insights into the involvement of PGs in the progression of caries.
Collapse
Affiliation(s)
- K Stankoska
- Bioengineering, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, Australia
| | - L Sarram
- Bioengineering, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, Australia
| | - S Smith
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - A K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - M V Swain
- Bioengineering, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, Australia.,Department of Bioclinical Sciences, Faculty of Dentistry, University of Kuwait, Kuwait
| | - L E Bertassoni
- Bioengineering, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, Australia.,Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
11
|
Cadenaro M, Fontanive L, Navarra CO, Gobbi P, Mazzoni A, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Effect of carboidiimide on thermal denaturation temperature of dentin collagen. Dent Mater 2016; 32:492-8. [PMID: 26764172 DOI: 10.1016/j.dental.2015.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) has been shown to cross-link dentin type I collagen. Increased cross-linking usually elevates the glass transition temperature of polymers. The aim of this study was to evaluate the cross-linking reaction promoted by EDC in different aqueous concentrations by measuring the thermal denaturation temperature (Td) of human dentin collagen. METHODS The Td of dehydrated collagen and of insoluble dentin matrix collagen immersed in 0.5M or 1M EDC aqueous solution for different treatment times was obtained using a Differential Scanning Calorimeter (DSC). Specimens were also analyzed by Energy Dispersive X-Ray Spectroscopy. RESULTS EDC-treated dentin collagen showed a significantly higher Td than the untreated specimens when immersed in either 0.5M EDC or 1M EDC for 10min or longer (p<0.05). EDC-treated dentin collagen showed an increase of sulfur and chloride, not detectable in EDC-untreated dentin specimens. Conversely, the relative amount of carbon, nitrogen and oxygen was not modified by treatments. SIGNIFICANCE EDC-treated dentin collagen showed a higher Td than the untreated control at all tested concentrations and immersion times. A higher Td can be considered an indirect indicator of a more resistant and highly cross-linked collagen network. More data are needed to confirm these results.
Collapse
Affiliation(s)
- Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy.
| | - Luca Fontanive
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Chiara Ottavia Navarra
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Pietro Gobbi
- Department of Earth, Life and Environment Sciences (Di.STeVA), University of Urbino, Campus Scientifico Enrico Mattei - Via Ca' Le Suore 2/4, I-61029 Urbino (PU), Italy
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| | - Roberto Di Lenarda
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Franklin R Tay
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| |
Collapse
|
12
|
Cuffaro HM, Pääkkönen V, Tjäderhane L. Enzymatic isolation of viable human odontoblasts. Int Endod J 2015; 49:454-61. [PMID: 26011565 DOI: 10.1111/iej.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/18/2015] [Indexed: 02/04/2023]
Abstract
AIM To improve an enzymatic method previously used for isolation of rat odontoblasts to isolate viable mature human odontoblasts. METHODOLOGY Collagenase I, collagenase I/hyaluronidase mixture and hyaluronidase were used to extract mature human odontoblasts from the pulp chamber. Detachment of odontoblasts from dentine was determined with field emission scanning electron microscopy (FESEM) and to analyse the significance of differences in tubular diameter, and the t-test was used. MTT-reaction was used to analyse cell viability, and nonparametric Kruskal-Wallis and Mann-Whitney post hoc tests were used to analyse the data. Immunofluorescent staining of dentine sialoprotein (DSP), aquaporin-4 (AQP4) and matrix metalloproteinase-20 (MMP-20) and quantitative PCR (qPCR) of dentine sialophosphoprotein (DSPP) were used to confirm the odontoblastic nature of the cells. RESULTS MTT-reaction and FESEM demonstrated collagenase I/hyaluronidase resulted in more effective detachment and higher viability than collagenase I alone. Hyaluronidase alone was not able to detach odontoblasts. Immunofluorescence revealed the typical odontoblastic-morphology with one process, and DSP, AQP4 and MMP-20 were detected. Quantitative PCR of DSPP confirmed that the isolated cells expressed this odontoblast-specific gene. CONCLUSION The isolation of viable human odontoblasts was successful. The cells demonstrated morphology typical for odontoblasts and expressed characteristic odontoblast-type genes and proteins. This method will enable new approaches, such as apoptosis analysis, for studies using fully differentiated odontoblasts.
Collapse
Affiliation(s)
- H M Cuffaro
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - V Pääkkönen
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - L Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Orsini G, Majorana A, Mazzoni A, Putignano A, Falconi M, Polimeni A, Breschi L. Immunocytochemical detection of dentin matrix proteins in primary teeth from patients with dentinogenesis imperfecta associated with osteogenesis imperfecta. Eur J Histochem 2014; 58:2405. [PMID: 25578972 PMCID: PMC4289844 DOI: 10.4081/ejh.2014.2405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 12/28/2022] Open
Abstract
Dentinogenesis imperfecta determines structural alterations of the collagen structure still not completely elucidated. Immunohisto-chemical analysis was used to assay type I and VI collagen, various non-collagenous proteins distribution in human primary teeth from healthy patients or from patients affected by type I dentinogenesis imperfecta (DGI-I) associated with osteogenesis imperfecta (OI). In sound primary teeth, an organized well-known ordered pattern of the type I collagen fibrils was found, whereas atypical and disorganized fibrillar structures were observed in dentin of DGI-I affected patients. Expression of type I collagen was observed in both normal and affected primary teeth, although normal dentin stained more uniformly than DGI-I affected dentin. Reactivity of type VI collagen was significantly lower in normal teeth than in dentin from DGI-I affected patients (P<0.05). Expressions of dentin matrix protein-1 (DMP1) and osteopontin (OPN) were observed in both normal dentin and dentin from DGI-I affected patients, without significant differences, being DMP1 generally more abundantly expressed. Immuno labeling for chondroitin sulfate (CS) and biglycan (BGN) was weaker in dentin from DGI-I-affected patients compared to normal dentin, this decrease being significant only for CS. This study shows ultra-structural alterations in dentin obtained from patients affected by DGI-I, supported by immunocytochemical assays of different collagenous and non-collagenous proteins.
Collapse
Affiliation(s)
- G Orsini
- Polytechnic University of Marche.
| | | | | | | | | | | | | |
Collapse
|
14
|
Khaddam M, Salmon B, Le Denmat D, Tjaderhane L, Menashi S, Chaussain C, Rochefort GY, Boukpessi T. Grape seed extracts inhibit dentin matrix degradation by MMP-3. Front Physiol 2014; 5:425. [PMID: 25400590 PMCID: PMC4215787 DOI: 10.3389/fphys.2014.00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs. OBJECTIVE To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1). MATERIALS AND METHODS Standardized blocks of dentin obtained from sound permanent teeth extracted for orthodontic reasons were demineralized with Ethylenediaminetetraacetic acid (EDTA) and pretreated either with (A) GSE (0.2% w/v), (B) amine fluoride (AmF) (20% w/v), (C) a mouthrinse which contains both, (D) placebo, (E) sodium fluoride (0.15 mg.ml(-1)), (F) PBS, (G) Chlorhexidine digluconate (CHX), or (H) zinc chloride (ZnCl2). The dentin blocks were then incubated with activated recombinant MMP-3. The supernatants were analyzed by Western Blot for several dentin matrix proteins known to be MMP-3 substrate. In parallel, scanning electron microscopy (SEM) was performed on resin replica of the dentin blocks. RESULTS Western blot analysis of the supernatants revealed that MMP-3 released from the dentin matrix small proteoglycans (decorin and biglycan) and dentin sialoprotein (DSP) in the AmF, sodium fluoride, PBS and placebo pretreated groups, but not in the GSE and mouthrinse pretreated groups. SEM examination of resin replica showed that the mouthrinse and its active components not only had an anti-MMP action but also modified the dentin surface accessibility. CONCLUSION This study shows that GSE either alone or combined with AmF as in the evaluated mouthrinse limits dentin matrix degradation. This association may be promising to prevent the progression of caries within dentin. However, the procedure should be adapted to clinically relevant durations.
Collapse
Affiliation(s)
- Mayssam Khaddam
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Benjamin Salmon
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| | - Dominique Le Denmat
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Leo Tjaderhane
- Medical Research Center Oulu, Institute of Dentistry, Oulu University Hospital and University of OuluOulu, Finland
| | - Suzanne Menashi
- Laboratoire CRRET, Université Paris-Est, Centre National de la Recherche ScientifiqueCréteil, France
| | - Catherine Chaussain
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| | - Gaël Y. Rochefort
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Tchilalo Boukpessi
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| |
Collapse
|
15
|
Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 2014; 38:91-104. [DOI: 10.1016/j.jmbbm.2014.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
16
|
Bedran-Russo AK, Pauli GF, Chen SN, McAlpine J, Castellan CS, Phansalkar RS, Aguiar TR, Vidal CMP, Napotilano JG, Nam JW, Leme AA. Dentin biomodification: strategies, renewable resources and clinical applications. Dent Mater 2013; 30:62-76. [PMID: 24309436 DOI: 10.1016/j.dental.2013.10.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. METHODS The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. RESULTS Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. SIGNIFICANCE Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - James McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Carina S Castellan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA; Department of Biochemistry and Dental Biomaterials, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rasika S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Thaiane R Aguiar
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - José G Napotilano
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene A Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Martini D, Trirè A, Breschi L, Mazzoni A, Teti G, Falconi M, Ruggeri A. Dentin matrix protein 1 and dentin sialophosphoprotein in human sound and carious teeth: an immunohistochemical and colorimetric assay. Eur J Histochem 2013; 57:e32. [PMID: 24441185 PMCID: PMC3896034 DOI: 10.4081/ejh.2013.e32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are extracellular matrix proteins produced by odontoblasts involved in the dentin mineralization. The aim this study was to compare the distribution of DMP1 and DSPP in human sound dentin vs human sclerotic dentin. Sixteen sound and sixteen carious human molars were selected, fixed in paraformaldehyde and processed for immunohistochemical detection of DMP1 and DSPP by means of light microscopy, transmission electron microscopy (TEM) and high-resolution field emission in-lens scanning electron microscopy (FEI-SEM). Specimens were submitted to a pre-embedding or a post-embedding immunolabeling technique using primary antibodies anti DMP1 and anti-DSPP and gold-conjugated secondary antibodies. Other samples were processed for the detection of DMP1 and DSPP levels. Dentin from these samples was mechanically fractured to powder, then a protein extraction and a protein level detection assay were performed. DMP1 and DSPP were more abundant in carious than in sound samples. Immunohistochemical analyses in sclerotic dentin disclosed a high expression of DMP1 and DSPP inside the tubules, suggesting an active biomineralization of dentin by odontoblasts. Furthermore, the detection of small amounts of these proteins inside the tubules far from the carious lesion, as shown in the present study, is consistent with the hypothesis of a preventive defense of all dentin after a noxious stimulus has undermined the tooth.
Collapse
|
18
|
Benedetto MSD, Siqueira FM, Mascaro MB, Araujo VC, Bonecker MJS. Immunohistochemical expression of biglycan and decorin in the pulp tissue of human primary teeth during resorption. Braz Oral Res 2013; 27:438-44. [DOI: 10.1590/s1806-83242013000500008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/08/2013] [Indexed: 11/22/2022] Open
|
19
|
Gibson MP, Zhu Q, Wang S, Liu Q, Liu Y, Wang X, Yuan B, Ruest LB, Feng JQ, D'Souza RN, Qin C, Lu Y. The rescue of dentin matrix protein 1 (DMP1)-deficient tooth defects by the transgenic expression of dentin sialophosphoprotein (DSPP) indicates that DSPP is a downstream effector molecule of DMP1 in dentinogenesis. J Biol Chem 2013; 288:7204-14. [PMID: 23349460 PMCID: PMC3591629 DOI: 10.1074/jbc.m112.445775] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/08/2013] [Indexed: 01/10/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.
Collapse
Affiliation(s)
- Monica Prasad Gibson
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Qinglin Zhu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Suzhen Wang
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Qilin Liu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Ying Liu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Xiaofang Wang
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Baozhi Yuan
- the Department of Medicine, University of Wisconsin, and Geriatric Research Education and Clinical Centers, Madison, Wisconsin 53705
| | - L. Bruno Ruest
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Jian Q. Feng
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Rena N. D'Souza
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Chunlin Qin
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| | - Yongbo Lu
- From the Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246 and
| |
Collapse
|
20
|
Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater 2012; 28:1012-23. [DOI: 10.1016/j.dental.2012.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
21
|
Orsini G, Ruggeri A, Mazzoni A, Nato F, Manzoli L, Putignano A, Di Lenarda R, Tjäderhane L, Breschi L. A review of the nature, role, and function of dentin non-collagenous proteins. Part 1: proteoglycans and glycoproteins. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00270.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Lee EH, Park HJ, Jeong JH, Kim YJ, Cha DW, Kwon DK, Lee SH, Cho JY. The role of asporin in mineralization of human dental pulp stem cells. J Cell Physiol 2011; 226:1676-82. [PMID: 21413025 DOI: 10.1002/jcp.22498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.
Collapse
Affiliation(s)
- Eun-Hyang Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruggeri A, Orsini G, Mazzoni A, Nato F, Papa V, Piccirilli M, Putignano A, Mazzotti G, De Stefano Dorigo E, Breschi L. Immunohistochemical and biochemical assay of versican in human sound predentine/dentine matrix. Eur J Histochem 2009; 53:e15. [PMID: 19864206 PMCID: PMC3168232 DOI: 10.4081/ejh.2009.e15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022] Open
Abstract
Aim of this study was to investigate the distribution of versican proteoglycan within the human dentine organic matrix by means of a correlative immunohistochemical analysis with field emission in-lens scanning electron microscope (FEI-SEM), transmission electron microscope (TEM), fluorescence microscope (FM) and biochemical assay. Specimens containing dentine and predentine were obtained from non carious human teeth and divided in three groups: 1) FEI-SEM group: sections were exposed to a pre-embedding immunohistochemical procedure; 2) TEM group: specimens were fixed, demineralised, embedded and submitted to a post-embedding immunohistochemical procedure; 3) FM group: sections mineralised and submitted to a pre-embedding immunohistochemical procedure with fluorescence labelling. Specimens were exposed to two different antibodies to assay distribution of versican fragments and whole versican molecule.Western Blotting analysis of dentine and pulp extracts was also performed. The correlative FEI-SEM,TEM and FM analysis revealed positive immunoreaction for versican fragments both in predentine and dentine, while few gold particles identifying the whole versican molecule were found in predentine only under TEM. No labelling of versican whole molecule was detected by FEI-SEM and FM analysis. The immunoblotting analysis confirmed the morphological findings. This study suggests that in fully developed human teeth versican fragments are significant constituents of the human dentine and predentine organic matrix, while versican whole molecule can be visualised in scarce amount within predentine only. The role of versican fragments within human dentine organic matrix should be further elucidated.
Collapse
Affiliation(s)
- A Ruggeri
- Department of SAU&FAL, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Benesch J, Mano JF, Reis RL. Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:433-45. [DOI: 10.1089/ten.teb.2008.0121] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Johan Benesch
- 3B's Research Group—Biomaterials, Biodegradables, and Biomimetics, Department of Polymer Engineering, University of Minho, Caldas das Taipas, Portugal
- IBB—Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Braga, Portugal
| | - João F. Mano
- 3B's Research Group—Biomaterials, Biodegradables, and Biomimetics, Department of Polymer Engineering, University of Minho, Caldas das Taipas, Portugal
- IBB—Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Braga, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables, and Biomimetics, Department of Polymer Engineering, University of Minho, Caldas das Taipas, Portugal
- IBB—Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Braga, Portugal
| |
Collapse
|