1
|
von Brackel FN, Oheim R. Iron and bones: effects of iron overload, deficiency and anemia treatments on bone. JBMR Plus 2024; 8:ziae064. [PMID: 38957399 PMCID: PMC11215550 DOI: 10.1093/jbmrpl/ziae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Iron is a vital trace element and exerts opposing effects on bone in both iron overload and iron deficiency situations. Remarkably, iron supplementation through intravenous infusion in patients with iron deficiency can also have detrimental effects on bone in special cases. The diverse mechanisms underlying these effects and their manifestations contribute to the complexity of this relationship. Iron overload impacts both bone resorption and formation, accelerating bone resorption while reducing bone formation. These effects primarily result from the direct action of reactive oxygen species (ROS), which influence the proliferation, differentiation, and activity of both osteoclasts and osteoblasts differently. This imbalance favors osteoclasts and inhibits the osteoblasts. Simultaneously, multiple pathways, including bone morphogenic proteins, RANK ligand, and others, contribute to these actions, leading to a reduction in bone mass and an increased susceptibility to fractures. In contrast, iron deficiency induces low bone turnover due to energy and co-factor deficiency, both of which require iron. Anemia increases the risk of fractures in both men and women. This effect occurs at various levels, reducing muscular performance and, on the bone-specific level, decreasing bone mineral density. Crucially, anemia increases the synthesis of the phosphaturic hormone iFGF23, which is subsequently inactivated by cleavage under physiological conditions. Thus, iFGF23 levels and phosphate excretion are not increased. However, in specific cases where anemia has to be managed with intravenous iron treatment, constituents-particularly maltoses-of the iron infusion suppress the cleavage of iFGF23. As a result, patients can experience severe phosphate wasting and, consequently, hypophosphatemic osteomalacia. This condition is often overlooked in clinical practice and is often caused by ferric carboxymaltose. Ending iron infusions or changing the agent, along with phosphate and vitamin D supplementation, can be effective in addressing this issue.
Collapse
Affiliation(s)
- Felix N von Brackel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| |
Collapse
|
2
|
Baschant U, Fuqua BK, Ledesma-Colunga M, Vulpe CD, McLachlan S, Hofbauer LC, Lusis AJ, Rauner M. Effects of dietary iron deficiency or overload on bone: Dietary details matter. Bone 2024; 184:117092. [PMID: 38575048 DOI: 10.1016/j.bone.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J). METHODS Mice received a high (20,000 ppm) or low-iron diet (∼10 ppm) after weaning for 6-8 weeks. For C57BL/6J males, we used two dietary setups with similar amounts of iron, yet different nutritional compositions that were either richer ("TUD study") or poorer ("UCLA study") in minerals and vitamins. After sacrifice, liver, blood and bone parameters as well as bone turnover markers in the serum were analyzed. RESULTS Almost all mice on the UCLA study high iron diet had a significant decrease of cortical and trabecular bone mass accompanied by high bone resorption. Iron deficiency did not change bone microarchitecture or turnover in C57BL/6J, A/J, and DBA/2J mice, but increased trabecular bone mass in BALB/cJ, C3H/HeJ and AKR/J mice. In contrast to the UCLA study, male C57BL/6J mice in the TUD study did not display any changes in trabecular bone mass or turnover on high or low iron diet. However, cortical bone parameters were also decreased in TUD mice on the high iron diet. CONCLUSION Thus, these data show that cortical bone is more susceptible to iron overload than trabecular bone and highlight the importance of a nutrient-rich diet to potentially mitigate the negative effects of iron overload on bone.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Brie K Fuqua
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Maria Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Germany.
| |
Collapse
|
3
|
Cailleaux PE, Ostertag A, Haguenauer DA, Ledoux S, Cohen-Solal M. Long-Term Differential Effects of Gastric Bypass and Sleeve Gastrectomy on Bone Mineral Density. J Endocr Soc 2024; 8:bvae111. [PMID: 38939832 PMCID: PMC11210305 DOI: 10.1210/jendso/bvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/29/2024] Open
Abstract
Context The association of obesity with bone fragility fractures is complex and non-linear. Despite good efficacy on weight loss, bariatric surgery (BS) is also associated with bone loss. However, we lack information on risk factors of the long-term deleterious effects of BS on the skeleton. Objective We aimed to assess the factors associated with low bone mineral density (BMD) performed a long time after Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Methods This cross-sectional study involved patients at a long distance from their BS that underwent dual-energy x-ray absorptiometry (DXA) with biological factors (vitamins, micronutrients, bone and inflammation biomarkers). Simple and multiple linear models (stepwise and parsimony approach) were developed. Results A total of 131 patients (91 RYGB, 40 SG) underwent DXA (51.8 ± 11.08 years, 87.8% women). At a mean of 6.8 ± 3.7 years after surgery, the mean weight loss was -28.6 ± 9.6%, and only 6 patients (5.7%) had a T-score less than or equal to -2.5. On univariate analysis, BMD was lower in the RYGB than in the SG group (P < .001) at all sites, despite similar fat and fat-free mass and weight loss. Serum parathyroid hormone and phosphate levels were higher in RYGB than SG patients. A total of 10.1% of patients showed vascular calcifications. On multivariable analysis, BMD remained different between surgery groups after adjustment for age, body mass index, ethnicity, and sex. The model-adjusted R 2 values were 0.451 for the total hip; 0.462 the femoral neck, and 0.191 the lumbar spine for the inflammation model; 0.458, 0.462, and 0.254, respectively, for the bone marker model; and 0.372, 0.396, and 0.142 for the vitamin model. Serum zinc, ferritin, and uric acid levels were the markers associated with BMD to a low extent. Conclusion BMD differed depending on the BS procedure. A few biological markers may be associated weakly with BMD well after the surgery.
Collapse
Affiliation(s)
- Pierre-Emmanuel Cailleaux
- Service de gériatrie aiguë, Hôpital Louis-Mourier, Assistance Publique—Hôpitaux de Paris, F-92700 Colombes, France
- Inserm Bioscar, Université Paris Cité, 75010 Paris, France
| | - Agnès Ostertag
- Inserm Bioscar, Université Paris Cité, 75010 Paris, France
| | - Didier Albert Haguenauer
- Service de gériatrie aiguë, Hôpital Louis-Mourier, Assistance Publique—Hôpitaux de Paris, F-92700 Colombes, France
| | - Séverine Ledoux
- Service des Explorations Fonctionnelles, Centre intégré de prise en charge de l’obésité (CINFO), Hôpital Louis-Mourier APHP.Nord, Colombes & Université Paris Cité, 92700 Colombes, France
| | | |
Collapse
|
4
|
Mitchell BA, Chi JA, Driskill EK, Labaran LA, Wang JF, Shen FH, Li XJ. A Matched-Cohort Analysis of Outcomes in Patients with Hereditary Hemochromatosis After Anterior Cervical Discectomy and Fusion. World Neurosurg 2024; 184:e25-e31. [PMID: 37979684 DOI: 10.1016/j.wneu.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a common autosomal recessive disorder. This disease affects gut iron transport, leading to iron overload, which affects immune function, coagulation mechanics, and bone health. Within the spine, HH contributes to decreased bone mineral density and accelerated intervertebral disc degeneration. The purpose of this study was to discover the differences in the rates of common 90-day postoperative complications and 1-year and 2-year surgical outcomes in patients with and without HH after anterior cervical discectomy and fusion (ACDF). METHODS Using the PearlDiver database, patients with active diagnoses of HH before ACDF were matched to patients without HH using a 1:5 ratio on the basis of age, sex, body mass index, and comorbidities. Postoperative complications were assessed at 90 days, and 1-year and 2-year surgical outcomes were assessed. All outcomes and complications were analyzed using multivariate logistic regression with significance achieved at P < 0.05. RESULTS Patients with HH had significantly higher rates of 1-year and 2-year reoperation rates compared with patients without HH (29.19% vs. 3.94% and 37.1% vs. 5.93%, respectively; P < 0.001). The rates of 90-day postoperative complications significantly increased in patients with HH including dysphagia, pneumonia, cerebrovascular accident, deep vein thrombosis, acute kidney injury, urinary tract infection, hyponatremia, surgical site infection, iatrogenic deformity, emergency department visit, and hospital readmission. CONCLUSIONS Patients with HH undergoing ACDF showed increased 90-day postoperative complications and significantly increased rates of 1-year and 2-year reoperation compared with patients without HH. These findings suggest that iron overload may contribute to adverse outcomes in patients with HH undergoing 1-level and 2-level ACDF.
Collapse
Affiliation(s)
- Brook A Mitchell
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA; Department of Orthopaedic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Jialun A Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth K Driskill
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Lawal A Labaran
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jesse F Wang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Xudong J Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
5
|
Liu LL, Liu ZR, Cao LJ, Wang J, Huang SM, Hu SG, Yang YZ, Li DS, Cao WW, Zeng QB, Huang S, Wu Q, Xiao JH, Liu WY, Xiao YS. Iron accumulation induced by hepcidin1 knockout accelerates the progression of aging osteoporosis. J Orthop Surg Res 2024; 19:59. [PMID: 38216929 PMCID: PMC10785403 DOI: 10.1186/s13018-024-04535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE Iron accumulation is associated with osteoporosis. This study aims to explore the effect of chronic iron accumulation induced by hepcidin1 deficiency on aging osteoporosis. METHODS Iron accumulation in hepcidin1 knockout aging mice was assessed by atomic absorption spectroscopy and Perl's staining. Bone microarchitecture was observed using Micro-CT. Hepcidin, ferritin, oxidative stress, and markers of bone turnover in serum were detected by enzyme-linked immunosorbent assay. Bone formation and resorption markers were measured by real-time quantitative PCR. Cell aging was induced by D-galactose treatment. CCK-8, flow cytometry, EdU assays, and Alizarin red staining were performed to reveal the role of hepcidin1 knockout in cell model. Iron Colorimetric Assay Kit and western blot were applied to detect iron and ferritin levels in cells, respectively. RESULTS In hepcidin1-knockout mice, the ferritin and iron contents in liver and tibia were significantly increased. Iron accumulation induced by hepcidin1 knockout caused a phenotype of low bone mass and deteriorated bone microarchitecture. Osteogenic marker was decreased and osteoclast marker was increased in mice, accompanied by increased oxidative stress level. The mRNA expression levels of osteoclast differentiation markers (RANKL, Mmp9, OPG, Trap, and CTSK) were up-regulated, while bone formation markers (OCN, ALP, Runx2, SP7, and Col-1) were down-regulated in model group, compared to wild type mice. In vitro, hepcidin1 knockdown inhibited proliferation and osteogenic differentiation, while promoted apoptosis, with increased levels of iron and ferritin. CONCLUSION Iron accumulation induced by hepcidin1 deficiency aggravates the progression of aging osteoporosis via inhibiting osteogenesis and promoting osteoclast genesis.
Collapse
Affiliation(s)
- Lu-Lin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Zhong-Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Lu-Jun Cao
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Jun Wang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - San-Ming Huang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Shui-Gen Hu
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Yi-Zhong Yang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Dong-Sheng Li
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Wei-Wei Cao
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Qing-Bao Zeng
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Sheng Huang
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Qiong Wu
- Department of Orthopedics, The People's Hospital of Ningdu County, No. 109, Zhongshan South Road, Ningdu County, Ganzhou, 342800, Jiangxi, China
| | - Jian-Hua Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Wu-Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China
| | - Yao-Sheng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi, China.
- Ganzhou Key Laboratory of Osteoporosis Research, No. 23, Qingnian Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
6
|
Banfield LR, Knapp KM, Pilling LC, Melzer D, Atkins JL. Hemochromatosis Genetic Variants and Musculoskeletal Outcomes: 11.5-Year Follow-Up in the UK Biobank Cohort Study. JBMR Plus 2023; 7:e10794. [PMID: 37808392 PMCID: PMC10556271 DOI: 10.1002/jbm4.10794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 10/10/2023] Open
Abstract
The iron overload disorder hemochromatosis is primarily caused by the homozygous HFE p.C282Y variant, but the scale of excess related musculoskeletal morbidity is uncertain. We estimated hemochromatosis-genotype associations with clinically diagnosed musculoskeletal outcomes and joint replacement surgeries in the UK Biobank community cohort. A total of 451,143 European ancestry participants (40 to 70 years at baseline) were followed in hospital records (mean 11.5-years). Cox proportional hazards models estimated HFE p.C282Y and p.H63D associations with incident outcomes. Male p.C282Y homozygotes (n = 1294) had increased incidence of osteoarthritis (n = 52, hazard ratio [HR]: 2.12 [95% confidence interval, CI: 1.61 to 2.80]; p = 8.8 × 10-8), hip replacement (n = 88, HR: 1.84 [95% CI: 1.49 to 2.27]; p = 1.6 × 10-8), knee replacement (n = 61, HR: 1.54 [95% CI: 1.20 to 1.98]; p = 8.4 × 10-4), and ankle and shoulder replacement, compared to males with no HFE mutations. Cumulative incidence analysis, using Kaplan-Meier lifetable probabilities demonstrated 10.4% of male homozygotes were projected to develop osteoarthritis and 15.5% to have hip replacements by age 75, versus 5.0% and 8.7% respectively without mutations. Male p.C282Y homozygotes also had increased incidence of femoral fractures (n = 15, HR: 1.72 [95% CI: 1.03 to 2.87]; p = 0.04) and osteoporosis (n = 21, HR: 1.71 [95% CI: 1.11 to 2.64]; p = 0.02), although the latter association was limited to those with liver fibrosis/cirrhosis diagnoses. Female p.C282Y homozygotes had increased incidence of osteoarthritis only (n = 57, HR: 1.46, [95% CI: 1.12 to 1.89]; p = 0.01). Male p.C282Y/p.H63D compound heterozygotes experienced a modest increased risk of hip replacements (n = 234, HR: 1.17 [95% CI: 1.02 to 1.33], p = 0.02), but this did not pass multiple testing corrections. In this large community cohort, the p.C282Y homozygote genotype was associated with substantial excess musculoskeletal morbidity in males. Wider HFE genotype testing may be justified, including in orthopedic clinics serving higher HFE variant prevalence populations. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lucy R Banfield
- The Department of Health and Care Professions, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Karen M Knapp
- The Department of Health and Care Professions, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Luke C Pilling
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - David Melzer
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Janice L Atkins
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| |
Collapse
|
7
|
Calori S, Comisi C, Mascio A, Fulchignoni C, Pataia E, Maccauro G, Greco T, Perisano C. Overview of Ankle Arthropathy in Hereditary Hemochromatosis. Med Sci (Basel) 2023; 11:51. [PMID: 37606430 PMCID: PMC10443289 DOI: 10.3390/medsci11030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Hereditary hemochromatosis (HH) is an autosomal recessive bleeding disorder characterized by tissue overload of iron. Clinical systemic manifestations in HH include liver disease, cardiomyopathy, skin pigmentation, diabetes mellitus, erectile dysfunction, hypothyroidism, and arthropathy. Arthropathy with joint pain is frequently reported at diagnosis and mainly involves the metacarpophalangeal and ankle joints, and more rarely, the hip and knee. Symptoms in ankle joints are in most cases non-specific, and they can range from pain and swelling of the ankle to deformities and joint destruction. Furthermore, the main radiological signs do not differ from those of primary osteoarthritis (OA). Limited data are available in the literature regarding treatment; surgery seems to be the gold standard for ankle arthropathy in HH. Pharmacological treatments used to maintain iron homeostasis can also be undertaken to prevent the arthropathy, but conclusive data are not yet available. This review aimed to assess the ankle arthropathy in the context of HH, including all its aspects: epidemiology, physiopathology, clinical and imaging presentation, and all the treatments available to the current state of knowledge.
Collapse
|
8
|
Heilmeier U, Burghardt AJ, Tse JJ, Kapoor P, Stok KS, Manske S, Voll RE, Schett G, Finzel S. Analysis of Hand Joint Space Morphology in Women and Men with Hereditary Hemochromatosis. Calcif Tissue Int 2023; 112:440-451. [PMID: 36738308 PMCID: PMC10025180 DOI: 10.1007/s00223-022-01050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
Hereditary hemochromatosis (HH) causes unbalanced iron deposition in many organs including the joints leading to severe cartilage loss and bone damage in the metacarpophalangeal joints (MCPJ). High-resolution peripheral quantitative computed tomography (HR-pQCT) and its joint space width (JSW) quantification algorithm quantifies in vivo 3D joint morphology. We therefore aimed to (i) determine feasibility and performance of the JSW algorithm in HH, (ii) quantify joint space morphology, and (iii) investigate the relationship between morphological and clinical parameters in HH. Here, we performed an exploratory study on 24 HH patients and sex- and age-matched controls using HR-pQCT imaging of MCPJ. Mineralized bone structure was automatically segmented from the grayscale image data and periosteal surface bone masks and joint space masks were generated. Mean, minimal, and maximal joint space width (JSW; JSW.MIN; JSW.MAX), JSW heterogeneity (JSW.SD), JSW asymmetry (JSW.AS), and joint space volume (JSV) were computed. Demographics and, for HH patients, disease-specific parameters were recorded. Segmentation of JS was very good with 79.7% of MCPJs successfully segmented at first attempt and 20.3% requiring semi-manual correction. HH men showed larger JSV at all MCPs (+ 25.4% < JSV < + 41.8%, p < 0.05), larger JSW.MAX at MCP 3-4 (+ 14%, 0.006 < p < 0.062), and wider JSW (+ 13%, p = 0.043) at MCP 4 relative to HH women. Compared to controls, both HH men and HH women showed larger JSW.AS and smaller JSW.MIN at all MCP levels, reaching significance for HH men at MCP 2 and 3 (JSW.AS: + 323% < JSW.AS < + 359%, 0.020 < p < 0.043; JSW.MIN: - 216% < JSW.MIN < - 225%, p < 0.043), and for women at MCP 3 (JSW.AS: + 180%, p = 0.025; JSW.MIN: - 41.8%, p = 0.022). Time since HH diagnosis was correlated positively with MCP 4 JSW.AS and JSW.SD (0.463 < ρ < 0.499, p < 0.040), and the number of phlebotomies since diagnosis was correlated with JSW.SD at all MCPs (0.432 < ρ < 0.535, p < 0.050). HR-pQCT-based JSW quantification in MCPJ of HH patients is feasible, performs well even in narrow JS, and allows to define the microstructural joint burden of HH.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany.
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA.
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - Justin J Tse
- Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Manske
- Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany
| |
Collapse
|
9
|
Jadzic J, Djonic D. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health? World J Gastroenterol 2023; 29:825-833. [PMID: 36816627 PMCID: PMC9932432 DOI: 10.3748/wjg.v29.i5.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 01/12/2023] [Indexed: 02/06/2023] Open
Abstract
Given that the liver is involved in many metabolic mechanisms, it is not surprising that chronic liver disease (CLD) could have numerous complications. Secondary osteoporosis and increased bone fragility are frequently overlooked complications in CLD patients. Previous studies implied that up to one-third of these individuals meet diagnostic criteria for osteopenia or osteoporosis. Recent publications indicated that CLD-induced bone fragility depends on the etiology, duration, and stage of liver disease. Therefore, the increased fracture risk in CLD patients puts a severe socioeconomic burden on the health system and urgently requires more effective prevention, diagnosis, and treatment measures. The pathogenesis of CLD-induced bone loss is multifactorial and still insufficiently understood, especially considering the relative impact of increased bone resorption and reduced bone formation in these individuals. It is essential to note that inconsistent findings regarding bone mineral density measurement were previously reported in these individuals. Bone mineral density is widely used as the “golden standard” in the clinical assessment of bone fragility although it is not adequate to predict individual fracture risk. Therefore, microscale bone alterations (bone microstructure, mechanical properties, and cellular indices) were analyzed in CLD individuals. These studies further support the thesis that bone strength could be compromised in CLD individuals, implying that an individualized approach to fracture risk assessment and subsequent therapy is necessary for CLD patients. However, more well-designed studies are required to solve the bone fragility puzzle in CLD patients.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
10
|
Jadzic J, Djonic D. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health? World J Gastroenterol 2023; 29:825-833. [DOI: https:/doi.org/10.3748/wjg.v29.i5.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
|
11
|
Jadzic J, Tomanovic N, Djukic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P, Djonic D. Micro-scale assessment of bone quality changes in adult cadaveric men with congestive hepatopathy. Histochem Cell Biol 2022; 158:583-593. [PMID: 35849203 DOI: 10.1007/s00418-022-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Congestive hepatopathy (CH) is a chronic liver disease (CLD) caused by impaired hepatic venous blood outflow, most frequently resulting from congestive heart failure. Although it is known that heart failure and CLDs contribute to increased risk for age-related fractures, an assessment of CH-induced skeletal alterations has not been made to date. The aim of our study was to characterize changes in bone quality in adult male cadavers with pathohistologically confirmed CH compared with controls without liver disease. The anterior mid-transverse part of the fifth lumbar vertebral body was collected from 33 adult male cadavers (age range 43-89 years), divided into the CH group (n = 15) and the control group (n = 18). We evaluated trabecular and cortical micro-architecture and bone mineral content (using micro-computed tomography), bone mechanical competence (using Vickers micro-hardness tester), vertebral cellular indices (osteocyte lacunar network and bone marrow adiposity), and osteocytic sclerostin and connexin 43 expression levels (using immunohistochemistry staining and analysis). Deterioration in trabecular micro-architecture, reduced trabecular and cortical mineral content, and decreased Vickers microhardness were noted in the CH group (p < 0.05). Reduced total number of osteocytes and declined connexin 43 expression levels (p < 0.05) implied that harmed mechanotransduction throughout the osteocyte network might be present in CH. Moreover, elevated expression levels of sclerostin by osteocytes could indicate the role of sclerostin in mediating low bone formation in individuals with CH. Taken together, these micro-scale bone alterations suggest that vertebral strength could be compromised in men with CH, implying that vertebral fracture risk assessment and subsequent therapy may need to be considered in these patients. However, further research is required to confirm the clinical relevance of our findings.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Nada Tomanovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 1, Belgrade, Serbia
| | - Danica Djukic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia.
| |
Collapse
|
12
|
Taujan GC, Iconaru L, Rosu M, Kosmopoulou O, Papadopoulou IB, Baleanu F. Severe osteoporosis as atypical presentation of hereditary hemochromatosis. Clin Case Rep 2022; 10:e6396. [PMID: 36245464 PMCID: PMC9547343 DOI: 10.1002/ccr3.6396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Besides important metabolic repercussions, iron overload is reported to be associated with deleterious effects on articulations and bones. We present the case of a male patient diagnosed with severe osteoporosis and vertebral fracture, in whom the evaluation for secondary osteoporosis revealed hereditary hemochromatosis.
Collapse
Affiliation(s)
| | - Laura Iconaru
- Department of EndocrinologyCentre Hospitalier Universitaire BrugmannBrusselsBelgium
| | - Mihaela Rosu
- Department of EndocrinologyCentre Hospitalier Universitaire BrugmannBrusselsBelgium
| | - Olga Ana Kosmopoulou
- Department of EndocrinologyCentre Hospitalier Universitaire BrugmannBrusselsBelgium
| | | | - Felicia Baleanu
- Department of EndocrinologyCentre Hospitalier Universitaire BrugmannBrusselsBelgium
| |
Collapse
|
13
|
Baschant U, Altamura S, Steele-Perkins P, Muckenthaler MU, Spasić MV, Hofbauer LC, Steinbicker AU, Rauner M. Iron effects versus metabolic alterations in hereditary hemochromatosis driven bone loss. Trends Endocrinol Metab 2022; 33:652-663. [PMID: 35871125 DOI: 10.1016/j.tem.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/08/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
Abstract
Hereditary hemochromatosis (HH) is a genetic disorder in which mutations affect systemic iron homeostasis. Most subtypes of HH result in low hepcidin levels and iron overload. Accumulation of iron in various tissues can lead to widespread organ damage and to various complications, including liver cirrhosis, arthritis, and diabetes. Osteoporosis is another frequent complication of HH, and the underlying mechanisms are poorly understood. Currently, it is unknown whether iron overload in HH directly damages bone or whether complications associated with HH, such as liver cirrhosis or hypogonadism, affect bone secondarily. This review summarizes current knowledge of bone metabolism in HH and highlights possible implications of metabolic dysfunction in HH-driven bone loss. We further discuss therapeutic considerations managing osteoporosis in HH.
Collapse
Affiliation(s)
- Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Steele-Perkins
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andrea U Steinbicker
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Das BK, Wang L, Fujiwara T, Zhou J, Aykin-Burns N, Krager KJ, Lan R, Mackintosh SG, Edmondson R, Jennings ML, Wang X, Feng JQ, Barrientos T, Gogoi J, Kannan A, Gao L, Xing W, Mohan S, Zhao H. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. eLife 2022; 11:73539. [PMID: 35758636 PMCID: PMC9352353 DOI: 10.7554/elife.73539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (Tfr1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin, and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of Tfr1 and Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of Tfr1 in osteoclast lineage cells in vivo and in vitro, we crossed Tfrc (encoding Tfr1)-floxed mice with Lyz2 (LysM)-Cre and Cathepsin K (Ctsk)-Cre mice to generate Tfrc conditional knockout mice in myeloid osteoclast precursors (Tfr1ΔLysM) or differentiated osteoclasts (Tfr1ΔCtsk), respectively. Skeletal phenotyping by µCT and histology unveiled a significant increase in trabecular bone mass with normal osteoclast number in long bones of 10-week-old young and 6-month-old adult female but not male Tfr1ΔLysM mice. Although high trabecular bone volume in long bones was observed in both male and female Tfr1ΔCtsk mice, this phenotype was more pronounced in female knockout mice. Consistent with this gender-dependent phenomena, estrogen deficiency induced by ovariectomy decreased trabecular bone mass in Tfr1ΔLysM mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts in vitro by attenuating mitochondrial respiration and activation of the Src-Rac1-WAVE regulatory complex axis, respectively, leading to decreased bone resorption with little impact on osteoclast differentiation. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling in a gender-dependent manner.
Collapse
Affiliation(s)
- Bhaba K Das
- Long Beach VA Healthcare System, Southern California Institute for Research and Education, Long Beach, United States
| | - Lei Wang
- Department of Orthopedics, Anhui Medical University, Hefei, China
| | - Toshifumi Fujiwara
- Department of Orthopedic Surgery, Kyushu University Hospital, Fukuoka, Japan
| | - Jian Zhou
- Department of Orthopedics, Anhui Medical University, HeFei, China
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Kimberly J Krager
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Renny Lan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Ricky Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University, Dallas, United States
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University, Dallas, United States
| | | | - Jyoti Gogoi
- Long Beach VA Healthcare System, Southern California Institute for Research and Education, Long Beach, United States
| | - Aarthi Kannan
- Long Beach VA Healthcare System, Southern California Institute for Research and Education, Long Beach, United States
| | - Ling Gao
- Long Beach VA Healthcare System, Southern California Institute for Research and Education, Long Beach, United States
| | - Weirong Xing
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, United States
| | - Haibo Zhao
- Long Beach VA Healthcare System, Southern California Institute for Research and Education, Long Beach, United States
| |
Collapse
|
15
|
Karim A, Bajbouj K, Qaisar R, Hall AC, Hamad M. The role of disrupted iron homeostasis in the development and progression of arthropathy. J Orthop Res 2022; 40:1243-1250. [PMID: 35289955 DOI: 10.1002/jor.25323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/13/2022] [Indexed: 02/04/2023]
Abstract
Arthropathy or joint disease leads to significant pain and disability irrespective of etiology. Clinical and experimental evidence point to the presence of considerable links between arthropathy and iron overload. Previous work has suggested that iron accumulation in the joints is often associated with increased oxidative stress, disrupted matrix metabolism, and cartilage degeneration. However, key issues regarding the role of iron overload in the pathogenesis of arthropathy remain ambiguous. For example, significant gaps in our knowledge of the primary cellular targets of iron overload-induced damage and the exact molecular mechanism through which disrupted iron homeostasis leads to joint damage still exist. The exact signaling pathway that links iron metabolism and cellular damage in arthropathy also remains largely unmapped. In this review, we focus on the relationship between iron overload and arthropathy with special emphasis on the adversarial relationship between iron that accumulates in the joints over time and cartilage homeostasis. A better understanding of the mechanisms and pathways underlying iron-induced cartilage degeneration may help in defining new prognostic markers and therapeutic targets in arthropathy.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Andrew C Hall
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Edwards DF, Miller CJ, Quintana‐Martinez A, Wright CS, Prideaux M, Atkins GJ, Thompson WR, Clinkenbeard EL. Differential Iron Requirements for Osteoblast and Adipocyte Differentiation. JBMR Plus 2021; 5:e10529. [PMID: 34532614 PMCID: PMC8441506 DOI: 10.1002/jbm4.10529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bone marrow mesenchymal progenitor cells are precursors for various cell types including osteoblasts, adipocytes, and chondrocytes. The external environment and signals act to direct the pathway of differentiation. Importantly, situations such as aging and chronic kidney disease display alterations in the balance of osteoblast and adipocyte differentiation, adversely affecting bone integrity. Iron deficiency, which can often occur during aging and chronic kidney disease, is associated with reduced bone density. The purpose of this study was to assess the effects of iron deficiency on the capacity of progenitor cell differentiation pathways. Mouse and human progenitor cells, differentiated under standard osteoblast and adipocyte protocols in the presence of the iron chelator deferoxamine (DFO), were used. Under osteogenic conditions, 5μM DFO significantly impaired expression of critical osteoblast genes, including osteocalcin, type 1 collagen, and dentin matrix protein 1. This led to a reduction in alkaline phosphatase activity and impaired mineralization. Despite prolonged exposure to chronic iron deficiency, cells retained viability as well as normal hypoxic responses with significant increases in transferrin receptor and protein accumulation of hypoxia inducible factor 1α. Similar concentrations of DFO were used when cells were maintained in adipogenic conditions. In contrast to osteoblast differentiation, DFO modestly suppressed adipocyte gene expression of peroxisome-proliferating activated receptor gamma, lipoprotein lipase, and adiponectin at earlier time points with normalization at later stages. Lipid accumulation was also similar in all conditions. These data suggest the critical importance of iron in osteoblast differentiation, and as long as the external stimuli are present, iron deficiency does not impede adipogenesis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel F. Edwards
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisINUSA
| | - Christopher J. Miller
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisINUSA
| | - Arelis Quintana‐Martinez
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisINUSA
| | - Christian S. Wright
- Department of Physical TherapySchool of Health & Human Sciences, Indiana UniversityIndianapolisINUSA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal HealthIndiana UniversityIndianapolisINUSA
| | - Gerald J. Atkins
- Centre for Orthopaedic & Trauma ResearchUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - William R. Thompson
- Department of Physical TherapySchool of Health & Human Sciences, Indiana UniversityIndianapolisINUSA
| | - Erica L. Clinkenbeard
- Department of Medical and Molecular GeneticsSchool of Medicine, Indiana UniversityIndianapolisINUSA
| |
Collapse
|
17
|
Banaszkiewicz K, Sikorska K, Panas D, Sworczak K. The Role of the Trabecular Bone Score in the Assessment of Osteoarticular Disorders in Patients with HFE-Hemochromatosis: A Single-Center Study from Poland. Genes (Basel) 2021; 12:genes12091304. [PMID: 34573286 PMCID: PMC8470067 DOI: 10.3390/genes12091304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Type 1 hereditary hemochromatosis (HH) is an autosomal, recessive genetic entity with systemic iron overload. Iron homeostasis disorders develop as a result of HFE gene mutations, which are associated with hepcidin arthropathy or osteoporosis and may cause permanent disability in HH patients despite a properly conducted treatment with phlebotomies. In this study, selected parameters of calcium and phosphate metabolism were analyzed in combination with the assessment of bone mineral density (BMD) disorders in patients from northern Poland with clinically overt HFE-HH. BMD was determined by a dual-energy X-ray absorptiometry (DXA) test with the use of the trabecular bone score (TBS) function. The study included 29 HH patients (mean age = 53.14 years) who were compared with 20 healthy volunteers. A significantly lower TBS parameter and serum 25-OH-D3 concentration, a higher concentration of intact parathormone and more a frequent occurrence of joint pain were found in HH patients compared with the control group. In HH patients, the diagnosis of liver cirrhosis was associated with lower serum 25-OH-D3 and osteocalcin concentrations. In HH, DXA with the TBS option is a valuable tool in the early assessment of the bone microarchitecture and fracture risk. A supplementation of vitamin D, monitoring its concentration, should be considered especially in HH patients with liver damage and liver cirrhosis.
Collapse
Affiliation(s)
- Katarzyna Banaszkiewicz
- Department of Tropical Medicine and Epidemiology, Chair of Tropical Medicine and Parasitology, Institute of Martime and Tropical Medicine Gdynia, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Katarzyna Sikorska
- Department of Tropical and Parasitic Diseases, Chair of Tropical Medicine and Parasitology, Institute of Martime and Tropical Medicine Gdynia, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| | - Damian Panas
- Department of Radiological Informatics and Statistics, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Krzysztof Sworczak
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
18
|
Guggenbuhl P, Robin F, Cadiou S, Albert JD. Etiology of avascular osteonecrosis of the femoral head. Morphologie 2021; 105:80-84. [PMID: 33451882 DOI: 10.1016/j.morpho.2020.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Avascular osteonecrosis of the femoral head (ONFH) is one of the causes of hip pain that clinicians need to know about. In many cases, it is a fortuitous discovery when pelvic X-rays is performed for another reason. In the other cases, pain reveals the disease. For the rheumatologist, a major part of the job is to look for a cause. An etiology can be found to ONFH in about 70% of the cases. Some of them are evident and the context give the diagnosis (corticosteroids, alcohol abuse…). However, in many cases, additional tests to imaging are required to make the causal diagnosis. In some cases, the treatment of the cause can prevent the recurrence of the disease.
Collapse
Affiliation(s)
- P Guggenbuhl
- Université de Rennes, INSERM, CHU Rennes, institut NUMECAN (Nutrition Metabolisms and Cancer), UMR 1241, 35000 Rennes, France.
| | - F Robin
- Université de Rennes, INSERM, CHU Rennes, institut NUMECAN (Nutrition Metabolisms and Cancer), UMR 1241, 35000 Rennes, France
| | - S Cadiou
- Université de Rennes, CHU Rennes, 35000 Rennes, France
| | - J D Albert
- INSERM, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR 1241, 35000 Rennes, France
| |
Collapse
|
19
|
Advances in the occurrence and biotherapy of osteoporosis. Biochem Soc Trans 2021; 48:1623-1636. [PMID: 32627832 DOI: 10.1042/bst20200005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Osteoporosis (OP) is a bone metabolic disease, is characterized by degeneration of bone structure and decreased bone mass. It happens in more than 1/3 women and 1/5 men of over than 50 years old, which affects the health and lives of people. The main mechanism of OP is mainly that the dynamic balance between the bone formation and resorption is broken, so that bone resorption is more than bone formation. It is prone to result in bone metabolism disorder. There are many precipitating factor such as elder age, low hormone level, genetic factors and bad hobbies. At the same time, the occurrence of the OP and its complications has different degrees of impact on people's quality of life. Based on the current understanding of the OP, we summarized the etiology, current clinical drugs and potential targeting therapy for OP. Although the research have made many progress in explore what is the novel mechanism and how to improve the effect, there are still many problems in the treatment method that limit its application prospects and need to be solved. In this review, we mainly focus on the mechanism of OP and related research on the targeted treatment of OP. Hopefully, our summary will provide a reference to develop some novel strategies for the target therapy of OP.
Collapse
|
20
|
Mehta KJ. Role of iron and iron-related proteins in mesenchymal stem cells: Cellular and clinical aspects. J Cell Physiol 2021; 236:7266-7289. [PMID: 33821487 DOI: 10.1002/jcp.30383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues where these cells show niche-dependent multilineage differentiation and secrete immunomodulatory molecules to support numerous physiological processes. Due to their regenerative and reparative properties, MSCs are extremely valuable for cell-based therapy in tackling several pathological conditions including COVID-19. Iron is essential for MSC processes but iron-loading, which is common in several chronic conditions, hinders normal MSC functionality. This not only aggravates disease pathology but can also affect allogeneic and autologous MSC therapy. Thus, understanding MSCs from an iron perspective is of clinical significance. Accordingly, this review highlights the roles of iron and iron-related proteins in MSC physiology. It describes the contribution of iron and endogenous iron-related effectors like hepcidin, ferroportin, transferrin receptor, lactoferrin, lipocalin-2, bone morphogenetic proteins and hypoxia inducible factors in MSC biology. It summarises the excess-iron-induced alterations in MSC components, processes and discusses signalling pathways involving ROS, PI3K/AKT, MAPK, p53, AMPK/MFF/DRP1 and Wnt. Additionally, it evaluates the endogenous and exogenous saviours of MSCs against iron-toxicity. Lastly, it elaborates on the involvement of MSCs in the pathology of clinical conditions of iron-excess, namely, hereditary hemochromatosis, diabetes, β-thalassaemia and myelodysplastic syndromes. This unique review integrates the distinct fields of iron regulation and MSC physiology. Through an iron-perspective, it describes both mechanistic and clinical aspects of MSCs and proposes an iron-linked MSC-contribution to physiology, pathology and therapeutics. It advances the understanding of MSC biology and may aid in identifying signalling pathways, molecular targets and compounds for formulating adjunctive iron-based therapies for excess-iron conditions, and thereby inform regenerative medicine.
Collapse
Affiliation(s)
- Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK
| |
Collapse
|
21
|
Effect of Naringin Treatment on Postmenopausal Osteoporosis in Ovariectomized Rats: A Meta-Analysis and Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6016874. [PMID: 33628301 PMCID: PMC7889366 DOI: 10.1155/2021/6016874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoporosis is a major disease that affects the quality of life of middle-aged and old people, so it is very important to find efficient and safe drugs to treat osteoporosis. The purpose of this study was to investigate the therapeutic effect of naringin on postmenopausal osteoporosis in ovariectomized (OVX) rats. Methods Chinese biomedical databases, CNKI, PubMed, EMBASE, and Wan Fang were searched for articles from inception to March 2020. Two independent researchers screened articles according to inclusion criteria. RevMan 5.3 was used for data analysis. Results Ten studies were included in the systematic review. The bone mineral density (BMD) significantly increased after naringin treatment (weighted mean difference, 0.06; 95% CI, 0.03–0.09; P < 0.01). There was no significant increase in BMD after estrogen treatment compared with naringin (weighted mean difference, 0.00; 95% CI, −0.00 to 0.01; P = 0.06). The trabecular bone volume (BV/TV) (weighted mean difference, 2.09; 95% CI, 1.85–2.34; P < 0.01) and trabecular thickness (Tb.Th) (weighted mean difference, 6.65; 95% CI, 6.55–6.74; P < 0.01) significantly increased after using naringin. Conclusions Naringin had been shown to promote bone formation in OVX rats. However, the mechanism of naringin needs more research to confirm.
Collapse
|
22
|
Nguyen CD, Morel V, Pierache A, Lion G, Cortet B, Flipo RM, Canva-Delcambre V, Paccou J. Bone and joint complications in patients with hereditary hemochromatosis: a cross-sectional study of 93 patients. Ther Adv Musculoskelet Dis 2020; 12:1759720X20939405. [PMID: 32728396 PMCID: PMC7366396 DOI: 10.1177/1759720x20939405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to determine the frequency and characteristics of bone and joint complications, specifically bone fragility, joint replacement surgery, and arthropathy, in hereditary hemochromatosis (HH) and related factors. Methods This study was a cross-sectional observational study of 93 patients with HH. Radiographs of the hands, wrists, knees, and ankles were scored for joint space narrowing, erosions and cysts, osteophytes, and chondrocalcinosis. Prevalent (vertebral and non-vertebral) fragility fractures were recorded and bone mineral density (BMD) was systematically evaluated by dual energy X-ray absorptiometry. Bone fragility was defined as (i) a T-score ⩽ -2.5 at any site with or without a prevalent fragility fracture, or (ii) a T-score between -1.0 and -2.5 at any site and a prevalent fragility fracture. Results The mean age of the patients was 60.0 (11.2) years, and 58.0% of them were men. The frequency of radiographic MCP2-3 arthropathy was 37.6% (95% CI 0.28-0.48). Radiographic MCP2-3 arthropathy was independently associated with older age [OR 1.17 (1.09-1.26) per year, p < 0.0001], male sex [OR 3.89 (1.17-12.97), p = 0.027] and C282Y+/+ genotype [OR 4.78 (1.46-15.68), p = 0.010]. The frequency of joint replacement surgery was 12.9% (95% CI 0.07-0.21). The frequency of bone fragility was 20.4% (95% CI 0.13-0.30). Bone fragility was independently associated with hepatic cirrhosis [OR 8.20 (1.74-38.68), p = 0.008]. Discussion Radiographic MCP2-3 arthropathy was found to occur in 37.6% of patients with HH. The association observed between this form of arthropathy and C282Y homozygosity, male sex, and older age suggests that demographic characteristics and genetic background are likely to be major determinants of this joint disorder and play a more important role than severity of iron overload. Bone fragility was observed in a fifth of the patients with HH, independently of genetic background and severity of iron overload, and was strongly associated with hepatic cirrhosis. Conclusion Future investigations should focus on pathogenesis and early identification of patients at risk of developing bone and joint complications secondary to HH.
Collapse
Affiliation(s)
| | - Vincent Morel
- Service de radiologie ostéoarticulaire, CHU Lille, Lille, France
| | - Adeline Pierache
- EA 2694 - Santé Publique: épidémiologie et qualité des soins, Université de Lille, CHU Lille, F-Lille, France
| | - Georges Lion
- Service de médecine nucléaire, CHU Lille, Lille, France
| | | | | | | | - Julien Paccou
- Service de rhumatologie, Hôpital Roger Salengro, Rue Emile Laine, CHRU, 59037 Lille cedex, France
| |
Collapse
|