1
|
Ludwig K, Ward LM, Khan N, Robinson ME, Miranda V, Bardai G, Moffatt P, Rauch F. Dominant osteogenesis imperfecta with low bone turnover caused by a heterozygous SP7 variant. Bone 2022; 160:116400. [PMID: 35367406 DOI: 10.1016/j.bone.2022.116400] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023]
Abstract
Mutations in SP7 (encoding osterix) have been identified as a rare cause of recessive osteogenesis imperfecta ('OI type XII') and in one case of dominant juvenile Paget's disease. We present the first description of young adult siblings with OI due to a unique heterozygous mutation in SP7. The phenotype was characterized by fragility fractures (primarily of the long bone diaphyses), poor healing, scoliosis, and dental malocclusion. Both siblings had very low cortical volumetric bone mineral density on peripheral quantitative computed tomography of the radius (z-scores -6.6 and - 6.7 at the diaphysis), porous cortices, and thin cortices at the radial metaphysis. Histomorphometry demonstrated thin cortices and low bone turnover with reduced osteoblast function. Both siblings were heterozygous for a missense variant affecting a highly conserved zinc finger domain of osterix (c.1019A > C; p.Glu340Ala) on DNA sequencing. Co-transfection of plasmids carrying the SP7 mutation with DLX5 and a luciferase reporter demonstrated that this variant impacted gene function (reduced transcription co-activation compared to wild-type SP7). The low cortical density and cortical porosity seen in our patients are consistent with previous reports of individuals with SP7 mutations. However, the low bone turnover in our patients contrasts with the high turnover state seen in previously reported patients with SP7 mutations. This report indicates that dominant variants in SP7 can give rise to OI. The predominant feature, low cortical density, is common in patients with other SP7 mutations, however other features appear to depend on the specific variant.
Collapse
Affiliation(s)
- Karissa Ludwig
- Shriners Hospital for Children - Canada, Montreal, QC, Canada
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nasrin Khan
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Valancy Miranda
- Shriners Hospital for Children - Canada, Montreal, QC, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children - Canada, Montreal, QC, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children - Canada, Montreal, QC, Canada
| | - Frank Rauch
- Shriners Hospital for Children - Canada, Montreal, QC, Canada.
| |
Collapse
|
2
|
Upregulated LEPRE1 correlates with poor outcome and its knockdown attenuates cells proliferation, migration and invasion in osteosarcoma. Anticancer Drugs 2021; 31:326-332. [PMID: 32197005 DOI: 10.1097/cad.0000000000000851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leucine proline-enriched proteoglycan 1 has been extensively explored because of its protective function in cell homeostasis and correlation with osteogenesis imperfect. Human osteosarcoma is the most common primary malignant tumor of bone with multiple and complex genomic aberrations. However, the functional role of leucine proline-enriched proteoglycan 1 is still unknown in osteosarcoma. Thus we performed this study to explain the leucine proline-enriched proteoglycan 1 effect in osteosarcoma. Gene arrays of human osteosarcoma were downloaded from the Gene Expression Omnibus database. Quantitative real-time PCR was conducted to assess the expression of leucine proline-enriched proteoglycan 1 in osteosarcoma cell lines. Then we attenuated leucine proline-enriched proteoglycan 1 expression in MG63 cells by siRNA strategy and assessed the effect of leucine proline-enriched proteoglycan 1 on cell proliferation, migration and invasion through in-vitro experiments. Additionally, we detected the role of leucine proline-enriched proteoglycan 1 knockdown on PI3K/AKT pathway-related proteins using western blotting. Leucine proline-enriched proteoglycan 1 was increased in osteosarcoma tissues and cells. The overall survival curve demonstrated that high-regulated leucine proline-enriched proteoglycan 1 was linked with poor prognosis of patients with osteosarcoma. The capabilities of proliferation, migration and invasion were all inhibited in MG63 cell because of the downregulation of leucine proline-enriched proteoglycan 1. Furthermore, the expression of phosphorylated PI3K and AKT was impaired after knockdown the leucine proline-enriched proteoglycan 1 as well as P70S6K. In conclusion, leucine proline-enriched proteoglycan 1 might function as an important therapeutic factor in human osteosarcoma through regulating the PI3K/AKT signaling pathway.
Collapse
|
3
|
Bascunana C, El Helou J, Rauch FT, Bardai G, Glorieux FH, Riviere JB, Byers P, Kaplan PB, Rosenblatt DS. Perspectives on the evolution of genetic counselling: Experience over three decades in a family with recurrent lethal osteogenesis imperfecta. Mol Genet Metab 2020; 131:114-115. [PMID: 32690443 DOI: 10.1016/j.ymgme.2020.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Affiliation(s)
- C Bascunana
- Division of Medical Genetics, Department of Specialized Medicine, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - J El Helou
- Division of Medical Genetics, Department of Specialized Medicine, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - F T Rauch
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Clinical Biomedical Laboratory, Shriners Hospitals for Children, Montreal, Quebec, Canada.
| | - G Bardai
- Clinical Biomedical Laboratory, Shriners Hospitals for Children, Montreal, Quebec, Canada.
| | - F H Glorieux
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Clinical Biomedical Laboratory, Shriners Hospitals for Children, Montreal, Quebec, Canada.
| | - J-B Riviere
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | - P Byers
- Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA.
| | - P B Kaplan
- Genetics and Metabolism, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - D S Rosenblatt
- Division of Medical Genetics, Department of Specialized Medicine, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Rauch F, Bardai G, Rockman-Greenberg C. ALPL mutations in adults with rheumatologic disorders and low serum alkaline phosphatase activity. J Bone Miner Metab 2019; 37:893-899. [PMID: 30719581 DOI: 10.1007/s00774-019-00991-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (ALP), encoded by ALPL, is important for bone homeostasis and interacts with collagen type I. In the present study, we sequenced ALPL and a panel of collagen type I-related genes in 24 adults (age 22-80 years; 20 female) with persistently low serum ALP (< 40 U/L) and a range of rheumatologic symptoms. We found heterozygous pathogenic or likely pathogenic variants in ALPL in 14 (58%) of these individuals. In addition, 7 study participants had potentially damaging heterozygous variants of uncertain significance in genes related to collagen type I. Patients who were positive for ALPL variants had similar age and serum ALP levels to patients in whom no ALPL variants were detected, but had higher serum pyridoxal-5-phosphate concentrations (median 214 nmol/L vs. 64 nmol/L; p = 0.02; U test). In summary, heterozygous ALPL variants are frequent in individuals with rheumatologic symptoms and low ALP serum activity. It is possible that variants in genes that are involved in collagen type I production have a modifying effect on the clinical consequences of such ALPL variants.
Collapse
Affiliation(s)
- Frank Rauch
- Shriners Hospital for Children, McGill University, 1003 Decarie, Montreal, QC, H4A 0A9, Canada.
| | - Ghalib Bardai
- Shriners Hospital for Children, McGill University, 1003 Decarie, Montreal, QC, H4A 0A9, Canada
| | - Cheryl Rockman-Greenberg
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Novel mutations in BMP1 induce a rare type of osteogenesis imperfecta. Clin Chim Acta 2019; 489:21-28. [DOI: 10.1016/j.cca.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022]
|
6
|
Genotype-phenotype correlation among Malaysian patients with osteogenesis imperfecta. Clin Chim Acta 2018; 484:141-147. [DOI: 10.1016/j.cca.2018.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/24/2018] [Indexed: 12/23/2022]
|
7
|
Abstract
PURPOSE OF REVIEW Here we summarize the diagnosis of osteogenesis imperfecta, discuss newly discovered genes involved in osteogenesis imperfecta, and review the management of this disease in children and adults. RECENT FINDINGS Mutations in the two genes coding for collagen type I, COL1A1 and COL1A2, are the most common cause of osteogenesis imperfecta. In the past 10 years, defects in at least 17 other genes have been identified as responsible for osteogenesis imperfecta phenotypes, with either dominant or recessive transmission. Intravenous bisphosphonate infusions are the most widely used medical treatment. This has a marked effect on vertebra in growing children and can lead to vertebral reshaping after compression fractures. However, bisphosphonates are less effective for preventing long-bone fractures. At the moment, new therapies are under investigation. SUMMARY Despite advances in the diagnosis and treatment of osteogenesis imperfecta, more research is needed. Bisphosphonate treatment decreases long-bone fracture rates, but such fractures are still frequent. New antiresorptive and anabolic agents are being investigated but efficacy and safety of these drugs, especially in children, need to be better established before they can be used in clinical practice.
Collapse
Affiliation(s)
- Telma Palomo
- aBone and Mineral Unit, Division of Endocrinology, Universidade Federal de São Paulo, Brazil bAcademic Unit of Bone Metabolism, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
8
|
Functional Analysis of VDR Gene Mutation R343H in A Child with Vitamin D-Resistant Rickets with Alopecia. Sci Rep 2017; 7:15337. [PMID: 29127362 PMCID: PMC5681508 DOI: 10.1038/s41598-017-15692-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
The functional study of different mutations on vitamin D receptor (VDR) gene causing hereditary vitamin D-resistant rickets (HVDRR) remains limited. This study was to determine the VDR mutation and the mechanisms of this mutation-causing phenotype in a family with HVDRR and alopecia. Phenotype was analyzed, and in vitro functional studies were performed. The proband and his affected sister exhibited typical HVDRR with alopecia, and their biochemical and radiographic abnormalities but not alopecia responded to supraphysiological doses of active vitamin D3. A novel homozygous missense R343H mutation in the exon 9 of VDR residing in the retinoid X receptor (RXR)-binding domain was identified. The expression level and C-terminal conformation of R343H mutant are not different from the wild-type VDR. This mutant had no effect on the nuclear localization of VDR, VDR-RXR heterodimerization, but it impaired CYP24A1 promoter activity in the presence of 1,25 (OH)2 vitamin D3, at least in part, mediated through specific nuclear receptor coactivator. Simulation models revealed the vanished interaction between guanidinium group of R343 and carboxyl group of E269. Without affecting the expression, conformation, nuclear location of VDR or heteridimerization with RXR, VDR-R343H impairs the transactivation activity of VDR on downstream transcription, accounting for HVDRR features with alopecia.
Collapse
|
9
|
Liu Y, Asan, Ma D, Lv F, Xu X, Wang J, Xia W, Jiang Y, Wang O, Xing X, Yu W, Wang J, Sun J, Song L, Zhu Y, Yang H, Wang J, Li M. Gene mutation spectrum and genotype-phenotype correlation in a cohort of Chinese osteogenesis imperfecta patients revealed by targeted next generation sequencing. Osteoporos Int 2017; 28:2985-2995. [PMID: 28725987 DOI: 10.1007/s00198-017-4143-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED The achievement of more accurate diagnosis would greatly benefit the management of patients with osteogenesis imperfecta (OI). In this study, we present the largest OI sample in China as screened by next generation sequencing. In particular, we successfully identified 81 variants, which included 45 novel variants. We further did a genotype-phenotype analysis, which helps make a better understanding of OI. INTRODUCTION This study aims to reveal the gene mutation spectrum and the genotype-phenotype relationship among Chinese OI patients by next generation sequencing (NGS). METHODS We developed a NGS-based panel for targeted sequencing of all exons of 14 genes related to OI, and performed diagnostic gene sequencing for a cohort of 103 Chinese OI patients from 101 unrelated families. Mutations identified by NGS were further confirmed by Sanger sequencing and co-segregation analysis. RESULTS Of the 103 patients from 101 unrelated OI families, we identified 79 mutations, including 43 novel mutations (11 frameshift, 17 missense, 5 nonsense, 9 splice site, and 1 chromosome translocation) in 90 patients (87.4%). Mutations in genes encoding type I collagen, COL1A1 (n = 37), and COL1A2 (n = 29) accounts for 73.3% of all molecularly diagnosed patients, followed by IFITM5 (n = 9, 10%), SERPINF1 (n = 4, 4.4%), WNT1 (n = 4, 4.4%), FKBP10 (n = 3, 3.3%), TMEM38B (n = 3, 3.3%), and PLOD2 (n = 1, 1.1%). This corresponds to 75 autosomal dominant inherited (AD) OI patients and 15 autosomal recessive (AR) inherited patients. Compared with AD inherited OI patients, AR inherited patients had lower bone mineral density (BMD) at spine (P = 0.05) and less frequent blue sclera (P = 0.001). Patients with type I collagen qualitative defects had lower femoral neck BMD Z-score (P = 0.034) and were shorter compared with patients with type I collagen quantitative defects (P = 0.022). CONCLUSION We revealed the gene mutation spectrum in Chinese OI patients, and novel mutations identified here expanded the mutation catalog and genotype and phenotype relationships among OI patients.
Collapse
Affiliation(s)
- Y Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Asan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, Tianjin, 300308, China
| | - D Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - F Lv
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - X Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - J Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - W Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - J Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, Tianjin, 300308, China
| | - J Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, Tianjin, 300308, China
| | - L Song
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, Tianjin, 300308, China
| | - Y Zhu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, Tianjin, 300308, China
| | - H Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - J Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
10
|
Abstract
Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.
Collapse
|
11
|
Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int 2016; 27:3607-3613. [PMID: 27509835 DOI: 10.1007/s00198-016-3709-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/13/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED We detected disease-causing mutations in 585 of 598 individuals (98 %) with typical features of osteogenesis imperfecta (OI). In mild OI, only collagen type I encoding genes were involved. In moderate to severe OI, mutations in 12 different genes were found; 11 % of these patients had mutations in recessive genes. INTRODUCTION OI is usually caused by mutations in COL1A1 or COL1A2, the genes encoding collagen type I alpha chains, but mutations in at least 16 other genes have also been associated with OI. It is presently unknown what proportion of individuals with clinical features of OI has a disease-causing mutation in one of these genes. METHODS DNA sequence analysis was performed on 598 individuals from 487 families who had a typical OI phenotype. OI type I was diagnosed in 43 % of individuals, and 57 % had moderate to severe OI, defined as OI types other than type I. RESULTS Disease-causing variants were detected in 97 % of individuals with OI type I and in 99 % of patients with moderate to severe OI. All mutations found in OI type I were dominant and exclusively affected COL1A1 or COL1A2. In moderate to severe OI, dominant mutations were found in COL1A1/COL1A2 (77 %), IFITM5 (9 %), and P4HB (0.6 %). Mutations in one of the recessive OI-associated gene were observed in 12 % of individuals with moderate to severe OI. The genes most frequently involved in recessive OI were SERPINF1 (4.0 % of individuals with moderate to severe OI) and CRTAP (2.9 %). CONCLUSIONS DNA sequence analysis of currently known OI-associated genes identifies disease-causing variants in almost all individuals with a typical OI phenotype. About 20 % of individuals with moderate to severe OI had mutations in genes other than COL1A1/COL1A2.
Collapse
Affiliation(s)
- G Bardai
- Shriners Hospital for Children and McGill University, 1003 Decarie, Montreal, H3G 1A6, Québec, Canada
| | - P Moffatt
- Shriners Hospital for Children and McGill University, 1003 Decarie, Montreal, H3G 1A6, Québec, Canada
| | - F H Glorieux
- Shriners Hospital for Children and McGill University, 1003 Decarie, Montreal, H3G 1A6, Québec, Canada
| | - F Rauch
- Shriners Hospital for Children and McGill University, 1003 Decarie, Montreal, H3G 1A6, Québec, Canada.
| |
Collapse
|
12
|
Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int 2016; 27:3427-3437. [PMID: 27492436 DOI: 10.1007/s00198-016-3723-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Osteogenesis imperfecta (OI) is the most prevalent heritable bone fragility disorder in children. It has been known for three decades that the majority of individuals with OI have mutations in COL1A1 or COL1A2, the two genes coding for collagen type I alpha chains, but in the past 10 years defects in at least 17 other genes have been linked to OI. Almost all individuals with a typical OI phenotype have a mutation in one of the currently known genes. Regarding medical treatment, intravenous bisphosphonate therapy is the most widely used medical approach. This has a marked effect on vertebra in growing children and can lead to vertebral reshaping after compression fractures, but there is little effect of bisphosphonate therapy on the development of scoliosis. Bisphosphonate treatment decreases long-bone fracture rates, but such fractures are still frequent. Newer medications with anti-resorptive and bone anabolic action are being investigated in an attempt to improve on the efficacy of bisphosphonates but the safety and efficacy of these new approaches in children with OI is not yet established.
Collapse
Affiliation(s)
- P Trejo
- Shriners Hospital for Children, 1003 Decarie, Montreal, Quebec, Canada, H4A 0A9
- McGill University, Montreal, Quebec, Canada
| | - F Rauch
- Shriners Hospital for Children, 1003 Decarie, Montreal, Quebec, Canada, H4A 0A9.
- McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Xu XJ, Lv F, Liu Y, Wang JY, Song YW, Asan, Wang JW, Song LJ, Jiang Y, Wang O, Xia WB, Xing XP, Li M. A cryptic balanced translocation involving COL1A2 gene disruption cause a rare type of osteogenesis imperfecta. Clin Chim Acta 2016; 460:33-9. [DOI: 10.1016/j.cca.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/11/2016] [Indexed: 12/25/2022]
|
14
|
Xu XJ, Lv F, Liu Y, Wang JY, Ma DD, Asan, Wang JW, Song LJ, Jiang Y, Wang O, Xia WB, Xing XP, Li M. Novel mutations in FKBP10 in Chinese patients with osteogenesis imperfecta and their treatment with zoledronic acid. J Hum Genet 2016; 62:205-211. [PMID: 27762305 DOI: 10.1038/jhg.2016.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 11/09/2022]
Abstract
Osteogenesis imperfecta (OI) is a group of hereditary disorders characterized by decreased bone mass and increased fracture risk. The majority of OI cases have an autosomal dominant pattern of inheritance and are usually caused by mutations in genes encoding type I collagen. OI cases of autosomal recessive inheritance are rare, and OI type XI is attributable to mutation of the FKBP10 gene. Here, we used next-generation sequencing and Sanger sequencing to detect mutations in FKBP10 and to analyze their relation to the phenotypes of OI type XI in three Chinese patients. We also evaluated the efficacy of zoledronic acid treatment in these patients. Two of the affected patients had novel compound heterozygous mutations, one patient with c.343C>T (p.R115X) in exon 2 and c.1085delC (p.A362fsX1) in exon 7, and the other patient with c.879C>G (p.Y293X) in exon 5 and c.918-3C>G in intron 5. In the third proband, we identified a homozygous single base-pair duplication, c.831dupC (p.G278RfsX95) in exon 5. In conclusion, we report for the first time that these novel pathogenic mutations of FKBP10 can lead to the extremely rare type XI OI without contractures, which expands the genotypic spectrum of OI. The phenotypes of these patients are similar to patients with types III or IV OI, and zoledronic acid is effective in increasing BMD, inhibiting bone resorption biomarkers and reducing fractures of these patients.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Lv
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Yi Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dou-Dou Ma
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Asan
- Research and Development Center, Binhai Genomics Institute, Tianjin, China.,Research and Development Center, Tianjin Translational Genomics Center, Tianjin, China
| | - Jia-Wei Wang
- Research and Development Center, Binhai Genomics Institute, Tianjin, China.,Research and Development Center, Tianjin Translational Genomics Center, Tianjin, China
| | - Li-Jie Song
- Research and Development Center, Binhai Genomics Institute, Tianjin, China.,Research and Development Center, Tianjin Translational Genomics Center, Tianjin, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Ward L, Bardai G, Moffatt P, Al-Jallad H, Trejo P, Glorieux FH, Rauch F. Osteogenesis Imperfecta Type VI in Individuals from Northern Canada. Calcif Tissue Int 2016; 98:566-72. [PMID: 26815784 DOI: 10.1007/s00223-016-0110-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
Osteogenesis imperfecta (OI) type VI is a recessively inherited form of OI that is caused by mutations in SERPINF1, the gene coding for pigment-epithelium derived factor (PEDF). Here, we report on two apparently unrelated children with OI type VI who had the same unusual homozygous variant in intron 6 of SERPINF1 (c.787-10C>G). This variant created a novel splice site that led to the in-frame addition of three amino acids to PEDF (p.Lys262_Ile263insLeuSerGln). Western blotting showed that skin fibroblasts with this mutation produced PEDF but failed to secrete it. Both children were treated with intravenous bisphosphonates, but the treatment of Individual 1 was switched to subcutaneous injections of denosumab (dose 1 mg per kg body weight, repeated every 3 months). An iliac bone sample obtained after 5 denosumab injections (and 3 months after the last injection) showed no change in the increased osteoid parameters that are typical of OI type VI, but the number of osteoclasts in trabecular bone was markedly increased. This suggests that the effect of denosumab on osteoclast suppression is of shorter duration in children with OI type VI than what has previously been reported on adults with osteoporosis.
Collapse
Affiliation(s)
- Leanne Ward
- Childrens Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada
| | - Hadil Al-Jallad
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada
| | - Pamela Trejo
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, 1529 Cedar Avenue, Montreal, QC, H3G 1A6, Canada.
| |
Collapse
|
16
|
Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeq™ Identity panel v2.3 on the PGM™ Sequencer. Forensic Sci Int Genet 2016; 22:25-36. [DOI: 10.1016/j.fsigen.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/08/2015] [Accepted: 07/13/2015] [Indexed: 01/18/2023]
|
17
|
Sato A, Ouellet J, Muneta T, Glorieux FH, Rauch F. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment. Bone 2016; 86:53-7. [PMID: 26927310 DOI: 10.1016/j.bone.2016.02.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 11/23/2022]
Abstract
Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type.
Collapse
Affiliation(s)
- Atsuko Sato
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada; Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jean Ouellet
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Palomo T, Glorieux FH, Schoenau E, Rauch F. Body Composition in Children and Adolescents with Osteogenesis Imperfecta. J Pediatr 2016; 169:232-7. [PMID: 26593106 DOI: 10.1016/j.jpeds.2015.10.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To use peripheral quantitative computed tomography to determine the cross-sectional area (CSA) of subcutaneous fat and muscle (fat CSA, muscle CSA) in transverse forearm scans in patients with osteogenesis imperfecta (OI). STUDY DESIGN Fat and muscle CSA were quantified in 266 individuals (142 female) aged 5-20 years who had a diagnosis of OI type I, III, or IV and who had mutations in COL1A1 or COL1A2. Results were compared with those of 255 healthy controls. RESULTS In a subgroup of 39 patients with OI type I, % fat CSA correlated closely with total body percentage fat mass as determined by dual-energy x-ray absorptiometry (R(2) = 0.69; P < .001). In the entire study cohort, muscle CSA adjusted for age, sex, and forearm length was lower in OI type I and III than in controls (P < .05 each), but fat CSA was similar between OI types and controls. No relationship between the type of disease-causing mutation in the COL1A1 or COL1A2 genes and fat CSA or muscle CSA was found. CONCLUSIONS Children and adolescents with OI have low muscle size but a normal amount of subcutaneous fat at the forearm.
Collapse
Affiliation(s)
- Telma Palomo
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Eckhard Schoenau
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
19
|
Bardai G, Lemyre E, Moffatt P, Palomo T, Glorieux FH, Tung J, Ward L, Rauch F. Osteogenesis Imperfecta Type I Caused by COL1A1 Deletions. Calcif Tissue Int 2016; 98:76-84. [PMID: 26478226 DOI: 10.1007/s00223-015-0066-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/26/2015] [Indexed: 01/09/2023]
Abstract
Osteogenesis imperfecta (OI) type I is usually caused by COL1A1 stop or frameshift mutations, leading to COL1A1 haploinsufficiency. Here we report on 12 individuals from 5 families who had OI type I due to an unusual cause—heterozygous deletions of the entire COL1A1 gene. The deletions were initially detected by semiconductor-based sequencing of genomic DNA and confirmed by quantitative PCR. Array comparative genomic hybridization in DNA of the index patient in each family showed that deletion size varied from 18.5 kb to 2.23 Mb between families, encompassing between 1 and 47 genes (COL1A1 included). The skeletal phenotype of the affected individuals was similar to that of patients with haploinsufficiency caused by COL1A1 stop or frameshift mutations. However, one individual with a deletion that included also DLX3 and DLX4 had tooth discoloration and bone fragility. Three individuals from 2 families had deletions that included also CACNA1G, and these individuals had learning disabilities. These features are not usually observed in COL1A1 haploinsufficiency, but are in accordance with previously described individuals in whom deletions included the same genes. In summary, we found deletions of COL1A1 in 5 out of 161 families (3 %) with OI type I that were evaluated. Deletions encompassing not only COL1A1 but also neighboring genes can lead to contiguous gene syndromes that may include dental involvement and learning disability.
Collapse
|
20
|
Peter PR, Brownstein CA, Yao GQ, Olear EA, Simpson CA, Agrawal PB, Carpenter TO, Insogna KL. An Unusual Case of Rickets and How Whole Exome Sequencing Helped to Correct a Diagnosis. AACE Clin Case Rep 2016. [DOI: 10.4158/ep15944.cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Al-Jallad H, Palomo T, Roughley P, Glorieux FH, McKee MD, Moffatt P, Rauch F. The effect of SERPINF1 in-frame mutations in osteogenesis imperfecta type VI. Bone 2015; 76:115-20. [PMID: 25868797 DOI: 10.1016/j.bone.2015.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/01/2015] [Accepted: 04/03/2015] [Indexed: 01/05/2023]
Abstract
Osteogenesis imperfecta type VI is caused by mutations in SERPINF1, which codes for pigment-epithelium derived factor (PEDF). Most of the reported SERPINF1 mutations lead to premature termination codons, but three in-frame insertion or deletion mutations have also been reported. It is not clear how such in-frame mutations lead to OI type VI. In the present study we therefore investigated how SERPINF1 in-frame mutations affect the intracellular localization and secretion of PEDF. Skin fibroblasts affected by SERPINF1 in-frame mutations transcribed SERPINF1 at slightly reduced levels but secretion of PEDF was markedly diminished. Two deletions (p.F277del and the deletion of SERPINF1 exon 5) were associated with retention of PEDF in the endoplasmic reticulum and a stress response in osteoblastic cells. A recurrent in-frame duplication of three amino acids (p.Ala91_Ser93dup) appeared to lead to intracellular degradation but no retention in the endoplasmic reticulum or stress response. Immunofluorescence imaging in transiently transfected osteoblastic MC3T3-E1 cells suggested that PEDF affected by in-frame mutations was not transported along the secretory pathway. MC3T3-E1 osteoblasts stably overexpressing SERPINF1 with the p.Ala91_Ser93dup mutation had decreased collagen type I deposition and mineralization. Thus, the assessed homozygous in-frame deletions or insertions lead to retention or degradation within cellular compartments and thereby interfere with PEDF secretion.
Collapse
Affiliation(s)
- Hadil Al-Jallad
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Telma Palomo
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Peter Roughley
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada.
| |
Collapse
|