1
|
Karkhanis AV, Harwood MD, Stader F, Bois FY, Neuhoff S. Applications of the Cholesterol Metabolite, 4β-Hydroxycholesterol, as a Sensitive Endogenous Biomarker for Hepatic CYP3A Activity Evaluated within a PBPK Framework. Pharmaceutics 2024; 16:1284. [PMID: 39458613 PMCID: PMC11510160 DOI: 10.3390/pharmaceutics16101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach. Methods: Relevant physicochemical properties and metabolic pathway data for CYP3A and CYP27A1 was incorporated in the model. Results: The PBPK model recovered the observed baseline plasma 4β-OHC levels in Caucasian, Japanese, and Korean populations. The model also captured the higher baseline 4β-OHC levels in females compared to males, indicative of sex-specific differences in CYP3A abundance. More importantly, the model recapitulated the increased 4β-OHC plasma levels after multiple-dose rifampicin treatment in six independent studies, indicative of hepatic CYP3A induction. The verified model also captured the altered 4β-OHC levels in CYP3A4/5 polymorphic populations and with other CYP3A inducers. The model is limited by scant data on relative contributions of CYP3A and CYP27A1 pathways and does not account for regulatory mechanisms that control plasma cholesterol and 4β-OHC levels. Conclusion: This study provides a quantitative fit-for-purpose and framed-for-future modelling framework for an endogenous biomarker to evaluate the DDI risk with hepatic CYP3A induction.
Collapse
Affiliation(s)
- Aneesh V. Karkhanis
- Certara UK Limited, Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; (M.D.H.); (F.S.); (F.Y.B.); (S.N.)
| | | | | | | | | |
Collapse
|
2
|
Hirai K, Kimura T, Suzuki Y, Shimoshikiryo T, Shirai T, Itoh K. Gene Polymorphisms of NLRP3 Associated With Plasma Levels of 4β-Hydroxycholesterol, an Endogenous Marker of CYP3A Activity, in Patients With Asthma. Clin Pharmacol Ther 2024; 116:147-154. [PMID: 38482940 DOI: 10.1002/cpt.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 06/18/2024]
Abstract
Inflammation decreases the activity of cytochrome P450 3A (CYP3A). Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) is responsible for regulating the inflammatory response, and its genetic polymorphisms have been linked to inflammatory diseases such as asthma. However, there have been few studies on the effect of NLRP3 on CYP3A activity. We aimed to investigate the association between polymorphisms in the NLRP3 gene and plasma 4β-hydroxycholesterol (4βOHC), an endogenous marker of CYP3A activity, in patients with asthma. In this observational study including 152 adult asthma patients, we analyzed 10 NLRP3 gene single-nucleotide polymorphisms (SNPs). Plasma 4βOHC levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that five SNPs were associated with significantly lower plasma 4βOHC concentrations. Among these SNPs, rs3806265, rs4612666, rs1539019, and rs10733112 contributed to a significant increase in plasma IL-6 concentrations. Moreover, a multivariate regression model showed that the rs3806265 TT, rs4612666 CC, rs1539019 AA, and rs10733112 TT genotypes were significant factors for decreased plasma 4βOHC, even after including patient background factors and CYP3A5*3 (rs776746) gene polymorphisms as covariates. These results were also observed when plasma 4βOHC concentrations were corrected for cholesterol levels. We conclude that NLRP3 gene polymorphisms are involved in increasing plasma IL-6 concentrations and decreasing plasma 4βOHC concentrations in patients with asthma. Therefore, NLRP3 gene polymorphisms may be a predictive marker of CYP3A activity in inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Keita Hirai
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacy, Shinshu University Hospital, Nagano, Japan
- Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tomoki Kimura
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuya Suzuki
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takayuki Shimoshikiryo
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Laboratory of Clinical Pharmacogenomics, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
3
|
Sawant‐Basak A, Bergman AJ, Mancuso J, Tripathy S, Gosset JR, Mendes da Costa L, Esler WP, Calle RA. Investigation of pharmacokinetic drug interaction between clesacostat and DGAT2 inhibitor ervogastat in healthy adult participants. Clin Transl Sci 2024; 17:e13687. [PMID: 38362827 PMCID: PMC10870243 DOI: 10.1111/cts.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 02/17/2024] Open
Abstract
Co-administration of clesacostat (acetyl-CoA carboxylase inhibitor, PF-05221304) and ervogastat (diacylglycerol O-acyltransferase inhibitor, PF-06865571) in laboratory models improved non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) end points and mitigated clesacostat-induced elevations in circulating triglycerides. Clesacostat is cleared via organic anion-transporting polypeptide-mediated hepatic uptake and cytochrome P450 family 3A (CYP3A); in vitro clesacostat is identified as a potential CYP3A time-dependent inactivator. In vitro ervogastat is identified as a substrate and potential inducer of CYP3A. Prior to longer-term efficacy trials in participants with NAFLD, safety and pharmacokinetics (PK) were evaluated in a phase I, non-randomized, open-label, fixed-sequence trial in healthy participants. In Cohort 1, participants (n = 7) received clesacostat 15 mg twice daily (b.i.d.) alone (Days 1-7) and co-administered with ervogastat 300 mg b.i.d. (Days 8-14). Mean systemic clesacostat exposures, when co-administered with ervogastat, decreased by 12% and 19%, based on maximum plasma drug concentration and area under the plasma drug concentration-time curve during the dosing interval, respectively. In Cohort 2, participants (n = 9) received ervogastat 300 mg b.i.d. alone (Days 1-7) and co-administered with clesacostat 15 mg b.i.d. (Days 8-14). There were no meaningful differences in systemic ervogastat exposures when administered alone or with clesacostat. Clesacostat 15 mg b.i.d. and ervogastat 300 mg b.i.d. co-administration was overall safe and well tolerated in healthy participants. Cumulative safety and no clinically meaningful PK drug interactions observed in this study supported co-administration of these two novel agents in additional studies exploring efficacy and safety in the management of NAFLD.
Collapse
Affiliation(s)
- Aarti Sawant‐Basak
- Clinical Pharmacology, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Arthur J. Bergman
- Clinical Pharmacology, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Jessica Mancuso
- Statistics, Early Clinical DevelopmentWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Sakambari Tripathy
- Clinical Assay GroupGlobal Product Development, Pfizer Inc.GrotonConnecticutUSA
| | - James R. Gosset
- Pharmacokinetics, Dynamics and Metabolism, Medicine DesignWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | | | - William P. Esler
- Internal Medicine Research UnitWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| | - Roberto A. Calle
- Internal Medicine Research UnitWorldwide Research, Development and Medical, Pfizer Inc.CambridgeMassachusettsUSA
| |
Collapse
|
4
|
Lin J, Gaudreault F, Johnson N, Lin Z, Nouri P, Goosen TC, Sawant‐Basak A. Investigation of CYP3A induction by PF-05251749 in early clinical development: comparison of linear slope physiologically based pharmacokinetic prediction and biomarker response. Clin Transl Sci 2022; 15:2184-2194. [PMID: 35730131 PMCID: PMC9468555 DOI: 10.1111/cts.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 01/25/2023] Open
Abstract
PF-05251749 is a dual inhibitor of casein kinase 1 δ/ε under clinical development to treat disruption of circadian rhythm in Alzheimer's and Parkinson's diseases. In vitro, PF-05251749 (0.3-100 μM) induced CYP3A in cryopreserved human hepatocytes, demonstrating non-saturable, dose-dependent CYP3A mRNA increases, with induction slopes in the range 0.036-0.39 μM-1 . In a multiple-dose study (B8001002) in healthy participants, CYP3A activity was explored by measuring changes in 4β-hydroxycholesterol/cholesterol ratio. Following repeated oral administration of PF-05251749, up to 400 mg q.d., no significant changes were observed in 4β-hydroxycholesterol/cholesterol ratio; this ratio increased significantly (~1.5-fold) following administration of PF-05251749 at 750 mg q.d., suggesting potential CYP3A induction at this dose. Physiologically based pharmacokinetic (PBPK) models were developed to characterize the observed clinical pharmacokinetics (PK) of PF-05251749 at 400 and 750 mg q.d.; the PBPK induction model was calibrated using the in vitro linear fit induction slope, with rifampin as reference compound (Indmax = 8, EC50 = 0.32 μM). Clinical trial simulation following co-administration of PF-05251749, 400 mg q.d. with oral midazolam 2 mg, predicted no significant drug interaction risk. PBPK model predicted weak drug interaction following co-administration of PF-05251749, 750 mg q.d. with midazolam 2 mg. In conclusion, good agreement was obtained between CYP3A drug interaction risk predicted using linear-slope PBPK model and exploratory biomarker trends. This agreement between two orthogonal approaches enabled assessment of drug interaction risks of PF-05251749 in early clinical development, in the absence of a clinical drug-drug interaction study.
Collapse
Affiliation(s)
- Jian Lin
- Medicine Design Pharmacokinetics, Pharmacodynamics, and Metabolism, Worldwide Research, Development and MedicalPfizer Inc.GrotonConnecticutUSA
| | - Francois Gaudreault
- Clinical Pharmacology, Early Clinical Development, Worldwide Research, Development and MedicalPfizer Inc.CambridgeMassachusettsUSA
| | - Nathaniel Johnson
- Medicine Design Pharmacokinetics, Pharmacodynamics, and Metabolism, Worldwide Research, Development and MedicalPfizer Inc.GrotonConnecticutUSA
| | - Zhiwu Lin
- Medicine Design Pharmacokinetics, Pharmacodynamics, and Metabolism, Worldwide Research, Development and MedicalPfizer Inc.GrotonConnecticutUSA
| | - Parya Nouri
- Clinical Assay GroupGlobal Product Development, Pfizer Inc.CambridgeMassachusettsUSA
| | - Theunis C. Goosen
- Medicine Design Pharmacokinetics, Pharmacodynamics, and Metabolism, Worldwide Research, Development and MedicalPfizer Inc.GrotonConnecticutUSA
| | - Aarti Sawant‐Basak
- Clinical Pharmacology, Early Clinical Development, Worldwide Research, Development and MedicalPfizer Inc.CambridgeMassachusettsUSA
| |
Collapse
|
5
|
Eide Kvitne K, Hole K, Krogstad V, Wollmann BM, Wegler C, Johnson LK, Hertel JK, Artursson P, Karlsson C, Andersson S, Andersson TB, Sandbu R, Hjelmesæth J, Skovlund E, Christensen H, Jansson-Löfmark R, Åsberg A, Molden E, Robertsen I. Correlations between 4β-hydroxycholesterol and hepatic and intestinal CYP3A4: protein expression, microsomal ex vivo activity, and in vivo activity in patients with a wide body weight range. Eur J Clin Pharmacol 2022; 78:1289-1299. [PMID: 35648149 PMCID: PMC9283167 DOI: 10.1007/s00228-022-03336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4β-hydroxycholesterol (4βOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4βOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4βOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS 4βOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4βOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION These findings suggest that 4βOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4βOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION Clinical. TRIALS gov identifier: NCT02386917.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Line K Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens K Hertel
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Clinical Metabolism, Cardiovascular, Renal and Metabolism (CVRM), Late-Stage Development, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Deparment of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
6
|
Sun W, Lirio RA, Schneider J, Aubrecht J, Kadali H, Baratta M, Gulati P, Suri A, Lin T, Vasudevan R, Rosario M. Assessment of Vedolizumab Disease-Drug-Drug Interaction Potential in Patients With Inflammatory Bowel Diseases. Clin Pharmacol Drug Dev 2021; 10:734-747. [PMID: 33331142 PMCID: PMC8359401 DOI: 10.1002/cpdd.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
Disease-drug-drug interactions (DDDIs) have been identified in some inflammatory diseases in which elevated proinflammatory cytokines can downregulate the expression of cytochrome P450 (CYP) enzymes, potentially increasing systemic exposure to drugs metabolized by CYPs. Following anti-inflammatory treatments, CYP expression may return to normal, resulting in reduced drug exposure and diminished clinical efficacy. Vedolizumab has a well-established positive benefit-risk profile in patients with ulcerative colitis (UC) or Crohn's disease (CD) and has no known systemic immunosuppressive activity. A stepwise assessment was conducted to evaluate the DDDI potential of vedolizumab to impact exposure to drugs metabolized by CYP3A through cytokine modulation. First, a review of published data revealed that patients with UC or CD have elevated cytokine concentrations relative to healthy subjects; however, these concentrations remained below those reported to impact CYP expression. Exposure to drugs metabolized via CYP3A also appeared comparable between patients and healthy subjects. Second, serum samples from patients with UC or CD who received vedolizumab for 52 weeks were analyzed and compared with healthy subjects. Cytokine concentrations and the 4β-hydroxycholesterol-to-cholesterol ratio, an endogenous CYP3A4 biomarker, were comparable between healthy subjects and patients both before and during vedolizumab treatment. Finally, a medical review of postmarketing DDDI cases related to vedolizumab from the past 6 years was conducted and did not show evidence of any true DDDIs. Our study demonstrated the lack of clinically meaningful effects of disease or vedolizumab treatment on the exposure to drugs metabolized via CYP3A through cytokine modulation in patients with UC or CD.
Collapse
Affiliation(s)
- Wan Sun
- TakedaCambridgeMassachusettsUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hurwitz SJ, Tao S, Gavegnano C, Jiang Y, Tressler RL, Tsibris A, Del Rio C, Overton ET, Lederman MM, Kantor A, Moser C, Kohler JJ, Lennox J, Marconi VC, Flexner CW, Schinazi RF. Pharmacokinetics of Ruxolitinib in HIV Suppressed Individuals on Antiretroviral Agent Therapy from the ACTG A5336 Study. J Clin Pharmacol 2021; 61:1555-1566. [PMID: 34169526 DOI: 10.1002/jcph.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022]
Abstract
Ruxolitinib is a US Food and Drug Administration-approved orally administered Janus kinase (1/2) inhibitor that reduces cytokine-induced inflammation. As part of a randomized, phase 2, open-label trial, ruxolitinib (10 mg twice daily) was administered to HIV-positive, virologically suppressed individuals (33 men, 7 women) on antiretroviral therapy (ART) for 5 weeks. Herein, we report the population PK subsequently determined from this study. Plasma concentrations of ruxolitinib (294 samples) and antiretroviral agents were measured at week 1 (N = 39 participants) and week 4 or 5 (N = 37). Ruxolitinib PK was adequately described with a 2-compartment model with first-order absorption and elimination with distribution volumes normalized to mean body weight (91.5 kg) and a separate typical clearance for participants administered efavirenz (a known cytochrome P450 3A4 inducer). Participants administered an ART regimen with efavirenz had an elevated typical apparent oral clearance versus the integrase inhibitor regimen group (22.5 vs 12.9 L/hr; N = 14 vs 25). Post hoc predicted apparent oral clearance was likewise more variable and higher (P < .0001) in those administered efavirenz. There was an ≈25% variation in ruxolitinib plasma exposures between week 1 and week 4/5. ART plasma concentrations resembled those from PK studies without ruxolitinib. Therefore, integrase inhibitor-based ART regimens may be preferred over efavirenz-based regimens when ruxolitinib is administered to HIV-positive individuals.
Collapse
Affiliation(s)
- Selwyn J Hurwitz
- Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sijia Tao
- Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yong Jiang
- Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Randall L Tressler
- National Institutes of Health/National Institute of Allergy and Infectious Disease, Rockville, Maryland, USA
| | - Athe Tsibris
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Del Rio
- Department of Medicine and Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Edgar T Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael M Lederman
- Case Western Reserve University School of Medicine and University Hospitals/Case Medical Center, Cleveland, Ohio, USA
| | - Amy Kantor
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James J Kohler
- Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jeffrey Lennox
- Division of Infectious Diseases, Emory University School of Medicine and Grady Memorial Hospital, Atlanta, Georgia, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine and Rollins School of Public Health and Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Charles W Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, School of Medicine and Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Emory Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Li J, Pithavala YK, Gong J, LaBadie RR, Mfopou JK, Chen J. The Effect of Modafinil on the Safety and Pharmacokinetics of Lorlatinib: A Phase I Study in Healthy Participants. Clin Pharmacokinet 2021; 60:1303-1312. [PMID: 33937953 PMCID: PMC8505275 DOI: 10.1007/s40262-021-01026-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Lorlatinib is a third-generation tyrosine kinase inhibitor approved for the second-line treatment of patients with advanced anaplastic lymphoma kinase-positive non-small cell lung cancer. Lorlatinib is metabolized by cytochrome P450 (CYP) 3A and contraindicated with strong CYP3A inducers because of significant transaminase elevation. This phase I, open-label, two-period study evaluated the impact of a moderate CYP3A inducer, modafinil, on the safety and pharmacokinetics of lorlatinib. METHODS Healthy participants received single-dose oral lorlatinib (50 mg [n = 2], 75 mg [n = 2], or 100 mg [n = 2 + 10 in an expanded cohort]) in Period 1 followed by modafinil 400 mg/day (days 1-19) and single-dose lorlatinib (day 15, same dose as previous) both orally in Period 2. Blood samples were collected for 120 h after each dose of lorlatinib. RESULTS Of 16 participants, ten completed the study; six participants, all in the expanded 100-mg cohort, discontinued because of adverse events during the modafinil lead-in dosing period. Single doses of lorlatinib 50-100 mg were well tolerated when administered alone and in the presence of steady-state modafinil. Of the ten participants who completed the study, all had transaminase values within normal limits during the combination of lorlatinib with modafinil. The ratios of the adjusted geometric means (90% confidence interval) for lorlatinib area under the plasma concentration-time profile extrapolated to infinity and maximum plasma concentration were 76.69% (70.15-83.83%) and 77.78% (65.92-91.77), respectively, when lorlatinib 100 mg was co-administered with steady-state modafinil compared with lorlatinib administration alone. CONCLUSION Lorlatinib 100 mg may be safely co-administered with moderate CYP3A inducers. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03961997; registered 23 May, 2019.
Collapse
Affiliation(s)
- Jerry Li
- Global Product Development, Pharmacometrics, Oncology, Pfizer Inc., 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Yazdi K Pithavala
- Global Product Development, Clinical Pharmacology, Oncology, Pfizer Inc., San Diego, CA, USA
| | - Jason Gong
- Clinical Development and Operations, Pfizer Inc., New York, NY, USA
| | | | | | - Joseph Chen
- Global Product Development, Clinical Pharmacology, Oncology, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
9
|
Wright WC, Chenge J, Chen T. Structural Perspectives of the CYP3A Family and Their Small Molecule Modulators in Drug Metabolism. LIVER RESEARCH 2019; 3:132-142. [PMID: 32789028 PMCID: PMC7418881 DOI: 10.1016/j.livres.2019.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 enzymes function to catalyze a wide range of reactions, many of which are critically important for drug response. Members of the human cytochrome P450 3A (CYP3A) family are particularly important in drug clearance, and they collectively metabolize more than half of all currently prescribed medications. The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways. Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression. Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition, metabolism, modulation by small molecules, and biological consequence, highlighting some of those with clinical significance. We also present structural perspectives to further characterize the basis of these comparisons.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Corresponding author: Taosheng Chen, Department of Chemical Biology and Therapeutics, MS 1000, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel: (901) 595-5937; Fax: (901) 595-5715;
| |
Collapse
|
10
|
Naito T, Ohshiro J, Sato H, Torikai E, Suzuki M, Ogawa N, Kawakami J. Relationships between concomitant biologic DMARDs and prednisolone administration and blood tacrolimus exposure or serum CYP3A4/5-related markers in rheumatoid arthritis patients. Clin Biochem 2019; 69:8-14. [DOI: 10.1016/j.clinbiochem.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022]
|
11
|
Li Y, Connarn JN, Chen J, Tong Z, Palmisano M, Zhou S. Modeling and simulation of the endogenous CYP3A induction marker 4β-hydroxycholesterol during enasidenib treatment. Clin Pharmacol 2019; 11:39-50. [PMID: 30858735 PMCID: PMC6385784 DOI: 10.2147/cpaa.s192687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Enasidenib (IDHIFA®, AG-221) is a first-in-class, targeted inhibitor of mutant IDH2 proteins for treatment of relapsed or refractory acute myeloid leukemia. This was a Phase I/II study evaluating safety, efficacy, and pharmacokinetics/pharmacodynamics (PK/PD) of orally administered enasidenib in subjects with advanced hematologic malignancies with an IDH2 mutation. Methods Blood samples for PK and PD assessment were collected. A semi-mechanistic nonlinear mixed effect PK/PD model was successfully developed to characterize enasidenib plasma PK and to assess enasidenib-induced CYP3A activity. Results The PK model showed that enasidenib plasma concentrations were adequately described by a one-compartment model with first-order absorption and elimination; the PD model showed a high capacity to induce CYP3A (Emax=7.36) and a high enasidenib plasma concentration to produce half of maximum CYP3A induction (EC50 =31,400 ng/mL). Monte Carlo simulations based on the final PK/PD model showed that at 100 mg once daily dose there was significant drug accumulation and a maximum of three-fold CYP3A induction after multiple doses. Although the EC50 value for CYP3A induction by enasidenib is high, CYP3A induction was observed due to significant drug accumulation. Conclusion CYP3A induction following enasidenib dosing should be considered when prescribing concomitant medication metabolized via this pathway.
Collapse
Affiliation(s)
- Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Jamie N Connarn
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Jian Chen
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Zeen Tong
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA,
| |
Collapse
|
12
|
Penzak SR, Rojas-Fernandez C. 4β-Hydroxycholesterol as an Endogenous Biomarker for CYP3A Activity: Literature Review and Critical Evaluation. J Clin Pharmacol 2019; 59:611-624. [PMID: 30748026 DOI: 10.1002/jcph.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A number of cytochrome P450 (CYP)3A phenotyping probes have been used to characterize the drug interaction potential of new molecular entities; of these, midazolam has emerged as the gold standard. Recently, plasma 4β-hydroxycholesterol (4β-OHC), the metabolite of CYP3A-mediated cholesterol metabolism, has been championed as an endogenous biomarker for CYP3A, particularly during chronic conditions where CYP3A activity is altered by disease and in long-term treatment studies where midazolam administration is not optimal. Multiple studies in humans have shown that 4β-OHC can qualitatively differentiate among weak, moderate, and potent CYP3A induction when an inducer, typically rifampin, is administered for up to 2 weeks. Conversely, longer durations of CYP3A inhibitor administration (≥1 month) appear to be necessary to differentiate among weak, moderate, and potent CYP3A inhibitors. A number of studies have reported statistically significant linear relationships between 4β-OHC plasma concentrations (and 4β-OHC:cholesterol ratios) and midazolam clearance. However, sufficiently powered studies assessing the ability of 4β-OHC or 4β-OHC:cholesterol ratios to measure CYP3A activity (ie, predictive performance) have not been conducted to date. Additional limitations associated with 4β-OHC phenotyping include inability to detect acute changes in CYP3A activity, uncertainty with regard to its intestinal formation, ambiguity surrounding the role of CYP3A5 in its metabolism, and lack of clarity regarding the role of transporters in its disposition. As such, the data do not support the use of 4β-OHC or 4β-OHC:cholesterol ratios as an endogenous biomarker for CYP3A activity.
Collapse
Affiliation(s)
- Scott R Penzak
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | | |
Collapse
|
13
|
Ippolito MM, Jacobson JM, Lederman MM, Winterberg M, Tarning J, Shapiro TA, Flexner C. Effect of Antiretroviral Therapy on Plasma Concentrations of Chloroquine and Desethyl-chloroquine. Clin Infect Dis 2018; 67:1617-1620. [PMID: 29771277 PMCID: PMC6206114 DOI: 10.1093/cid/ciy405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
The effect of antiretroviral therapy (ART) on chloroquine and desethyl-chloroquine plasma concentrations was evaluated in clinical trial participants. Concentrations did not differ among participants receiving protease inhibitor-based ART (n = 9), efavirenz-based ART (n = 15), or other ART (n = 8) and those not receiving ART (n = 31). Efavirenz seemed to inhibit chloroquine desethylation.
Collapse
Affiliation(s)
- Matthew M Ippolito
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jeffrey M Jacobson
- Center for Translational AIDS Research, Departments of Medicine and Neuroscience, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Michael M Lederman
- Division of Infectious Disease, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Theresa A Shapiro
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Charles Flexner
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Comparison of CYP3A4-Inducing Capacity of Enzyme-Inducing Antiepileptic Drugs Using 4β-Hydroxycholesterol as Biomarker. Ther Drug Monit 2018; 40:463-468. [DOI: 10.1097/ftd.0000000000000518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Wollmann BM, Syversen SW, Vistnes M, Lie E, Mehus LL, Molden E. Associations between Cytokine Levels and CYP3A4 Phenotype in Patients with Rheumatoid Arthritis. Drug Metab Dispos 2018; 46:1384-1389. [DOI: 10.1124/dmd.118.082065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
|
16
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. Gjestad et al. reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1624-1625. [PMID: 29749106 DOI: 10.1111/bcp.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Hole K, Størset E, Olastuen A, Haslemo T, Kro GB, Midtvedt K, Åsberg A, Molden E. Recovery of CYP3A Phenotype after Kidney Transplantation. Drug Metab Dispos 2017; 45:1260-1265. [PMID: 28928137 DOI: 10.1124/dmd.117.078030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022] Open
Abstract
End-stage renal disease impairs drug metabolism via cytochrome P450 CYP3A; however, it is unclear whether CYP3A activity recovers after kidney transplantation. Therefore, the aim of this study was to evaluate the change in CYP3A activity measured as 4β-hydroxycholesterol (4βOHC) concentration after kidney transplantation. In total, data from 58 renal transplant recipients with 550 prospective 4βOHC measurements were included in the study. One sample per patient was collected before transplantation, and 2-12 samples per patient were collected 1-82 days after transplantation. The measured pretransplant 4βOHC concentrations ranged by >7-fold, with a median value of 22.8 ng/ml. Linear mixed-model analysis identified a 0.16-ng/ml increase in 4βOHC concentration per day after transplantation (P < 0.001), indicating a regain in CYP3A activity. Increasing estimated glomerular filtration rate after transplantation was associated with increasing 4βOHC concentration (P < 0.001), supporting that CYP3A activity increases with recovering uremia. In conclusion, this study indicates that CYP3A activity is regained subsequent to kidney transplantation.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Ane Olastuen
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Grete Birkeland Kro
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Karsten Midtvedt
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Anders Åsberg
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital (K.H., T.H., E.M.), Department of Transplantation Medicine (E.S., K.M., A.Å.) and Department of Microbiology (G.B.K.), Oslo University Hospital Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo (A.O., A.Å., E.M.), Oslo, Norway
| |
Collapse
|
18
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. 4β-Hydroxycholesterol level significantly correlates with steady-state serum concentration of the CYP3A4 substrate quetiapine in psychiatric patients. Br J Clin Pharmacol 2017; 83:2398-2405. [PMID: 28585378 DOI: 10.1111/bcp.13341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/07/2017] [Accepted: 05/27/2017] [Indexed: 01/03/2023] Open
Abstract
AIM 4β-Hydroxycholesterol (4βOHC) is sensitive towards induction or inhibition of CYP3A4, but its potential usefulness as a dosing biomarker remains to be demonstrated. The aim of this study was to investigate the correlation between 4βOHC levels and steady-state concentrations (Css) of quetiapine, a CYP3A4 substrate with high presystemic metabolism, in psychiatric patients. METHODS Serum samples from 151 patients treated with quetiapine as immediate release (IR; n = 98) or slow release (XR; n = 53) tablets were included for analysis of 4βOHC. In all patients, Css of quetiapine had been measured at trough level, i.e. 10-14 and 17-25 h post-dosing for IR and XR tablets, respectively. Correlations between 4βOHC levels and dose-adjusted Css (C/D ratios) of quetiapine were tested by univariate (Spearman's) and multivariate (multiple linear regression) analyses. Gender, age (≥60 vs. <60 years) and tablet formulation were included as potential covariates in the multivariate analysis. RESULTS Correlations between 4βOHC levels and quetiapine C/D ratios were highly significant both for IR- and XR-treated patients (P < 0.0001). Estimated Spearman r values were -0.47 (95% confidence interval -0.62, -0.30) and -0.56 (-0.72, -0.33), respectively. The relationship between 4βOHC level and quetiapine C/D ratio was also significant in the multiple linear regression analysis (P < 0.001), including gender (P = 0.023) and age (P = 0.003) as significant covariates. CONCLUSIONS The present study shows that 4βOHC level is significantly correlated with steady-state concentration of quetiapine. This supports the potential usefulness of 4βOHC as a phenotype biomarker for individualized dosing of quetiapine and other drugs where systemic exposure is mainly determined by CYP3A4 metabolism.
Collapse
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Hole K, Gjestad C, Heitmann KM, Haslemo T, Molden E, Bremer S. Impact of genetic and nongenetic factors on interindividual variability in 4β-hydroxycholesterol concentration. Eur J Clin Pharmacol 2016; 73:317-324. [PMID: 27975131 DOI: 10.1007/s00228-016-2178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Individual variability in the endogenous CYP3A metabolite 4β-hydroxycholesterol (4βOHC) is substantial, but to which extent this is determined by genetic and nongenetic factors remains unclear. The aim of the study was to evaluate the explanatory power of candidate genetic variants and key nongenetic factors on individual variability in 4βOHC levels in a large naturalistic patient population. METHODS We measured 4βOHC concentration in serum samples from 655 patients and used multiple linear regression analysis to estimate the quantitative effects of CYP3A4*22, CYP3A5*3, and POR*28 variant alleles, comedication with CYP3A inducers, inhibitors and substrates, sex, and age on individual 4βOHC levels. RESULTS 4βOHC concentration ranged >100-fold in the population, and the multiple linear regression model explained about one fourth of the variability (R 2 = 0.23). Only comedication with inducers or inhibitors, sex, and POR genotype were significantly associated with individual variability in 4βOHC level. The estimated quantitative effects on 4βOHC levels were greatest for inducer comedication (+>313%, P < 0.001), inhibitor comedication (-34%, P = 0.021), and female sex (+30%, P < 0.001), while only a modestly elevated 4βOHC level was observed in carriers vs. noncarriers of POR*28 (+11%, P = 0.023). CONCLUSIONS These findings suggest that the CYP3A4*22, CYP3A5*3, and POR*28 variant alleles are of limited importance for overall individual variability in 4βOHC levels compared to nongenetic factors.
Collapse
Affiliation(s)
- Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.
| | - C Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - K M Heitmann
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - T Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway
| | - E Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23, Vinderen, 0319, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - S Bremer
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
20
|
Wollmann BM, Syversen SW, Lie E, Gjestad C, Mehus LL, Olsen IC, Molden E. 4β-Hydroxycholesterol Level in Patients With Rheumatoid Arthritis Before vs. After Initiation of bDMARDs and Correlation With Inflammatory State. Clin Transl Sci 2016; 10:42-49. [PMID: 27991741 PMCID: PMC5351010 DOI: 10.1111/cts.12431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/09/2016] [Indexed: 11/30/2022] Open
Abstract
Systemic inflammation has been linked to suppressed CYP3A(4) activity. We determined 4β‐hydroxycholesterol (4βOHC), an endogenous CYP3A4 metabolite, in patients with rheumatoid arthritis (RA) before and after treatment with biological disease‐modifying antirheumatic drugs (bDMARDs). The 4βOHC was compared in 41 patients before and 2–5 months after initiating TNFα inhibitors (n = 31), IL‐6 inhibitors (n = 5), or B‐cell inhibitors (n = 5). Correlations between 4βOHC and inflammatory markers (C‐reactive protein (CRP) and erythrocyte sedimentation rate (ESR)) were also tested before and after bDMARDs. 4βOHC did not differ following bDMARD treatment (P = 0.6), nor in patients who started with IL‐6 inhibitors (median 51.6 vs. 50.6 nmol/L). The 4βOHC and CRP/ESR did not correlate before treatment (P > 0.5), but correlated significantly after bDMARDs (CRP = Spearman r ‐0.40; P < 0.01; ESR = r ‐0.34; P = 0.028) suggesting that mainly non‐CYP3A4‐suppressive cytokines were reduced during treatment. Thus, this study does not support a generally regained CYP3A4 phenotype in patients with RA following initiation of bDMARDs.
Collapse
Affiliation(s)
- B M Wollmann
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - S W Syversen
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - E Lie
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - C Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - L L Mehus
- Department of Medicinal Biochemistry, Diakonhjemmet Hospital, Oslo, Norway
| | - I C Olsen
- Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - E Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
21
|
Jones BC, Rollison H, Johansson S, Kanebratt KP, Lambert C, Vishwanathan K, Andersson TB. Managing the Risk of CYP3A Induction in Drug Development: A Strategic Approach. Drug Metab Dispos 2016; 45:35-41. [PMID: 27777246 DOI: 10.1124/dmd.116.072025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Induction of cytochrome P450 (P450) can impact the efficacy and safety of drug molecules upon multiple dosing with coadministered drugs. This strategy is focused on CYP3A since the majority of clinically relevant cases of P450 induction are related to these enzymes. However, the in vitro evaluation of induction is applicable to other P450 enzymes; however, the in vivo relevance cannot be assessed because the scarcity of relevant clinical data. In the preclinical phase, compounds are screened using pregnane X receptor reporter gene assay, and if necessary structure-activity relationships (SAR) are developed. When projects progress toward the clinical phase, induction studies in a hepatocyte-derived model using HepaRG cells will generate enough robust data to assess the compound's induction liability in vivo. The sensitive CYP3A biomarker 4β-hydroxycholesterol is built into the early clinical phase I studies for all candidates since rare cases of in vivo induction have been found without any induction alerts from the currently used in vitro methods. Using this model, the AstraZeneca induction strategy integrates in vitro assays and in vivo studies to make a comprehensive assessment of the induction potential of new chemical entities. Convincing data that support the validity of both the in vitro models and the use of the biomarker can be found in the scientific literature. However, regulatory authorities recommend the use of primary human hepatocytes and do not advise the use of sensitive biomarkers. Therefore, primary human hepatocytes and midazolam studies will be conducted during the clinical program as required for regulatory submission.
Collapse
Affiliation(s)
- Barry C Jones
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.).
| | - Helen Rollison
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Susanne Johansson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Kajsa P Kanebratt
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Craig Lambert
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Karthick Vishwanathan
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
22
|
Mao J, Martin I, McLeod J, Nolan G, van Horn R, Vourvahis M, Lin YS. Perspective: 4β-hydroxycholesterol as an emerging endogenous biomarker of hepatic CYP3A. Drug Metab Rev 2016; 49:18-34. [PMID: 27718639 DOI: 10.1080/03602532.2016.1239630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A key goal in the clinical development of a new molecular entity is to quickly identify whether it has the potential for drug-drug interactions. In particular, confirmation of in vitro data in the early stage of clinical development would facilitate the decision making and inform future clinical pharmacology study designs. Plasma 4β-hydroxycholesterol (4β-HC) is considered as an emerging endogenous biomarker for cytochrome P450 3A (CYP3A), one of the major drug metabolizing enzymes. Although there are increasing reports of the use of 4β-HC in academic- and industry-sponsored clinical studies, a thorough review, summary and consideration of the advantages and challenges of using 4β-HC to evaluate changes in CYP3A activity has not been attempted. Herein, we review the biology of 4β-HC, its response to treatment with CYP3A inducers, inhibitors and mixed inducer/inhibitors in healthy volunteers and patients, the association of 4β-HC with other probes of CYP3A activity (e.g. midazolam, urinary cortisol ratios), and present predictive pharmacokinetic models. We provide recommendations for studying hepatic CYP3A activity in clinical pharmacology studies utilizing 4β-HC at different stages of drug development.
Collapse
Affiliation(s)
- Jialin Mao
- a Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Iain Martin
- b Pharmacokinetics, Pharmacodynamics and Drug Metabolism , Merck , Boston , MA , USA
| | - James McLeod
- c Drug Development , Galleon Pharmaceuticals , Horsham , PA , USA
| | - Gail Nolan
- d Drug Metabolism and Pharmacokinetics , GlaxoSmithKline , Hertfordshire , UK
| | - Robert van Horn
- e Translational Medicine and Early Development , Sanofi , Bridgewater , NJ , USA
| | | | - Yvonne S Lin
- g Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| |
Collapse
|
23
|
Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DRJ. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol 2016; 82:1539-1549. [PMID: 27501475 DOI: 10.1111/bcp.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
AIMS We compared the CYP3A4 metrics weight-corrected midazolam apparent oral clearance (MDZ Cl/F/W) and plasma 4β-hydroxycholesterol/cholesterol (4β-OHC/C) as they relate to tacrolimus (TAC) Cl/F/W in renal transplant recipients. METHODS For a cohort of 147 patients, 8 h area under the curve (AUC) values for TAC and oral MDZ were calculated besides measurement of 4β-OHC/C. A subgroup of 70 patients additionally underwent intravenous erythromycin breath test (EBT) and were administered the intravenous MDZ probe. All patients were genotyped for common polymorphisms in CYP3A4, CYP3A5 and P450 oxidoreductase, among others. RESULTS MDZ Cl/F/W, 4β-OHC/C/W, EBT and TAC Cl/F/W were all moderately correlated (r = 0.262-0.505). Neither MDZ Cl/F/W nor 4β-OHC/C/W explained variability in TAC Cl/F/W in CYP3A5 expressors (n = 29). For CYP3A5 non-expressors (n = 118), factors explaining variability in TAC Cl/F/W in a MDZ-based model were MDZ Cl/F/W (R2 = 0.201), haematocrit (R2 = 0.139), TAC formulation (R2 = 0.107) and age (R2 = 0.032; total R2 = 0.479). In the 4β-OHC/C/W-based model, predictors were 4β-OHC/C/W (R2 = 0.196), haematocrit (R2 = 0.059) and age (R2 = 0.057; total R2 = 0.312). When genotype information was ignored, predictors of TAC Cl/F/W in the whole cohort were 4β-OHC/C/W (R2 = 0.167), MDZ Cl/F/W (R2 = 0.045); Tac QD formulation (R2 = 0.036), and haematocrit (R2 = 0.032; total R2 = 0.315). 4β-OHC/C/W, but not MDZ Cl/F/W, was higher in CYP3A5 expressors because it was higher in CYP3A4*1b carriers, which were almost all CYP3A5 expressors. CONCLUSIONS A MDZ-based model explained more variability in TAC clearance in CYP3A5 non-expressors. However, 4β-OHC/C/W was superior in a model in which no genotype information was available, likely because 4β-OHC/C/W was influenced by the CYP3A4*1b polymorphism.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hylke de Jonge
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Henriëtte de Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ulf Diczfalusy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Aubry AF, Dean B, Diczfalusy U, Goodenough A, Iffland A, McLeod J, Weng N, Yang Z. Recommendations on the Development of a Bioanalytical Assay for 4β-Hydroxycholesterol, an Emerging Endogenous Biomarker of CYP3A Activity. AAPS JOURNAL 2016; 18:1056-1066. [DOI: 10.1208/s12248-016-9949-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/12/2016] [Indexed: 11/30/2022]
|
25
|
Mangold JB, Wu F, Rebello S. Compelling Relationship of CYP3A Induction to Levels of the Putative Biomarker 4β-Hydroxycholesterol and Changes in Midazolam Exposure. Clin Pharmacol Drug Dev 2016; 5:245-9. [DOI: 10.1002/cpdd.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- James B. Mangold
- Drug Metabolism and Pharmacokinetics; Novartis Institutes for Biomedical Research; East Hanover NJ USA
| | - Fan Wu
- Drug Metabolism and Pharmacokinetics; Novartis Institutes for Biomedical Research; East Hanover NJ USA
| | - Sam Rebello
- Drug Metabolism and Pharmacokinetics; Novartis Institutes for Biomedical Research; East Hanover NJ USA
| |
Collapse
|
26
|
Ishida T, Naito T, Sato H, Kawakami J. Relationship between the plasma fentanyl and serum 4β-hydroxycholesterol based on CYP3A5 genotype and gender in patients with cancer pain. Drug Metab Pharmacokinet 2016; 31:242-8. [DOI: 10.1016/j.dmpk.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 04/03/2016] [Indexed: 11/29/2022]
|
27
|
Jiang X, Dutreix C, Jarugula V, Rebello S, Won CS, Sun H. An Exposure-Response Modeling Approach to Examine the Relationship Between Potency of CYP3A Inducer and Plasma 4β-Hydroxycholesterol in Healthy Subjects. Clin Pharmacol Drug Dev 2016; 6:19-26. [PMID: 27138546 DOI: 10.1002/cpdd.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022]
Abstract
The objectives of this analysis were to establish the exposure-response relationship between plasma rifampicin and 4β-hydroxycholesterol (4βHC) concentration and to estimate the effect of weak, moderate, and potent CYP3A induction. Plasma rifampicin and 4βHC concentration-time data from a drug-drug interaction study with rifampicin 600 mg were used for model development. An indirect response model with an effect compartment described the relationship between rifampicin and 4βHC concentrations. The model predicted that the equilibration t1/2 and 4βHC t1/2 were 72.8 and 142 hours, respectively. EM50 and Emax of rifampicin induction were 32.6 μg and 8.39-fold, respectively. The population PK-PD model was then used to simulate the effects of rifampicin 10, 20, and 100 mg on plasma 4βHC for up to 21 days, in which rifampicin 10, 20, and 100 mg were used to represent weak, moderate, and strong inducers, respectively. The model-predicted median (5th, 95th percentiles) 1.13 (1.04, 1.44)-, 1.28 (1.10, 1.71)-, and 2.10 (1.45, 3.49)-fold increases in plasma 4βHC after 14-day treatment with rifampicin 10, 20, and 100 mg, respectively. A new drug candidate can likely be classified as a weak, moderate, or strong inducer if baseline-normalized plasma 4βHC increases by <1.13-, 1.13- to 2.10-, or >2.10-fold, respectively, after 14 days of dosing.
Collapse
Affiliation(s)
- Xuemin Jiang
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Catherine Dutreix
- Oncology Clinical Pharmacology, Novartis Pharma AG, Basel, Switzerland
| | - Venkateswar Jarugula
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Sam Rebello
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Christina S Won
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| | - Haiying Sun
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, East Hanover, NJ, USA
| |
Collapse
|
28
|
Use of 4β-hydroxycholesterol in animal and human plasma samples as a biomarker for CYP3A induction. Bioanalysis 2016; 8:215-28. [DOI: 10.4155/bio.15.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: 4β-hydroxycholesterol (4βHC) has recently been proposed as a potential endogenous biomarker for CYP3A activity. Developing bioanalytical assays for 4βHC is challenging for several reasons, including endogenous background levels in plasma; the presence of free and ester forms; the inherent lack of MS sensitivity; and the presence of multiple positional isomers. Results: Bioanalytical assays in mouse, rat, dog and human plasma were adapted and modified from a previous published human plasma assay for 4βHC by using alkaline de-esterification, picolinic derivatization, a surrogate analyte (d7-4βHC) in authentic matrices and chromatographic conditions that showed good separation from isobaric, positional isomers. Conclusion: These assays were applied to multiple studies and demonstrated potential applications of 4βHC as a CYP3A biomarker across preclinical and clinical settings.
Collapse
|
29
|
Gjestad C, Huynh DK, Haslemo T, Molden E. 4β-hydroxycholesterol correlates with dose but not steady-state concentration of carbamazepine: indication of intestinal CYP3A in biomarker formation? Br J Clin Pharmacol 2015; 81:269-76. [PMID: 26574235 DOI: 10.1111/bcp.12833] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/30/2022] Open
Abstract
AIM 4β-hydroxycholesterol (4βOHC) is an endogenous CYP3A(4) biomarker, which is elevated by use of the CYP3A4 inducer carbamazepine. Our aim was to compare to what extent serum concentration of 4βOHC correlates with dose (presystemic exposure) and steady-state concentration (systemic exposure) of carbamazepine. METHODS The study was based on a therapeutic drug monitoring material, including information about daily doses and steady-state concentrations (Css ) of carbamazepine. 4βOHC concentrations were determined in residual serum samples of 55 randomly selected carbamazepine-treated patients and 54 levetiracetam-treated patients (negative controls) by UPLC-APCI-MS/MS after liquid-liquid extraction. Correlation analyses between 4βOHC concentration and daily dose and Css of carbamazepine, respectively, were performed by Spearman's tests. In addition, 4βOHC concentrations in females vs. males were compared in induced and non-induced patients. RESULTS Median 4βOHC concentration was ~10-fold higher in carbamazepine- vs. levetiracetam-treated patients (650 vs. 54 nmol l(-1) , P < 0.0001). There was a significant, positive correlation between carbamazepine dose and 4βOHC concentration (Spearman r = 0.53, 95% confidence interval [CI] 0.27, 0.72, P < 0.001). No significant correlation between carbamazepine Css and 4βOHC concentration was found (Spearman r = 0.14; 95% CI -0.14, 0.40, P = 0.3). Enzyme-induced females had significantly higher 4βOHC concentrations than males (P < 0.001), while no significant gender difference was found in non-induced patients (P = 0.52). CONCLUSION Serum concentrations of 4βOHC correlate with presystemic, but not systemic exposure of the CYP3A4 inducer carbamazepine. This suggests a stronger inductive effect of carbamazepine on presystemic than systemic CYP3A4 phenotype and might indicate a role of the intestine in 4βOHC formation. Moreover, CYP3A4 inducibility seems to be higher in females than males.
Collapse
Affiliation(s)
| | - Duy Khanh Huynh
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| |
Collapse
|
30
|
CYP3A activity based on plasma 4β-hydroxycholesterol during the early postpartum period has an effect on the plasma disposition of amlodipine. Drug Metab Pharmacokinet 2015; 30:419-24. [DOI: 10.1016/j.dmpk.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022]
|
31
|
Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A Activity and Expression in Nonalcoholic Fatty Liver Disease. Drug Metab Dispos 2015; 43:1484-90. [DOI: 10.1124/dmd.115.065979] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
|
32
|
Ngaimisi E, Minzi O, Mugusi S, Sasi P, Riedel KD, Suda A, Ueda N, Bakari M, Janabi M, Mugusi F, Bertilsson L, Burhenne J, Aklillu E, Diczfalusy U. Pharmacokinetic and pharmacogenomic modelling of the CYP3A activity marker 4β-hydroxycholesterol during efavirenz treatment and efavirenz/rifampicin co-treatment. J Antimicrob Chemother 2014; 69:3311-9. [PMID: 25096076 DOI: 10.1093/jac/dku286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To assess the effect of the major efavirenz metabolizing enzyme (CYP2B6) genotype and the effects of rifampicin co-treatment on induction of CYP3A by efavirenz. PATIENTS AND METHODS Two study arms (arm 1, n = 41 and arm 2, n = 21) were recruited into this study. In arm 1, cholesterol and 4β-hydroxycholesterol were measured in HIV treatment-naive patients at baseline and then at 4 and 16 weeks after initiation of efavirenz-based antiretroviral therapy. In arm 2, cholesterol and 4β-hydroxycholesterol were measured among patients taking efavirenz during rifampicin-based tuberculosis (TB) treatment (efavirenz/rifampicin) just before completion of TB treatment and then serially following completion of TB treatment (efavirenz alone). Non-linear mixed-effect modelling was performed. RESULTS A one-compartment, enzyme turnover model described 4β-hydroxycholesterol kinetics adequately. Efavirenz treatment in arm 1 resulted in 1.74 (relative standard error = 15%), 3.3 (relative standard error = 33.1%) and 4.0 (relative standard error = 37.1%) average fold induction of CYP3A for extensive (CYP2B6*1/*1), intermediate (CYP2B6*1/*6) and slow (CYP2B6*6/*6) efavirenz metabolizers, respectively. The rate constant of 4β-hydroxycholesterol formation [mean (95% CI)] just before completion of TB treatment [efavirenz/rifampicin co-treatment, 7.40 × 10(-7) h(-1) (5.5 × 10(-7)-1.0 × 10(-6))] was significantly higher than that calculated 8 weeks after completion [efavirenz alone, 4.50 × 10(-7) h(-1) (4.40 × 10(-7)-4.52 × 10(-7))]. The CYP3A induction dropped to 62% of its maximum by week 8 of completion. CONCLUSIONS Our results indicate that efavirenz induction of CYP3A is influenced by CYP2B6 genetic polymorphisms and that efavirenz/rifampicin co-treatment results in higher induction than efavirenz alone.
Collapse
Affiliation(s)
- E Ngaimisi
- Department of Pharmacognosy, Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - O Minzi
- Department of Pharmacognosy, Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, PO Box 65013, Dar es Salaam, Tanzania
| | - S Mugusi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, PO Box 65001, Dar es Salaam, Tanzania
| | - P Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, PO Box 65001, Dar es Salaam, Tanzania
| | - K-D Riedel
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - A Suda
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - N Ueda
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - M Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, PO Box 65001, Dar es Salaam, Tanzania
| | - M Janabi
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, PO Box 65001, Dar es Salaam, Tanzania
| | - F Mugusi
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, PO Box 65001, Dar es Salaam, Tanzania
| | - L Bertilsson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - J Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - E Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - U Diczfalusy
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, C1: 74, SE-141 86 Stockholm, Sweden
| |
Collapse
|
33
|
Evaluation of 4β-Hydroxycholesterol as a Clinical Biomarker of CYP3A4 Drug Interactions Using a Bayesian Mechanism-Based Pharmacometric Model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e120. [PMID: 24964282 PMCID: PMC4076805 DOI: 10.1038/psp.2014.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
A Bayesian mechanism–based pharmacokinetic/pharmacodynamic model of cytochrome P450 3A4 (CYP3A4) activity was developed based on a clinical study of the effects of ketoconazole and rifampin on midazolam exposure and plasma 4β-hydroxycholesterol (4βHC) concentrations. Simulations from the model demonstrated that the dynamic range of 4βHC as a biomarker of CYP3A4 induction or inhibition was narrower than that of midazolam; an inhibitor that increases midazolam area under the curve by 20-fold may only result in a 20% decrease in 4βHC after 14 days of dosing. Likewise, an inducer that elevates CYP3A4 activity by 1.2-fold would reduce the area under the curve of midazolam by 50% but would only increase 4βHC levels by 20% after 14 days of dosing. Elevation in 4βHC could be reliably detected with a twofold induction in CYP3A4 activity with study sample sizes (N ~ 6–20) typically used in early clinical development. Only a strong CYP3A4 inhibitor (e.g., ketoconazole) could be detected with similar sample sizes.
Collapse
|
34
|
Pillai VC, Parise RA, Christner SM, Rudek MA, Beumer JH, Venkataramanan R. Potential interactions between HIV drugs, ritonavir and efavirenz and anticancer drug, nilotinib--a study in primary cultures of human hepatocytes that is applicable to HIV patients with cancer. J Clin Pharmacol 2014; 54:1272-9. [PMID: 24846165 DOI: 10.1002/jcph.333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/19/2014] [Indexed: 11/12/2022]
Abstract
Nilotinib is used to treat chronic myeloid leukemia (CML), and is metabolized by CYP3A. With a black-box warning for QT prolongation, which is exposure dependent, controlling for drug interactions is clinically relevant. Treatments of HIV patients with CML are with HAART drugs, ritonavir and efavirenz, may cause complex drug interactions through CYP3A inhibition or induction. We evaluated the interactions of ritonavir or efavirenz on nilotinib using human hepatocytes and compared these interactions with those of ketoconazole or rifampin, classical CYP3A inhibitor and inducer, respectively. Hepatocytes were treated with vehicle, ritonavir (10 μM), ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 5 days. On day 5, nilotinib (3 μM) was coincubated for an additional 24-48 hours. The concentrations of nilotinib were quantitated in collected samples (combined lysate and medium) by LC-MS. Apparent intrinsic clearance (CL(int,app)) of nilotinib was lowered 5.8- and 3.1-fold, respectively, by ritonavir and ketoconazole. Efavirenz and rifampin increased the CL(int,app) of nilotinib by 2.1- and 4.1-fold, respectively. The clinically recommended dose (300 mg twice daily) of nilotinib may have to be reduced substantially (150 mg once daily) or increased (400 mg thrice daily), respectively, to achieve desired drug exposure, when ritonavir or efavirenz is co-administered.
Collapse
Affiliation(s)
- Venkateswaran C Pillai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kakuru A, Achan J, Muhindo MK, Ikilezi G, Arinaitwe E, Mwangwa F, Ruel T, Clark TD, Charlebois E, Rosenthal PJ, Havlir D, Kamya MR, Tappero JW, Dorsey G. Artemisinin-based combination therapies are efficacious and safe for treatment of uncomplicated malaria in HIV-infected Ugandan children. Clin Infect Dis 2014; 59:446-53. [PMID: 24759826 DOI: 10.1093/cid/ciu286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are highly efficacious and safe, but data from human immunodeficiency virus (HIV)-infected children concurrently receiving antiretroviral therapy (ART) and ACTs are limited. METHODS We evaluated 28-day outcomes following malaria treatment with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in 2 cohorts of HIV-infected Ugandan children taking various ART regimens. In one cohort, children <6 years of age were randomized to lopinavir/ritonavir (LPV/r) or nonnucleoside reverse transcriptase inhibitor-based ART and treated with AL for uncomplicated malaria. In another cohort, children <12 months of age were started on nevirapine-based ART if they were eligible, and randomized to AL or DP for the treatment of their first and all subsequent uncomplicated malaria episodes. RESULTS There were 773 and 165 treatments for malaria with AL and DP, respectively. Initial response to therapy was excellent, with 99% clearance of parasites and <1% risk of repeat therapy within 3 days. Recurrent parasitemia within 28 days was common following AL treatment. The risk of recurrent parasitemia was significantly lower among children taking LPV/r-based ART compared with children taking nevirapine-based ART following AL treatment (15.3% vs 35.5%, P = .009), and those treated with DP compared with AL (8.6% vs 36.2%, P < .001). Both ACT regimens were safe and well tolerated. CONCLUSIONS Treatment of uncomplicated malaria with AL or DP was efficacious and safe in HIV-infected children taking ART. However, there was a high risk of recurrent parasitemia following AL treatment, which was significantly lower in children taking LPV/r-based ART compared with nevirapine-based ART.
Collapse
Affiliation(s)
| | - Jane Achan
- Infectious Diseases Research Collaboration Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | | | | | | | - Tamara D Clark
- Department of Medicine, University of California, San Francisco
| | | | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jordan W Tappero
- Global AIDS Program, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco
| |
Collapse
|
36
|
Li K, Zhao S, Zhang L, Wu X, Shu P, Wang Y, Feng H, Gu Z, Han Hsu H. 4β-Hydroxycholesterol as an Endogenous Biomarker of CYP3A Activity in Cynomolgus Monkeys. Drug Metab Dispos 2014; 42:839-43. [DOI: 10.1124/dmd.114.057224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Suzuki Y, Itoh H, Fujioka T, Sato F, Kawasaki K, Sato Y, Sato Y, Ohno K, Mimata H, Kishino S. Association of Plasma Concentration of 4β-Hydroxycholesterol with CYP3A5 Polymorphism and Plasma Concentration of Indoxyl Sulfate in Stable Kidney Transplant Recipients. Drug Metab Dispos 2013; 42:105-10. [DOI: 10.1124/dmd.113.054171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Suzuki Y, Itoh H, Sato F, Kawasaki K, Sato Y, Fujioka T, Sato Y, Ohno K, Mimata H, Kishino S. Significant increase in plasma 4β-hydroxycholesterol concentration in patients after kidney transplantation. J Lipid Res 2013; 54:2568-72. [PMID: 23833241 DOI: 10.1194/jlr.p040022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several previous studies have shown that renal failure decreases not only renal elimination but also metabolic clearance of drugs, particularly those metabolized by CYP3A. However, whether recovery of renal function results in recovery of hepatic CYP3A activity remains unknown. In this study, we evaluated the effect of renal function on CYP3A activity after kidney transplantation in patients with end-stage renal disease (ESRD) by measuring the change in CYP3A activity using plasma concentration of 4β-hydroxycholesterol as a biomarker. The study enrolled 13 patients with ESRD who underwent the first kidney allograft transplantation. Morning blood samples were collected before and 3, 7, 10, 14, 21, 30, 60, 90, 120, 150 and 180 days after kidney transplantation. Plasma concentration of 4β-hydroxycholesterol was measured using GC-MS. Compared with before kidney transplantation, creatinine clearance increased significantly from day 3 after kidney transplantation and stabilized thereafter. Plasma concentration of 4β-hydroxycholesterol was elevated significantly on days 90 and 180 after kidney transplantation. In conclusion, this study suggests the recovery of CYP3A activity with improvement in renal function after kidney transplantation in patients with ESRD.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Clinical Pharmacy Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sharma D, Lau AJ, Sherman MA, Chang TK. Agonism of human pregnane X receptor by rilpivirine and etravirine: Comparison with first generation non-nucleoside reverse transcriptase inhibitors. Biochem Pharmacol 2013; 85:1700-11. [DOI: 10.1016/j.bcp.2013.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 11/24/2022]
|
40
|
Watanabe K, Sakurai K, Tsuchiya Y, Yamazoe Y, Yoshinari K. Dual roles of nuclear receptor liver X receptor α (LXRα) in the CYP3A4 expression in human hepatocytes as a positive and negative regulator. Biochem Pharmacol 2013; 86:428-36. [PMID: 23732298 DOI: 10.1016/j.bcp.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
CYP3A4 is a major drug-metabolizing enzyme in humans, whose expression levels show large inter-individual variations and are associated with several factors such as genetic polymorphism, physiological and disease status, diet and xenobiotic exposure. Nuclear receptor pregnane X receptor (PXR) is a key transcription factor for the xenobiotic-mediated transcription of CYP3A4. In this study, we have investigated a possible involvement of liver X receptor α (LXRα), a critical regulator of cholesterol homeostasis, in the hepatic CYP3A4 expression since several recent reports suggest the involvement of CYP3A enzymes in the cholesterol metabolism in humans and mice. Reporter assays using wild-type and mutated CYP3A4 luciferase reporter plasmids and electrophoretic mobility shift assays revealed that LXRα up-regulated CYP3A4 through the known DNA elements critical for the PXR-dependent CYP3A4 transcription, suggesting LXRα as a positive regulator for the CYP3A4 expression and a crosstalk between PXR and LXRα in the expression. In fact, reporter assays showed that LXRα activation attenuated the PXR-dependent CYP3A4 transcription. Moreover, a PXR agonist treatment-dependent increase in CYP3A4 mRNA levels was suppressed by co-treatment with an LXRα agonist in human primary hepatocytes and HepaRG cells. The suppression was not observed when LXRα expression was knocked-down in HepaRG cells. In conclusion, the present results suggest that sterol-sensitive LXRα positively regulates the basal expression of CYP3A4 but suppresses the xenobiotic/PXR-dependent CYP3A4 expression in human hepatocytes. Therefore, nutritional, physiological and disease conditions affecting LXRα might be one of the determinants for the basal and xenobiotic-responsive expression of CYP3A4 in human livers.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
41
|
Björkhem-Bergman L, Bäckström T, Nylén H, Rönquist-Nii Y, Bredberg E, Andersson TB, Bertilsson L, Diczfalusy U. Comparison of Endogenous 4β-Hydroxycholesterol with Midazolam as Markers for CYP3A4 Induction by Rifampicin. Drug Metab Dispos 2013; 41:1488-93. [DOI: 10.1124/dmd.113.052316] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Yang Z, Rodrigues AD. Does the Long Plasma Half-Life of 4β-Hydroxycholesterol Impact Its Utility as a Cytochrome P450 3A (CYP3A) Metric? J Clin Pharmacol 2013; 50:1330-8. [DOI: 10.1177/0091270009360041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Habtewold A, Amogne W, Makonnen E, Yimer G, Nylén H, Riedel KD, Aderaye G, Bertilsson L, Burhenne J, Diczfalusy U, Aklillu E. Pharmacogenetic and pharmacokinetic aspects of CYP3A induction by efavirenz in HIV patients. THE PHARMACOGENOMICS JOURNAL 2012; 13:484-9. [PMID: 23089673 DOI: 10.1038/tpj.2012.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/28/2012] [Accepted: 09/05/2012] [Indexed: 01/10/2023]
Abstract
We investigated the effects of pharmacogenetic variations and efavirenz pharmacokinetics on inter-individual differences in the extent of CYP3A induction by efavirenz using 4β-hydroxycholesterol/cholesterol (4β-OHC/Chol) as a marker for CYP3A induction. Plasma 4β-hydroxycholesterol and cholesterol concentrations were determined at baseline, and at the 4th, 16th and 48th week of efavirenz-based highly active antiretroviral therapy in antiretroviral therapy-naive HIV patients (n=77). Efavirenz plasma concentrations were quantified at weeks 4 and 16. CYP2B6, CYP3A5, ABCB1, UGT2B7 genotyping were done. Compared with baseline, the median plasma 4β-OHC/Chol ratio increased at the 4th (257%), 16th (291%) and 48th (165%) week (P<0.0001). CYP2B6*6 genotype significantly influenced 4β-OHC/Chol ratio at weeks 16 (P=0.02) and 48 (P=0.04) being highest in CYP2B6*6/*6>*1/*6>*1/*1. There were positive correlations between plasma efavirenz and 4β-OHC/Chol ratios (week 4: P=0.02, week 16: P=0.001). CYP3A enzyme induction by efavirenz is pronounced in CYP2B6 slow metabolizers who have high efavirenz plasma exposure.
Collapse
Affiliation(s)
- A Habtewold
- 1] Division of Clinical Pharmacology, Department of Laboratory of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge C1-68, Stockholm, Sweden [2] Department of Pharmacology, Medical Faculty, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Induction of CYP2C19 and CYP3A activity following repeated administration of efavirenz in healthy volunteers. Clin Pharmacol Ther 2012; 91:475-82. [PMID: 22318618 DOI: 10.1038/clpt.2011.249] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug-drug interactions involving efavirenz are of major concern in clinical practice. We evaluated the effects of multiple doses of efavirenz on omeprazole 5-hydroxylation (CYP2C19) and sulfoxidation (CYP3A). Healthy volunteers (n = 57) were administered a single 20 mg oral dose of racemic omeprazole either with a single 600 mg oral dose of efavirenz or after 17 days of administration of 600 mg/day of efavirenz. The concentrations of racemic omeprazole, 5-hydroxyomeoprazole (and their enantiomers), and omeprazole sulfone in plasma were measured using a chiral liquid chromatography-tandem mass spectrometry method. Relative to single-dose treatment, multiple doses of efavirenz significantly decreased (P < 0.0001) the area under the plasma concentration-time curve from 0 to infinity (AUC(0-∞)) of racemic-, R- and S-omeprazole (2.01- to 2.15-fold) and the corresponding AUC(0-∞) metabolic ratio (MR) for 5-hydroxyomeprazole (1.36- to 1.44-fold) as well as the MR for omeprazole sulfone (∼2.0) (P < 0.0001). The significant reduction in the AUC of 5-hydroxyomeprazole after repeated efavirenz dosing suggests induction of sequential metabolism and mixed inductive/inhibitory effects of efavirenz on CYP2C19. In conclusion, efavirenz enhances omeprazole metabolism in a nonstereoselective manner through induction of CYP3A and CYP2C19 activity.
Collapse
|
45
|
Impact of efavirenz on intestinal metabolism and transport: insights from an interaction study with ezetimibe in healthy volunteers. Clin Pharmacol Ther 2012; 91:506-13. [PMID: 22297387 DOI: 10.1038/clpt.2011.255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypercholesterolemia frequently occurs in patients treated with efavirenz who cannot be treated adequately with statins because of drug interactions. These patients may benefit from cholesterol-lowering therapy with ezetimibe. This study determined the influence of single-dose and multiple-dose efavirenz (400 mg/day for 9 days) on the pharmacokinetics and sterol-lowering of ezetimibe (10 mg) in 12 healthy subjects. In addition, the influence of efavirenz on genome-wide intestinal expression and in vitro function of ABCB1, ABCC2, UGT1A1, and OATP1B1 was studied. Efavirenz (multiple dose) had no influence on the pharmacokinetics and lipid-lowering functions of ezetimibe. Intestinal expression of enzymes and transporters (e.g., ABCB1, ABCC2, and UGT1A1) was not affected by chronic efavirenz. Efavirenz (single dose) slightly increased ezetimibe absorption and markedly decreased exposure to ezetimibe-glucuronide (single dose and multiple dose), which may be explained by inhibition of UGT1A1 and ABCB1 (in vitro data). Ezetimibe had no effect on the disposition of efavirenz. Consequently, ezetimibe may be a safe and efficient therapeutic option in patients with HIV infection.
Collapse
|
46
|
Kumar BS, Chung BC, Kwon OS, Jung BH. Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics. J Appl Toxicol 2011; 32:505-20. [PMID: 22131085 DOI: 10.1002/jat.1746] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/02/2023]
Abstract
Liver toxicity represents an important healthcare issue because it causes significant morbidity and mortality and can be difficult to predict before symptoms appear owing to drug therapy or exposure to toxicants. Using metabolomic techniques, we discovered common biomarkers for the prediction of hepatotoxicity in rat urine using mass spectrometry. For this purpose, liver toxicity was induced by 5 days of oral administration of carbon tetrachloride (1 ml kg(-1) per day), acetaminophen (1000 mg kg(-1) per day) and methotrexate (50 mg kg(-1) per day). Serum levels of alkaline phosphatase aspartate aminotransferase, alanine aminotransferase and histopathology in liver tissue were then checked to demonstrate liver toxicity. Global metabolic profiling with UPLC-TOF-MS (ultraperformance liquid chromatography-mass spectrometry), multivariate analysis (partial least square-discriminant analysis, hierarchical analysis) and database searching were performed to discover common biomarkers for liver toxicity induced by these three compounds. Urinary concentrations of the newly discovered biomarkers were then quantified to confirm them as biomarkers of hepatotoxicity with targeted metabolic profiling using GC (gas chromatography)-MS and CE (capillary electrophoresis)-MS. In the results, steroids, amino acids and bile acids were metabolically changed between the control and drug-treated groups in global metabolic profiling; 11β-hydroxyandrosterone, epiandrosterone, estrone, 11-dehydrocorticosterone, glycine, alanine, valine, leucine, dl-ornithine, 3-methylhistidine, cholic acid and lithocholic acid were selected as liver toxicity biomarkers after performing targeted metabolic profiling. In conclusion, we discovered metabolite biomarkers belonging to three different metabolic pathways to check for liver toxicity with mass spectrometry from a metabolomics study that could be used to evaluate hepatotoxicity induced by drugs or other toxic compounds.
Collapse
Affiliation(s)
- Bhowmik Salil Kumar
- Biomolecular Functional Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Goodenough AK, Onorato JM, Ouyang Z, Chang S, Rodrigues AD, Kasichayanula S, Huang SP, Turley W, Burrell R, Bifano M, Jemal M, LaCreta F, Tymiak A, Wang-Iverson D. Quantification of 4-Beta-Hydroxycholesterol in Human Plasma Using Automated Sample Preparation and LC-ESI-MS/MS Analysis. Chem Res Toxicol 2011; 24:1575-85. [DOI: 10.1021/tx2001898] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Angela K. Goodenough
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Joelle M. Onorato
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Zheng Ouyang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Shu Chang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - A. David Rodrigues
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Sreeneeranj Kasichayanula
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Shu-Pang Huang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Wesley Turley
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Richard Burrell
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Marc Bifano
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Mohammed Jemal
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Frank LaCreta
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Adrienne Tymiak
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - David Wang-Iverson
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
48
|
van de Merbel NC, Bronsema KJ, van Hout MW, Nilsson R, Sillén H. A validated liquid chromatography–tandem mass spectrometry method for the quantitative determination of 4β-hydroxycholesterol in human plasma. J Pharm Biomed Anal 2011; 55:1089-95. [DOI: 10.1016/j.jpba.2011.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/25/2022]
|
49
|
Diczfalusy U, Nylén H, Elander P, Bertilsson L. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol 2011; 71:183-9. [PMID: 21219398 DOI: 10.1111/j.1365-2125.2010.03773.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have proposed that 4β-hydroxycholesterol (4β-OHC) may be used as an endogenous marker of CYP3A activity. The cholesterol metabolite 4β-OHC is formed by CYP3A4. Treatment of patients with strong inducers of CYP3A enzymes, e.g. anti-epileptic drugs, resulted in 10-fold increased concentrations of plasma 4β-OHC, while treatment with CYP3A inhibitors such as ritonavir or itraconazole resulted in decreased plasma concentrations. There was a relationship between the 4β-OHC concentration and the number of active CYP3A5*1 alleles showing that 4β-OHC was not only formed by CYP3A4, but also by CYP3A5. The concentration of 4β-OHC was higher in women than in men, confirming previous studies indicating a gender difference in CYP3A4/5-activity. The rate of elimination of 4β-OHC is slow (half-life 17 days) which results in stable plasma concentrations within individuals, but limits its use to study rapid changes in CYP3A activity. In short-term studies exogenous markers such as midazolam or quinine may be superior, but in long-term studies 4β-OHC is a sensitive marker of CYP3A activity, especially to assess induction but also inhibition. Under conditions where the cholesterol concentration is changing, the ratio of 4β-OHC:cholesterol may be used as an alternative to 4β-OHC itself. The use of an endogenous CYP3A marker has obvious advantages and may be of value both during drug development and for monitoring CYP3A activity in patients.
Collapse
Affiliation(s)
- Ulf Diczfalusy
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
50
|
Sevinsky H, Eley T, Persson A, Garner D, Yones C, Nettles R, Krantz K, Bertz R, Zhang J. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther 2011; 16:149-56. [DOI: 10.3851/imp1725] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|