1
|
Bolger MW, Tekkey T, Kohn DH. The Contribution of Perilacunar Composition and Mechanical Properties to Whole-Bone Mechanical Outcomes in Streptozotocin-Induced Diabetes. Calcif Tissue Int 2023; 113:229-245. [PMID: 37261462 PMCID: PMC11144452 DOI: 10.1007/s00223-023-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Osteocytes are the most abundant cell type in bone and remodel their local perilacunar matrix in response to a variety of stimuli and diseases. How the perilacunar composition and mechanical properties are affected by type 1 diabetes (T1D), and the contribution of these local changes to the decline in whole-bone functional properties that occurs with diabetes remains unclear. 12-14 week old C57/BL6 male mice were administered a series of low-dose streptozotocin injections and sacrificed at baseline (BL), 3 (D3) and 7 weeks (D7) following confirmation of diabetes, along with age-matched controls (C3, C7). Femora were then subjected to a thorough morphological (μCT), mechanical (four-point bending, nanoindentation), and compositional (HPLC for collagen cross-links, Raman spectroscopy) analysis at the whole-bone and local (perilacunar and intracortical) levels. At the whole-bone level, D7 mice exhibited 10.7% lower ultimate load and 26.4% lower post-yield work relative to C7. These mechanical changes coincided with 52.2% higher levels of pentosidine at D7 compared to C7. At the local level, the creep distance increased, while modulus and hardness decreased in the perilacunar region relative to the intracortical for D7 mice, suggesting a spatial uncoupling in skeletal adaptation. D7 mice also exhibited increased matrix maturity in the 1660/1690 cm-1 ratio at both regions relative to C7. The perilacunar matrix maturity was predictive of post-yield work (46%), but perilacunar measures were not predictive of ultimate load, which was better explained by cortical area (26%). These results show that diabetes causes local perilacunar composition perturbations that affect whole-bone level mechanical properties, implicating osteocyte maintenance of its local matrix in the progression of diabetic skeletal fragility.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tara Tekkey
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Heilbronner AK, Dash A, Straight BE, Snyder LJ, Ganesan S, Adu KB, Jae A, Clare S, Billings E, Kim HJ, Cunningham M, Lebl DR, Donnelly E, Stein EM. Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients. Bone 2023; 169:116678. [PMID: 36646265 PMCID: PMC10081687 DOI: 10.1016/j.bone.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Alexander Dash
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Beth E Straight
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Leah J Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sandhya Ganesan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kobby B Adu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Andy Jae
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Shannon Clare
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Emma Billings
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Matthew Cunningham
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research Institute, Hospital for Special Surgery, New York, NY, United States of America
| | - Emily M Stein
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
3
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
4
|
The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines 2022; 11:biomedicines11010033. [PMID: 36672541 PMCID: PMC9855775 DOI: 10.3390/biomedicines11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis.
Collapse
|
5
|
Qian W, Schmidt R, Turner JA, Bare SP, Lappe JM, Recker RR, Akhter MP. A pilot study on the nanoscale properties of bone tissue near lacunae in fracturing women. Bone Rep 2022; 17:101604. [PMID: 35874169 PMCID: PMC9304727 DOI: 10.1016/j.bonr.2022.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of this study is to investigate the causes of osteoporosis-related skeletal fragility in postmenopausal women. We hypothesize that bone fragility in these individuals is largely due to mineral, and/or intrinsic material properties in the osteocyte lacunar/peri-lacunar regions of bone tissue. Innovative measurements with nanoscale resolution, including scanning electron microscope (SEM), an atomic force microscope that is integrated with infrared spectroscopy (AFM-IR), and nanoindentation, were used to characterize osteocyte lacunar and peri-lacunar properties in bone biopsies from fracturing (Cases) and matched (Age, BMD), non-fracturing (Controls) postmenopausal healthy women. In the peri-lacunar space, the nanoindentation results show that the modulus and hardness of the Controls are lower than the Cases. The AFM-IR results conclusively show that the mineral matrix, maturity (peak) (except in outer/far regions in Controls) were greater in Controls than in Cases. Furthermore, these results indicate that while mineral-to-matrix area ratio tend to be greater, the mineral maturity and crystallinity peak ratio "near" lacunae is greater than at regions "far" or more distance from lacunae in the Controls only. Due to the heterogeneity of bone structure, additional measurements are needed to provide more convincing evidence of altered lacunar characteristics and changes in the peri-lacunar bone as mechanisms related to postmenopausal women and fragility. Such findings would motivate new osteocyte-targeted treatments to reduce fragility fracture risks in these groups.
Collapse
Affiliation(s)
- Wen Qian
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Roman Schmidt
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Joseph A. Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Sue P. Bare
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Joan M. Lappe
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Mohammed P. Akhter
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| |
Collapse
|
6
|
Anderson KD, Ko FC, Fullam S, Virdi AS, Wimmer MA, Sumner D, Ross RD. The relative contribution of bone microarchitecture and matrix composition to implant fixation strength in rats. J Orthop Res 2022; 40:862-870. [PMID: 34061392 PMCID: PMC8633073 DOI: 10.1002/jor.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.
Collapse
Affiliation(s)
- Kyle D. Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Spencer Fullam
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Markus A. Wimmer
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - D.R. Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
7
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
8
|
Abstract
Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
9
|
Chen CH, Cheng TL, Chang CF, Huang HT, Lin SY, Wu MH, Kang L. Raloxifene Ameliorates Glucosamine-Induced Insulin Resistance in Ovariectomized Rats. Biomedicines 2021; 9:biomedicines9091114. [PMID: 34572301 PMCID: PMC8466068 DOI: 10.3390/biomedicines9091114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are common among older women, especially postmenopausal women. Glucosamine (GlcN) is a common medication for OA, but it may induce insulin resistance and β-cell dysfunction, especially if ovarian hormones are lacking. Raloxifene (RLX) is a selective estrogen receptor modulator and also an OP drug. Previously, we found that estrogen could improve GlcN-induced insulin resistance in ovariectomized (OVX) rats. Here, we further hypothesized that RLX, similarly to estrogen, can ameliorate GlcN-induced insulin resistance in OVX rats. We used GlcN to induce insulin resistance in OVX rats as a model for evaluating the protective effects of RLX in vivo. We used a pancreatic β-cell line, MIN-6, to study the mechanisms underlying the effect of RLX in GlcN-induced β-cell dysfunction in vitro. Increases in fasting plasma glucose, insulin, and homeostasis model assessments of insulin resistance in OVX Sprague Dawley rats treated with GlcN were reversed by RLX treatment (n = 8 in each group). Skeletal muscle GLUT-4 increased, liver PEPCK decreased, pancreatic islet hypertrophy, and β-cell apoptosis in OVX rats treated with GlcN was ameliorated by RLX. The negative effects of GlcN on insulin secretion and cell viability in MIN-6 cells were related to the upregulation of reticulum (ER) stress-associated proteins (C/EBP homologous protein, phospho-extracellular signal-regulated kinase, phospho-c-JunN-terminal kinase), the expression of which was reduced by RLX. Pretreatment with estrogen receptor antagonists reversed the protective effects of RLX. GlcN can induce insulin resistance, β-cell dysfunction, and apoptosis in OVX rats and increase ER stress-related proteins in β-cells, whereas RLX can reverse these adverse effects. The effects of RLX act mainly through estrogen receptor α; therefore, RLX may be a candidate drug for postmenopausal women with OA and OP.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lin Kang
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
11
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
12
|
Tanideh R, Delavari S, Farshad O, Irajie C, Javad Yavari Barhaghtalab M, Koohpeyma F, Koohi-Hosseinabadi O, Jamshidzadeh A, Tanideh N, Iraji A. Effect of flaxseed oil on biochemical parameters, hormonal indexes and stereological changes in ovariectomized rats. Vet Med Sci 2020; 7:521-533. [PMID: 33103380 PMCID: PMC8025639 DOI: 10.1002/vms3.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
The ovariectomized rat is a widely used preclinical model for studying postmenopausal and its complications. In this study, the therapeutic effect of flaxseed oil on the ovariectomized adult rats was investigated. Our results showed that biochemical parameters including calcium, oestrogen and progesterone levels increase 8 weeks after ovariectomy in rats. Also, the amount of alkaline phosphatase decreased significantly after 8 weeks compared with the OVX rat. The healing potential of flaxseed oil was proven by successfully recovering the affected tissue and preventing the unpleasant symptoms of ovariectomized rats. The biological effects of flaxseed oil may be due to high amounts of fatty acids, phytoestrogens and an array of antioxidants. The results suggest that flaxseed oil can mimic the action of oestrogen and can be a potential treatment for hormone replacement therapy (HRT).
Collapse
Affiliation(s)
- Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Delavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|