1
|
Shen I, Usala RL, Mohseni M, Bouxsein ML, Mitchell DM, Scheller EL. Adolescent girls with type 1 diabetes develop changes in bone prior to evidence of clinical neuropathy. J Clin Endocrinol Metab 2024:dgae511. [PMID: 39056255 DOI: 10.1210/clinem/dgae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
CONTEXT Neuropathy and fracture are prevalent complications of type 1 diabetes (T1D). Although correlated in the clinical literature, it remains unknown whether neuropathy contributes to the initiation of bone loss at the earliest stages of disease. METHODS We performed a single-center, cross-sectional study to quantify parameters of nerve and bone health in adolescent girls with T1D (n=21) and associated controls (n=12). Groups were well matched for age, height, strength, and physical activity. RESULTS By HR-pQCT, participants with T1D had lower trabecular bone volume fraction at the distal radius (-14.6%, p-adj=0.095) and the tibia (-12.8%, p-adj=0.017) and decreased trabecular thickness (-8.3% radius, p-adj=0.007; -7.5% tibia, p-adj=0.034) after adjustment for body size. In the tibia only, cortical bone mineral density was increased by 8.6% (p-adj=0.024) and porosity was decreased by 52.9% with T1D (p-adj=0.012). There were no significant differences in bone density by DXA. Participants with T1D also had lower circulating levels of osteocalcin (-30%, p=0.057), and type I collagen cross-linked C-telopeptide (-36%, p=0.035), suggesting low bone formation and turnover in T1D. Based on the Michigan Neuropathy Screening Instrument, 9.5% of those with T1D had clinical evidence of diabetic peripheral neuropathy. However, consideration of neuropathy status failed to explain the widespread T1D-associated changes in bone. CONCLUSION Our study defines early deficits in trabecular bone microarchitecture, decreased cortical porosity in the tibia, and suppression of biomarkers of bone turnover in adolescent girls with T1D, prior to the onset of symptomatic peripheral neuropathy. These findings inform our understanding of the rapid progression of skeletal disease in young girls with T1D and suggests that early detection and management strategies may help to prevent fracture and related co-morbidities later in life.
Collapse
Affiliation(s)
- Ivana Shen
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L Usala
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahshid Mohseni
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah M Mitchell
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Topkaya MS, Akın O, Cömert TK. Does metabolic control of the disease related with bone turnover markers in children with type 1 diabetes mellitus in Turkey? BMC Endocr Disord 2024; 24:89. [PMID: 38872156 DOI: 10.1186/s12902-024-01553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The aim was to evaluate the effect of metabolic control on bone biomarkers in children with type I diabetes. MATERIALS AND METHODS The children were divided into two groups according to their glycated hemoglobin (HbA1c) (%) levels: a group with HbA1c levels < 8% (n = 16) and: a group with HbA1c levels > 8% (n = 18). The serum total oxidative status (TOS) (µmol/L), total antioxidant status (TAS) (mmol/L), alkaline phosphatase (ALP) (IU/L), osteocalcin (OC) (ng/ml), procollagen type-1-N-terminal peptide (P1NP) (ng/ml), and vitamin D (IU) levels and food consumption frequencies were determined. RESULTS When patients were classified according to HbA1c (%) levels, those with HbA1c levels < 8% were found to have lower TOS (µmol/L) values (8.7 ± 6.16, 9.5 ± 5.60) and higher serum OC (ng/mL) (24.2 ± 16.92, 22.0 ± 6.21) levels than those with HbA1c levels > 8% (p < 0.05). Regardless of the level of metabolic control, there was a statistically significant association between serum TOS (µmol/L) and P1NP (ng/ml) (p < 0.05) levels, with no group-specific relationship (HbA1c levels <%8 or HbA1c levels >%8). CONCLUSION HbA1c and serum TOS levels had an effect on bone turnover biomarkers in individuals with type I diabetes.
Collapse
Affiliation(s)
- Merve Sena Topkaya
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Onur Akın
- Specialist of Pediatric Endocrinology, Department of Pediatric Endocrinology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Tuğba Küçükkasap Cömert
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| |
Collapse
|
3
|
Ge Q, Yang S, Qian Y, Chen J, Yuan W, Li S, Wang P, Li R, Zhang L, Chen G, Kan H, Rajagopalan S, Sun Q, Zheng HF, Jin H, Liu C. Ambient PM2.5 Exposure and Bone Homeostasis: Analysis of UK Biobank Data and Experimental Studies in Mice and in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107002. [PMID: 37792558 PMCID: PMC10549986 DOI: 10.1289/ehp11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Previous evidence has identified exposure to fine ambient particulate matter (PM 2.5 ) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM 2.5 and bone homeostasis. OBJECTIVE We sought to examine the relationship between long-term PM 2.5 exposure and bone health and explore its potential mechanism. METHODS This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM 2.5 (i.e., annual average PM 2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n = 37,440 ) and femur neck and lumbar spine BMD (n = 29,766 )], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM 2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM 2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS We observed that long-term exposure to PM 2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM 2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF- α ) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM 2.5 -stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF- α / Traf 6 / c -Fos pathway, which could be partially rescued by TNF- α inhibition. DISCUSSION Our prospective observational evidence suggested that long-term exposure to PM 2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM 2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sijia Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qian
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Guobo Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haidong Kan
- College of Public Health, Fudan University, Shanghai, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Hou-Feng Zheng
- Diseases and Population Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| |
Collapse
|
4
|
Fröhlich-Reiterer E, Elbarbary NS, Simmons K, Buckingham B, Humayun KN, Johannsen J, Holl RW, Betz S, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Other complications and associated conditions in children and adolescents with type 1 diabetes. Pediatr Diabetes 2022; 23:1451-1467. [PMID: 36537532 DOI: 10.1111/pedi.13445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Elke Fröhlich-Reiterer
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | - Kimber Simmons
- Barbara Davis Center for Diabetes, University of Colorado, Denver, Colorado, USA
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University Medical Center, Stanford, California, USA
| | - Khadija N Humayun
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jesper Johannsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Herlev and Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
| | - Shana Betz
- Parent/Advocate for people with diabetes, Markham, Canada
| | - Farid H Mahmud
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Tao SS, Cao F, Sam NB, Li HM, Feng YT, Ni J, Wang P, Li XM, Pan HF. Dickkopf-1 as a promising therapeutic target for autoimmune diseases. Clin Immunol 2022; 245:109156. [DOI: 10.1016/j.clim.2022.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
6
|
Franceschi R, Radetti G, Soffiati M, Maines E. Forearm Fractures in Overweight-Obese Children and Adolescents: A Matter of Bone Density, Bone Geometry or Body Composition? Calcif Tissue Int 2022; 111:107-115. [PMID: 35316361 DOI: 10.1007/s00223-022-00971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
Forearm fractures in children and adolescents are associated with increased body mass index (BMI). This bone site is non-weight-bearing and therefore is appropriate to explore the effect of BMI on bone mineral density (BMD) and bone geometry, avoiding the confounding effect of increased weight-associated mechanical loading. The aim of this review was to summarize available evidence on bone indices and body composition assessed by peripheral quantitative computed tomography (pQCT) or dual X-ray absorptiometry (DXA) at the forearm level in overweight (Ow) or obese (Ob) subjects. We conducted a review of the literature according to the PICOS model. A total of 46 studies were identified following the literature search. A final number of 12 studies were included in this review. pQCT studies evidenced that Ow and Ob children typically have normal or increased volumetric BMD (vBMD), total bone area and cortical area, with normal or reduced cortical thickness at the forearm. Outcomes from DXA evaluations are less conclusive. In almost all the studies fat mass and lean mass area at the forearm are increased. A higher fat-to-lean mass ratio has been observed in few studies. Bone strength was reported as normal or increased compared to normal weight peers. In Ow or Ob children-adolescents, vBMD, bone size and bone strength are not reduced compared to normal weight peers. The local higher fat-to-lean mass ratio may give a mismatch between bone strength and the load experienced by the distal forearm during a fall, resulting in increased risk of forearm fractures.
Collapse
Affiliation(s)
- Roberto Franceschi
- Pediatric Department, S. Chiara General Hospital, Largo Medaglie d'Oro, 9, 38122, Trento, Italy.
| | - Giorgio Radetti
- Division of Pediatrics, General Hospital Bolzano, Bolzano, Italy
| | - Massimo Soffiati
- Pediatric Department, S. Chiara General Hospital, Largo Medaglie d'Oro, 9, 38122, Trento, Italy
| | - Evelina Maines
- Pediatric Department, S. Chiara General Hospital, Largo Medaglie d'Oro, 9, 38122, Trento, Italy
| |
Collapse
|
7
|
Kurban S, Selver Eklioglu B, Selver MB. Investigation of the relationship between serum sclerostin and dickkopf-1 protein levels with bone turnover in children and adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab 2022; 35:673-679. [PMID: 35411762 DOI: 10.1515/jpem-2022-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetes mellitus (DM) is widely known to have a detrimental effect on bone health and is associated with increased fracture risk. Recently, the Wnt/beta-catenin signaling pathway and its inhibitors sclerostin and dickkopf-1 (Dkk-1) were found to be involved in the control of bone mass. The present study aimed to measure serum sclerostin and Dkk-1 protein levels in children and adolescents with type-1 DM and compare with other bone turnover markers and bone mineral density (BMD). METHODS This study was performed on 40 children and adolescents with type-I DM and 40 healthy children and adolescents. Anthropometric measurements and pubertal examination were done. In addition to laboratory analysis, dickkopf-1, sclerostin, cross-linked N-telopeptides of type I collagen (NTx), bone alkaline phosphatase (bALP), and osteocalcin levels were studied. BMD of the participants was measured by calcaneus ultrasonography. RESULTS Dickkopf-1 levels of the children and adolescents with type-1 DM were significantly higher, vitamin D, NTx, osteocalcin, and phosphorus levels were significantly lower than those of the controls (p<0.001). Fasting blood glucose, HbA1c, and insulin were significantly higher in the type 1 DM group (p<0.01). CONCLUSIONS Both bone remodeling and its compensatory mechanism bone loss are lower in children and adolescents with type-1 DM than in the controls. Also, higher levels of Dkk-1 play a role in decreased bone turnover in these patients. Since Dkk-1 and sclerostin seem to take a role in treating metabolic bone diseases in the future, we believe that our findings are significant in this respective.
Collapse
Affiliation(s)
- Sevil Kurban
- Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Beray Selver Eklioglu
- Division of Pediatric Endocrinology, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Muhammed Burak Selver
- Department of Pediatrics, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
- Istanbul University, Institute of Health Sciences and Institute of Child Health Social Pediatrics PhD Program, Istanbul, Turkey
| |
Collapse
|
8
|
Jaworski M, Wierzbicka E, Czekuć-Kryśkiewicz E, Płudowski P, Kobylińska M, Szalecki M. Bone Density, Geometry, and Mass by Peripheral Quantitative Computed Tomography and Bone Turnover Markers in Children with Diabetes Mellitus Type 1. J Diabetes Res 2022; 2022:9261512. [PMID: 35480630 PMCID: PMC9038424 DOI: 10.1155/2022/9261512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The type 1 diabetes mellitus (T1DM) is a chronic systemic autoimmune-mediated disease characterised by the insulin deficiency and hyperglycaemia. Its deleterious effect on bones concerns not only bone mass, density, and fracture risk but also may involve the linear growth of long bones. Studies on the lower leg in children with T1DM by pQCT have generated conflicting results, and most of the studies published so far focused only on a selected features of the bone. An additional information about growth, modelling, and remodelling processes can be gathered by the bone turnover marker measurement. The objective of the study was to evaluate bone mineral density, mass, and geometry using peripheral quantitative computed tomography as well as bone turnover markers in the patients with type 1 diabetes mellitus. Material and Methods. Bone mineral density, mass, and geometry on the lower leg using peripheral quantitative computed tomography and serum osteocalcin (OC) and carboxyterminal cross-linked telopeptide of type 1 collagen (CTx) were measured in 35 adolescents with T1DM (15 girls) aged 12.3-17.9 yrs. The results were compared to age- and sex-adjusted reference values for healthy controls. RESULTS Both sexes reveal lower than zero Z-scores for lower leg 66% total cortical bone cross-sectional area to muscle cross-sectional area ratio (-0.97 ± 1.02, p = 0.002517 and -0.98 ± 1.40, p = 0.007050, respectively) while tibia 4% trabecular bone density Z-score was lowered in boys (-0.67 ± 1.20, p = 0.02259). In boys in Tanner stage 5 bone mass and dimensions were diminished in comparison to Tanner stages 3 and 4, while in girls, such a phenomenon was not observed. Similarly, bone formation and resorption were decreased in boys but not in girls. Consistently, bone turnover markers correlated positively with bone size, dimensions, and strength in boys only. CONCLUSIONS T1DM patients revealed a decreased ratio of cortical bone area/muscle area, reflecting disturbed adaptation of the cortical shaft to the muscle force. When analyzing bone mass and dimensions, boys in Tanner stage 5 diverged from "less-mature" individuals, which may suggest that bone development in these individuals was impaired, affecting all three: mass, size, and strength. Noted in boys, suppressed bone metabolism may result in impairment of bone strength because of inadequate repair of microdamage and accumulation of microfractures.
Collapse
Affiliation(s)
- Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Wierzbicka
- Department of Human Nutrition, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Edyta Czekuć-Kryśkiewicz
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paweł Płudowski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Kobylińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysaw Szalecki
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
9
|
Eckert AJ, Semler O, Schnabel D, Köstner K, Wurm D, Bechtold-Dalla Pozza S, Schaaf K, Hörtenhuber T, Hammersen J, Holl RW. Bone Fractures in Children and Young Adults With Type 1 Diabetes: Age Distribution, Fracture Location, and the Role of Glycemic Control. J Bone Miner Res 2021; 36:2371-2380. [PMID: 34569646 DOI: 10.1002/jbmr.4451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is a known risk factor for fractures, but the underlying pathophysiology is still not fully understood. This study aims to define age peaks and frequent fracture sites of children and young adults with T1D. Additionally, associations of fractures with metabolic and lifestyle factors as well as with additional complications in individuals with T1D were analyzed. A total of 750 individuals with T1D aged ≤25 years with fractures were matched to 3750 patients with T1D without fractures by demographics and insulin regimen. Hemoglobin A1c (HbA1c) values were compared using linear regression, and logistic regression was used to calculate odds ratios (OR) for fractures in individuals with acute complications and diseases. Median (Q1-Q3) age was 12.7 (9.9 to 14.9) years in individuals with fractures and 16.3 (12.6 to 17.8) years in the entire control group with 65% versus 53% males. Peak age for fractures was 7 to <15 years in males and 9 to <11 years in females, which is earlier than reported for the general population. HbA1c (%) was significantly higher in individuals with fractures than in controls (difference of estimated means: 0.26%; 95% confidence interval [CI] 0.07-0.46), especially in postpubertal females (0.68; 0.10-1.26). Significantly higher odds for fractures were observed in individuals with severe hypoglycemia (OR = 1.90; 95% CI 1.47-2.47), especially in prepubertal females (OR = 2.81; 1.21-6.52]) and postpubertal males (2.44; 1.11-5.38), celiac disease (2.02; 1.67-2.45), and with a history of smoking (1.38; 1.02-1.88). The age peak of fractures seems to be earlier in T1D than in the general population. Poor glycemic control is related to fractures, even before puberty. Associations of HbA1c and severe hypoglycemia with fractures highly depend on age and sex. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alexander J Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Paediatrics, University of Cologne, Cologne, Germany
| | - Dirk Schnabel
- Centre for Chronic Sick Children, Paediatric Endocrinology, Charité, University Medicine Berlin, Berlin, Germany
| | - Katharina Köstner
- Social Pediatric Center (SPZ) Garmisch-Partenkirchen, German Centre for Paediatric and Adolescent Rheumatology, Garmisch-Partenkirchen, Germany
| | - Donald Wurm
- Department of Paediatrics, Klinikum Saarbrücken, Saarbrücken, Germany
| | - Susanne Bechtold-Dalla Pozza
- Paediatric Endocrinology, iSPZ, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katja Schaaf
- Department of Paediatric and Adolescent Medicine, Elisabeth-Hospital Essen, Essen, Germany
| | | | - Johanna Hammersen
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
10
|
Jiang M, Ding Y, Xu S, Hao X, Yang Y, Luo E, Jing D, Yan Z, Cai J. Radiotherapy-induced bone deterioration is exacerbated in diabetic rats treated with streptozotocin. Braz J Med Biol Res 2021; 54:e11550. [PMID: 34730682 PMCID: PMC8555449 DOI: 10.1590/1414-431x2021e11550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.
Collapse
Affiliation(s)
- Maogang Jiang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shiwei Xu
- Department of Medical Technical Support, NCO School of Army Medical University, Shijiazhuang, China
| | - Xiaoxia Hao
- Laboratory of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
11
|
El Amrousy D, El-Afify D, Shabana A. Relationship between bone turnover markers and oxidative stress in children with type 1 diabetes mellitus. Pediatr Res 2021; 89:878-881. [PMID: 33038875 DOI: 10.1038/s41390-020-01197-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative stress in children with type 1 DM (T1DM) may negatively affect the bone. METHODS This study included 40 children with T1DM as the patient group and 40 healthy children of matched age and sex as the control group. Plasma alkaline phosphatase, procollagen type-1 amino-terminal propeptide (P1NP), and urinary deoxypyridinoline (DPD) were measured to assess bone turnover. Glutathione, superoxide dismutase (SOD), and malondialdehyde (MDA) were measured to assess oxidative stress. RESULTS Patients with T1DM had a significantly lower P1NP level but a significantly higher urinary DPD level compared to the control group. Moreover, there were significantly lower glutathione and SOD levels with significantly higher MDA levels in patients with T1DM. We found a significant positive correlation between P1NP level and both glutathione and SOD levels but a significant negative correlation between P1NP and MDA in patients with T1DM. There was a significant negative correlation between DPD levels and both glutathione and SOD levels and a significant positive correlation between DPD and MDA. Moreover, glutathione was a significant predictor for both P1NP and DPD levels, while MDA was a significant predictor for P1NP levels. CONCLUSIONS There is an association between oxidative stress and bone turnover markers in children with T1DM. IMPACT Oxidative stress can negatively affect bone but the exact relationship between oxidative stress and bone turnover in T1DM has not been previously studied in pediatrics. For the best of our knowledge, our study was the first to assess the relationship between oxidative stress and bone turnover in children with T1DM. We revealed that increased oxidative stress in children and adolescents with T1DM may be involved in the impairment of bone turnover process, so treatment strategies toward better glycemic control and decreasing oxidative stress may be beneficial in preventing and treating diabetic bone disease in these children.
Collapse
Affiliation(s)
- Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Dalia El-Afify
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed Shabana
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Gilmour RJ, Brickley MB, Hoogland M, Jurriaans E, Mays S, Prowse TL. Quantifying cortical bone in fragmentary archeological second metacarpals. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:812-821. [PMID: 33580992 DOI: 10.1002/ajpa.24248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Skeletal variation in cortical bone thickness is an indicator of bone quality and health in archeological populations. Second metacarpal radiogrammetry, which measures cortical thickness at the shaft midpoint, is traditionally used to evaluate bone loss in bioarcheological and some clinical contexts. However fragmentary elements are regularly omitted because the midpoint cannot be determined. This methodological limitation reduces sample sizes and biases them against individuals prone to fracture, such as older individuals with low bone mass. This study introduces a new technique for measuring cortical bone in second metacarpals, the "Region of Interest" (ROI) method, which quantifies bone in archeological remains with less-than-ideal preservation while accounting for cortical heterogeneity. MATERIALS AND METHODS The ROI method was adapted from digital X-ray radiogrammetry (DXR), a clinical method used to estimate bone mineral density, and tested using second metacarpals from Middenbeemster, Netherlands, a 19th century known age and sex skeletal collection. The ROI method quantifies cortical bone area within a 1.9 cm-long, mid-diaphyseal region, standardized for body size differences using total area (CAIROI ). CAIROI values were compared to traditional radiogrammetric cortical indices (CI) to assess the method's ability to identify age-related bone loss. RESULTS CAIROI values have high intra- and interobserver replicability and are strongly and significantly correlated with CI values for both males (r[n = 39] = 0.906, p = 0.000) and females (r[n = 58] = 0.925, p = 0.000). CONCLUSION The ROI method complements traditional radiogrammetry analyses and provides a reliable way to quantify cortical bone in incomplete second metacarpals, thereby maximizing sample sizes, allowing patterns in bone acquisition and loss to be more comprehensively depicted in archeological assemblages.
Collapse
Affiliation(s)
- Rebecca J Gilmour
- Department of Sociology and Anthropology, Mount Royal University, Calgary, Alberta, Canada.,Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Menno Hoogland
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Erik Jurriaans
- Department of Radiology, Juravinski Hospital and Cancer Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada.,Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Simon Mays
- Research Department, Historic England, Fort Cumberland, Portsmouth, UK.,Department of Archaeology, University of Southampton, Avenue Campus, Southampton, UK.,Faculty of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Tracy L Prowse
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Hou NN, Kan CX, Huang N, Liu YP, Mao EW, Ma YT, Han F, Sun HX, Sun XD. Relationship between serum Dickkopf-1 and albuminuria in patients with type 2 diabetes. World J Diabetes 2021; 12:47-55. [PMID: 33520107 PMCID: PMC7807253 DOI: 10.4239/wjd.v12.i1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic kidney disease is a microvascular complication of diabetes with complex pathogenesis. Wingless signaling-mediated renal fibrosis is associated with diabetic kidney disease. Dickkopf-1, a negative regulator of Wingless, has been proven to participate in renal fibrosis, glucose metabolism, and inflammation. However, whether serum Dickkopf-1 levels are associated with diabetic kidney disease remains unclear. AIM To assess the relationship between serum Dickkopf-1 levels and albuminuria in individuals with type 2 diabetes. METHODS Seventy-three type 2 diabetes patients and 24 healthy individuals were enrolled in this case-control study. Diabetic individuals were separated into normal albuminuria, microalbuminuria, and macroalbuminuria groups based on their urinary albumin/creatinine ratios (UACRs). Clinical characteristics and metabolic indices were recorded. Serum Dickkopf-1 levels were determined by enzyme-linked immunosorbent assay. RESULTS No significant difference in serum Dickkopf-1 levels was found between healthy individuals and the normal albuminuria group. However, the levels in the microalbuminuria group were significantly lower than those in the normal albuminuria group (P = 0.017), and those in the macroalbuminuria group were the lowest. Bivariate analysis revealed that serum Dickkopf-1 levels were positively correlated with hemoglobin A1c level (r = 0.368, P < 0.01) and estimated glomerular filtration rate (r = 0.339, P < 0.01), but negatively correlated with diabetes duration (r = -0.231, P = 0.050), systolic blood pressure (r = -0.369, P = 0.001), serum creatinine level (r = -0.325, P < 0.01), and UACR (r = -0.459, P < 0.01). Multiple and logistic regression showed that serum Dickkopf-1 levels were independently associated with UACR (odds ratio = 0.627, P = 0.021). CONCLUSION Serum Dickkopf-1 levels are negatively associated with UACR. Lower serum Dickkopf-1 levels could be a critical risk factor for albuminuria in diabetes.
Collapse
Affiliation(s)
- Ning-Ning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - En-Wen Mao
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yu-Ting Ma
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Hong-Xi Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
14
|
Bilinski WJ, Paradowski PT, Sypniewska G. Bone health and hyperglycemia in pediatric populations. Crit Rev Clin Lab Sci 2020; 57:444-457. [PMID: 32216595 DOI: 10.1080/10408363.2020.1739619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The impact of prediabetes and diabetes on skeletal health in the context of increased risk of fragility fractures in adults has been studied recently. However, the prevalence of diabetes, overweight, and obesity have also increased in younger subjects. Current data concerning bone metabolism based on assessment of markers for bone turnover and of bone quality in diabetes patients in diverse age groups appears to be inconsistent. This review synthesizes the current data on the assessment of bone turnover based on the use of circulating bone markers recommended by international organizations; the effects of age, gender, and other factors on the interpretation of the data; and the effects of type 1 and type 2 diabetes as well as hyperglycemia on bone quality and turnover with particular emphasis on the pediatric population. Early intervention in the pediatric population is necessary to prevent the progression of metabolic disturbances that accompany prediabetes and diabetes in the context of common low vitamin D status that may interfere with bone growth.
Collapse
Affiliation(s)
| | - Przemyslaw T Paradowski
- Department of Orthopaedics and Traumatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.,Department of Surgical and Perioperative Sciences. Division of Orthopedics, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
15
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
16
|
Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes 2019; 20:629-636. [PMID: 31017353 DOI: 10.1111/pedi.12861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/OBJECTIVE Fracture risk is increased in patients with type 1 diabetes. We aimed to evaluate bone mineral density (BMD) and to identify risk factors associated to lower BMD in Danish children and adolescents with type 1 diabetes. METHODS In this cross-sectional study BMD Z-score were determined by dual-energy X-ray absorptiometry (DXA) from a cohort of otherwise healthy children and adolescents with type 1 diabetes. Puberty Tanner stage, hemoglobin A1c (HbA1c), disease duration, and age at diabetes onset were investigated for associations to DXA results. RESULTS We included 85 patients, 39 girls, 46 boys, with a median (range) age of 13.2 (6-17) years; disease duration 4.2 (0.4-15.9) years; HbA1c of the last year 61.8 (41-106) mmol/mol. Our patients were taller and heavier than the background population. When adjusted for increased height SD and body mass index SD, no overall difference in BMD Z-score was found. When stratified by sex, boys had significantly increased adjusted mean BMD Z-score, 0.38 (95% confidence interval [CI]: 0.13;0.62), girls; -0.27 (95% CI: -0.53;0.00). For the whole cohort, a negative correlation between mean latest year HbA1c and BMD Z-score was found, adjusted ß -0.019 (95%CI: -0.034;-0.004, P = 0.01). Poor glycemic control (HbA1c > 58 mmol/mol [7.5%]) within the latest year was likewise negatively correlated with BMD Z-score, adjusted ß -0.35 (95%CI: -0.69;-0.014, P = 0.04). CONCLUSIONS Our study suggests that elevated blood glucose has a negative effect on the bones already before adulthood in patients with type 1 diabetes, although no signs of osteoporosis were identified by DXA.
Collapse
Affiliation(s)
- Gitte B Fuusager
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Nikolaj Milandt
- The Orthopedic Research Unit, Odense University Hospital, Odense, Denmark
| | - Anders J Schou
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|
17
|
Madsen JOB, Jørgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-A systematic review. Pediatr Diabetes 2019; 20:510-522. [PMID: 30941847 DOI: 10.1111/pedi.12853] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with impaired bone health and both osteocalcin (OCN) and procollagen type 1 amino terminal propetide (P1NP) (markers of bone formation) and C-terminal cross-linked telopeptide (CTX) (marker of bone resorption) are decreased in adult patients with T1D. We review the existing literature characterizing these bone turnover markers in children and adolescents with T1D and by meta-analysis examine whether alterations in OCN, P1NP, and CTX are evident and if potential changes correlate to the metabolic control (hemoglobin A1c, HbA1c). Systematic searches at MEDLINE and EMBASE were conducted in January 2018 identifying all studies describing OCN, P1NP, or CTX in children and adolescents with T1D. A total of 26 studies were included, representing data from more than 1000 patients with T1D. Pooled analyses of standard mean difference and summary effects analysis were performed when sufficient data were available. Pooled analysis revealed mean OCN to be significantly lower in children and adolescents with T1D compared to healthy controls (standard mean difference: -1.87, 95% confidence interval, CI: -2.83; -0.91) whereas both P1NP and CTX did not differ from the controls. Only data on OCN was sufficient to make pooled correlation analysis revealing a negative correlation between OCN and HbA1c (-0.31 95% CI: -0.45; -0.16). In conclusion, OCN is decreased in children and adolescents with T1D, whether CTX and P1NP are affected as well is unclear, due to very limited data available. New and large studies including OCN, P1NP, and CTX (preferably as z-scores adjusting for age variability) is needed to further elucidate the status of bone turnover in children and adolescents with T1D.
Collapse
Affiliation(s)
- Jens O B Madsen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Pociot
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jesper Johannesen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Wierzbicka E, Swiercz A, Pludowski P, Jaworski M, Szalecki M. Skeletal Status, Body Composition, and Glycaemic Control in Adolescents with Type 1 Diabetes Mellitus. J Diabetes Res 2018; 2018:8121634. [PMID: 30250851 PMCID: PMC6140037 DOI: 10.1155/2018/8121634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Disturbed bone turnover, osteoporosis, and increased fracture risk are late complications of insulin-dependent diabetes mellitus. Little is known about how far and to what extent can glycaemic control of type 1 diabetes mellitus (T1DM) prevent disturbances of bone health and body composition during the growth and maturation period. OBJECTIVE The aim of this cross-sectional study was to compare the skeletal status outcomes and body composition between patients stratified by glycaemic control (1-year HbA1c levels) into well- and poorly-controlled subgroups in a population of T1DM adolescents, that is, <8% and ≥8%, respectively. SUBJECTS AND METHODS Skeletal status and body composition were evaluated in 60 adolescents with T1DM (53.3% female; mean aged: 15.1 ± 1.9 years; disease duration: 5.1 ± 3.9 years) using dual energy X-ray absorptiometry (GE Prodigy). The results were compared to age- and sex-adjusted reference values for healthy controls. The calculated Z-scores of different metabolic control subgroups were compared. Clinical data was also assessed. RESULTS As evidenced by Z-scores, patients with T1DM revealed a significantly lower TBBMD (total body bone mineral density), TBBMC (total body bone mineral content), S24BMD (bone mineral density of lumbar spine L2-L4), and TBBMC/LBM ratio (total body bone mineral content/lean body mass), but higher FM (fat mass) and FM/LBM ratio (fat mass/lean body mass) values compared to an age- and sex-adjusted general population. The subset (43.3% patients) with poor metabolic control (HbA1c ≥ 8%) had lower TBBMD, TBBMC, and LBM compared to respective values noted in the HbA1c < 8% group, after adjusting for confounders (mean Z-scores: -0.74 vs. -0.10, p = 0.037; -0.67 vs. +0.01, p = 0.026; and -0.45 vs. +0.20, p = 0.043, respectively). Additionally, we found a significant difference in the TBBMC/LBM ratio (relative bone strength index) between the metabolic groups (-0.58 vs. -0.07; p = 0.021). A statistically significant negative correlation between 1-year HbA1c levels and Z-scores of TBBMD, TBBMC, and LBM was also observed. In patients with longer disease duration, a significant negative correlation was established only for TBBMD, after adjusting for confounders. The relationships between densitometric values and age at onset of T1DM and sex were not significant and showed no relation to any of the analysed parameters of the disease course. CONCLUSION Findings from this study of adolescents with T1DM indicate that the lower Z-scores of TBBMD, TBBMC, and LBM as well as the TBBMC/LBM ratio are associated with increased HbA1c levels. Their recognition can be crucial in directing strategies to optimise metabolic control and improve diabetes management for bone development and maintenance in adolescents with T1DM.
Collapse
Affiliation(s)
- Elzbieta Wierzbicka
- Department of Human Nutrition, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Anna Swiercz
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Pawel Pludowski
- Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczyslaw Szalecki
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|