1
|
Pattanaik S, Monchaud C. Pharmacokinetic Boosting of Calcineurin Inhibitors in Transplantation: Pros, Cons, and Perspectives. Ther Drug Monit 2025; 47:118-140. [PMID: 39774591 DOI: 10.1097/ftd.0000000000001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT The concept of pharmacokinetic (PK) boosting of calcineurin inhibitors (CNI) emerged after the FDA approval of cyclosporine-A. Several studies followed, and the proof of concept was well established by the late 1990s. This also continued for the next blockbuster immunosuppressant, tacrolimus. The driver for such research was an endeavor to save costs, as both drugs were expensive due to patent protection. Two CYP inhibitors, ketoconazole and diltiazem, have been extensively studied in this context and continue to be prescribed off-label along with the CNI. It has been observed that using ketoconazole reduces the dose requirement of tacrolimus by about 50% and 30% with diltiazem, which is in conformity with their pharmacological actions. Off-label co-prescription of these drugs with CNI is often encountered in low and middle-income countries. The foremost reason cited is economic. This article collates the evidence from the clinical studies that evaluate the PK-boosting effects of CNI and also reviews the gaps in the current evidence base. The current knowledge prevents the transplant community from making meaningful inferences about the risks and benefits of such strategies. Although the PK-boosting strategy can lead to serious adverse events, emerging evidence suggests that it may be advantageous for individuals with high CNI dose requirements. Hence, PK boosting may be an unmet need in the therapeutics of CNI. Nevertheless, there are several unanswered questions surrounding such use, and therefore, this merits testing in well-designed clinical studies. Moreover, drugs with better safer profiles and a history of successful PK boosting may be considered for evaluation with CNI.
Collapse
Affiliation(s)
- Smita Pattanaik
- Clinical Pharmacology Unit, Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Caroline Monchaud
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Limoges, Limoges, France
- INSERM UMR-1248 Pharmacologie et Transplantation, Université Limoges, Limoges, France; and
- FHU SUPORT, Limoges, France
| |
Collapse
|
2
|
Piriyapongsa J, Chumnumwat S, Kaewprommal P, Triparn K, Suvichapanich S, Udomsinprasert W, Jittikoon J, Shaw PJ, Nakhonsri V, Ngamphiw C, Wangkumhang P, Pithukpakorn M, Roothumnong E, Wiboonthanasarn S, Kuptanon C, Jinawath N, Porntaveetus T, Suriyaphol P, Viprakasit V, Pisitkun P, Kantaputra P, Tim-Aroon T, Wattanasirichaigoon D, Sura T, Suphapeetiporn K, Sripichai O, Khongphatthanayothin A, Fucharoen S, Ngamphaiboon N, Shotelersuk V, Mahasirimongkol S, Tongsima S. Pharmacogenomic landscape of the Thai population from genome sequencing of 949 individuals. Sci Rep 2024; 14:30683. [PMID: 39730427 DOI: 10.1038/s41598-024-79018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance. On average, each Thai individual carried 14 SNPs, one to two HLA alleles, and six diplotypes with actionable phenotypic associations. Clinically important diplotypes were present in over 20% of individuals for seven genes (CYP2A6, CYP2B6, CYP2C19, CYP3A5, NAT2, SLCO1B1, and VKORC1). In addition, clinically significant SNPs with allele frequencies exceeding 20% were identified among 15 genes, including VKORC1, CYP4F2, and ABCG2. We also identified 21,211 potentially deleterious variants among 3239 genes. Of these variants, 3746 were novel. The comprehensive dataset from this study serves as a valuable resource of pharmacogenomic variants in the Thai population, which will facilitate the development of personalized drug therapies and enhance patient care in Thailand.
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supatat Chumnumwat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kwankom Triparn
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Philip J Shaw
- Medical Molecular Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Vorthunju Nakhonsri
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pongsakorn Wangkumhang
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supakit Wiboonthanasarn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
- Department of Pediatrics, College of Medicine, Rangsit University, Pathum Thani, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prapat Suriyaphol
- Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vip Viprakasit
- Division of Hematology & Oncology, Department of Pediatrics & Siriraj Thalassemia Center, Siriraj Research Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piranit Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyachai Sura
- Medical Genetics and Molecular Medicine Unit, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Orapan Sripichai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Apichai Khongphatthanayothin
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Arrhythmia Research Chulalongkorn University, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Surakameth Mahasirimongkol
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand.
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
| |
Collapse
|
3
|
John S, Klumsathian S, Own‐eium P, Eu‐ahsunthornwattana J, Sura T, Dejsuphong D, Sritara P, Vathesatogkit P, Thongchompoo N, Thabthimthong W, Teerakulkittipong N, Chantratita W, Sukasem C. A comprehensive Thai pharmacogenomics database (TPGxD-1): Phenotype prediction and variants identification in 942 whole-genome sequencing data. Clin Transl Sci 2024; 17:e13830. [PMID: 38853370 PMCID: PMC11163017 DOI: 10.1111/cts.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024] Open
Abstract
Computational methods analyze genomic data to identify genetic variants linked to drug responses, thereby guiding personalized medicine. This study analyzed 942 whole-genome sequences from the Electricity Generating Authority of Thailand (EGAT) cohort to establish a population-specific pharmacogenomic database (TPGxD-1) in the Thai population. Sentieon (version 201808.08) implemented the GATK best workflow practice for variant calling. We then annotated variant call format (VCF) files using Golden Helix VarSeq 2.5.0 and employed Stargazer v2.0.2 for star allele analysis. The analysis of 63 very important pharmacogenes (VIPGx) reveals 85,566 variants, including 13,532 novel discoveries. Notably, we identified 464 known PGx variants and 275 clinically relevant novel variants. The phenotypic prediction of 15 VIPGx demonstrated a varied metabolic profile for the Thai population. Genes like CYP2C9 (9%), CYP3A5 (45.2%), CYP2B6 (9.4%), NUDT15 (15%), CYP2D6 (47%) and CYP2C19 (43%) showed a high number of intermediate metabolizers; CYP3A5 (41%), and CYP2C19 (9.9%) showed more poor metabolizers. CYP1A2 (52.7%) and CYP2B6 (7.6%) were found to have a higher number of ultra-metabolizers. The functional prediction of the remaining 10 VIPGx genes reveals a high frequency of decreased functional alleles in SULT1A1 (12%), NAT2 (84%), and G6PD (12%). SLCO1B1 reports 20% poor functional alleles, while PTGIS (42%), SLCO1B1 (4%), and TPMT (5.96%) showed increased functional alleles. This study discovered new variants and alleles in the 63 VIPGx genes among the Thai population, offering insights into advancing clinical pharmacogenomics (PGx). However, further validation is needed using other computational and genotyping methods.
Collapse
Affiliation(s)
- Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC)Ramathibodi HospitalBangkokThailand
| | - Sommon Klumsathian
- Center for Medical Genomics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Paravee Own‐eium
- Center for Medical Genomics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | | | - Thanyachai Sura
- Division of Medical Genetics and Molecular Medicine, Department of Internal Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Donniphat Dejsuphong
- Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathobodi HospitalMahidol UniversityBang PhliSamutprakarnThailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Prin Vathesatogkit
- Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Nartthawee Thongchompoo
- Center for Medical Genomics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Wiphaporn Thabthimthong
- Center for Medical Genomics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Nuttinee Teerakulkittipong
- Department of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical SciencesBurapha UniversityChonburiThailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC)Ramathibodi HospitalBangkokThailand
- Department of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical SciencesBurapha UniversityChonburiThailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Pharmacogenomics and Precision MedicineThe Preventive Genomics & Family Check‐up Services Center, Bumrungrad International HospitalBangkokThailand
| |
Collapse
|
4
|
Wang YP, Lu XL, Shao K, Shi HQ, Zhou PJ, Chen B. Improving prediction of tacrolimus concentration using a combination of population pharmacokinetic modeling and machine learning in chinese renal transplant recipients. Front Pharmacol 2024; 15:1389271. [PMID: 38783953 PMCID: PMC11111944 DOI: 10.3389/fphar.2024.1389271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Aims The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Ling Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Kun Shao
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hao-Qiang Shi
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Pei-Jun Zhou
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Alotaibi N. CYP3A5 Polymorphisms Leading to Tacrolimus Toxicity Following an Adult Renal Transplant. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:250-253. [PMID: 38231720 DOI: 10.4103/1319-2442.393998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Tacrolimus is one of the calcineurin inhibitors used for maintaining immuno-suppression in thoracic and abdominal transplantations including heart, lung, liver, intestine, pancreas, and renal transplants. It has a narrow therapeutic window requiring therapeutic drug monitoring (TDM). Genetic polymorphism in the expression of cytochrome P3A5 enzyme plays a significant role in the bioavailability of tacrolimus in patients, leading to toxicity or rejection. In this case, we studied a renal transplant patient who received a standard dose of tacrolimus and experienced toxicity related to the poor expression of cytochrome P450 3A5 (CYP3A5), which required the withholding of tacrolimus and cutting the dose for several days with more frequent TDM. Similar cases have been reported before, yet there is no consensus on the appropriate dosage. The projected cost of additional TDM and hospitalization significantly exceeds the one-time cost of genetic CYP3A5 testing. In high-risk renal transplant recipients, pharmacogenetic testing must be considered to cut the time to limit TDM, prevent extended hospitalization, and reduce the total cost of transplantation.
Collapse
Affiliation(s)
- Nouf Alotaibi
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Susomboon T, Kunlamas Y, Vadcharavivad S, Vongwiwatana A. The effect of the very low dosage diltiazem on tacrolimus exposure very early after kidney transplantation: a randomized controlled trial. Sci Rep 2022; 12:14247. [PMID: 35989346 PMCID: PMC9393165 DOI: 10.1038/s41598-022-18552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of this study was to assess the effect of the very low dosage of diltiazem on tacrolimus exposure during the first week post-kidney transplantation, among cytochrome P450 (CYP) 3A5 expressers who did not receive diltiazem (EXplb), CYP3A5 expressers who received the very low dose diltiazem (EXdtz), CYP3A5 nonexpressers who did not receive diltiazem (NEplb), and CYP3A5 nonexpressers who received the very low dose diltiazem (NEdtz). Forty kidney recipients who receive tacrolimus-based immunosuppressive regimen were randomly assigned, with stratification on the CYP3A5 genotypes, to receive either diltiazem 30 mg every 12 h or a matched placebo. The observed median dose-adjusted area under the 12-h curve of tacrolimus concentration (AUC/D) at day 7 post-transplantation was lowest in the EXplb group followed by EXdtz, NEplb, and NEdtz at 34.9, 43.6, 49.4, and 71.1 ng*h/mL per mg, respectively. A Kruskal-Wallis test showed a significant difference in the mean ranks of AUC/D among groups. Significant differences between EXplb and NEplb, and between EXplb and NEdtz were demonstrated, whereas no sufficient evidence of significant differences was detected between the other pairs. In conclusion, coadministration of diltiazem 30 mg twice daily may be advantageous for increasing tacrolimus exposure early after kidney transplantation among CYP3A5 expressers.
Collapse
Affiliation(s)
- Teerada Susomboon
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yotsaya Kunlamas
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Attapong Vongwiwatana
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
7
|
Friebus-Kardash J, Nela E, Möhlendick B, Kribben A, Siffert W, Heinemann FM, Eisenberger U. Development of De Novo Donor-specific HLA Antibodies and AMR in Renal Transplant Patients Depends on CYP3A5 Genotype. Transplantation 2022; 106:1031-1042. [PMID: 34241984 PMCID: PMC9038248 DOI: 10.1097/tp.0000000000003871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The single-nucleotide polymorphism CYP3A5 rs776746 is related to a reduction in the metabolizing activity of the CYP3A5 enzyme. People carrying at least one copy of the wild-type allele, defined as CYP3A5 expressers, exhibit higher clearance and lower trough concentrations of tacrolimus than homozygous nonexpressers, and this difference may affect alloimmunization and allograft function. METHODS We retrospectively studied 400 kidney transplant recipients treated with a tacrolimus-based immunosuppression regimen to detect CYP3A5 genotype, de novo formation of HLA antibodies and donor-specific antibodies (DSAs), and clinical outcome up to 5 y after transplant. RESULTS We found that 69 (17%) of the 400 patients were CYP3A5 expressers. During the first 3 y after transplant, CYP3A5 expressers tended to have lower tacrolimus trough levels than nonexpressers, although their tacrolimus dosage was as much as 80% higher. De novo DSAs were found more frequently in CYP3A5 expressers than in nonexpressers (13/69 [19%] versus 33/331 [10%], P = 0.02). De novo DSA-free survival rates (P = 0.02) were significantly lower for expressers than for nonexpressers. CYP3A5 genotype had no effect on allograft failure, but CYP3A5 expressers exhibited a significantly higher frequency of antibody-mediated rejection. CYP3A5 expresser status was an independent risk factor for the development of de novo DSAs (relative risk, 2.34, P = 0.01). CONCLUSIONS Early detection of CYP3A5 expressers, enabling genotype-based dose adjustment of tacrolimus immediately after renal transplant, may be a useful strategy for reducing the risk of de novo DSA production and antibody-mediated rejection.
Collapse
Affiliation(s)
- Justa Friebus-Kardash
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejona Nela
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Birte Möhlendick
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Falko Markus Heinemann
- Institute for Transfusion Medicine, Transplantation Diagnostics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ute Eisenberger
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Cao P, Zhang F, Zhang J, Zheng X, Sun Z, Yu B, Wang W. CYP3a5 Genetic Polymorphism in Chinese Population With Renal Transplantation: A Meta-Analysis Review. Transplant Proc 2022; 54:638-644. [DOI: 10.1016/j.transproceed.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 10/18/2022]
|
9
|
Du W, Wang X, Zhang D, Chen W, Zhang X, Li P. The impact of cytochrome P450 3A5 genotype on early tacrolimus metabolism and clinical outcomes in lung transplant recipients. Int J Clin Pharm 2021; 44:418-427. [PMID: 34859357 DOI: 10.1007/s11096-021-01359-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022]
Abstract
Background Tacrolimus (Tac) is the cornerstone of immunosuppressant therapy after lung transplantation (LTx). It shows great inter-individual variability in pharmacokinetics, which could partly be explained by pharmacogenetic factors. Aim We aim to investigate the influence of cytochrome P450 3A5 (CYP3A5) genotypes on early post-LTx Tac metabolism and whether it is affected by concomitant use of azole antifungals. Also, we explored the association between CYP3A5 genotype and clinical outcomes. Method 90 recipients who underwent LTx from 2017 to 2019 were enrolled in the study. The effect of CYP3A5 genotype on Tac metabolism and interaction with azole antifungals were assessed during week 1-4 after transplantation. Associations between CYP3A5 genotype and the incidence of acute kidney injury (AKI), length of hospital stay and mortality were analyzed. ResultsCYP3A5*1 carriers had lower dose adjusted concentration (C/D) than CYP3A5*3/*3 group at all time points (p < 0.05). The dose ratio of CYP3A5*1 carriers to CYP3A5*3/*3 was between 1.3 and 2.4 when comparable concentrations were reached. Use of azole antifungals did not blunt the effect of CYP3A5 genotypes on Tac metabolism. Logistic regression showed Tac concentration ≥ 7.5 ng/mL at week 1 was associated with higher incidence of AKI. No statistically significant difference was found between CYP3A5 genotypes and the length of hospital stay. Kaplan-Meier analysis showed no statistically significant difference between 30-day or 1-year mortality and CYP3A5 genotype. Conclusion CYP3A5 genotype could affect Tac metabolism early after LTx. However, it had no influence on the incidence of AKI, length of hospital stay and mortality.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China.
| |
Collapse
|
10
|
Larpparisuth N, Pongnatcha T, Panprom P, Promraj R, Premasathian N, Vongwiwatana A. High Intrapatient Variability in Tacrolimus Exposure Calculated Over a Long Period Is Associated With De Novo Donor-Specific Antibody Development and/or Late Rejection in Thai Kidney Transplant Patients Receiving Concomitant CYP3A4/5 Inhibitors. Ther Drug Monit 2021; 43:624-629. [PMID: 33278239 DOI: 10.1097/ftd.0000000000000850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND High intrapatient variability in tacrolimus trough levels (Tac IPV) is associated with poor allograft outcomes. Tac IPV was previously calculated using trough levels 6-12 months after kidney transplantation (KT). Data on the accuracy of Tac IPV calculation over a longer period, the association between high Tac IPV and donor-specific antibody (DSA) development after KT in Asian patients, and the role of IPV in patients receiving concomitant cytochrome P450 (CYP)3A4/5 inhibitors (CYPinh) are limited. METHODS A retrospective review of patients who underwent KT at our center in 2005-2015, and who received Tac with mycophenolate during the first 2 years after KT was performed. IPV was calculated using Tac levels adjusted by dosage. DSA was monitored annually after KT using a Luminex microbead assay. RESULTS In total, 236 patients were enrolled. CYPinh were prescribed to 189 patients (80.1%): 145 (61.4%), 31 (13.1%), and 13 (5.5%) received diltiazem, fluconazole, and ketoconazole, respectively. Mean IPV calculated from adjusted Tac levels for 6-12 months (IPV6-12) and 6-24 months (IPV6-24) after KT were 20.64% ± 11.68% and 23.53% ± 10.39%, respectively. Twenty-six patients (11%) showed late rejection and/or DSA occurrence, and had significantly higher IPV6-24 (29.42% ± 13.78%) than others (22.77% ± 9.64%; P = 0.02). There was no difference in IPV6-12 (24.31% ± 14.98% versus 20.17% ± 10.90%; P = 0.18). IPV6-12 and IPV6-24 were comparable in patients who did and did not receive CYPinh. When using mean IPV6-24 as a cutoff, patients with higher IPV6-24 had a higher probability of developing DSA and/or late rejection (P = 0.048). CONCLUSIONS Tac IPV6-24 was higher and more significantly associated with DSA development and/or late rejection than Tac IPV6-12, independent of Tac trough level. This is the first study to demonstrate the impact of high IPV on DSA development in Asian patients, and that Tac IPV is comparable between patients with and without CYPinh.
Collapse
Affiliation(s)
- Nuttasith Larpparisuth
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Tanapon Pongnatcha
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pera Panprom
- Department of Nursing Siriraj Hospital, Faculty of Medicine Siriraj Hospital, Mahidol University; and
| | - Ratchawat Promraj
- Ambulatory Pharmaceutical Care Unit, Pharmacy Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nalinee Premasathian
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
11
|
Trough Level and Tacrolimus Variability of Early Converted Once-Daily Tacrolimus: 1-Year Follow-up Study. Transplant Proc 2020; 52:775-779. [PMID: 32143870 DOI: 10.1016/j.transproceed.2019.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Long-term transplant outcomes are considered a crucial point for kidney transplantation. Follow-up studies in patients receiving early conversion to once-daily tacrolimus (TAC-OD) are still limited. We aimed to investigate tacrolimus trough level (Cmin), intrapatient variability of tacrolimus dose-normalized Cmin (TAC-Cmin/D), along with other outcomes between twice-daily tacrolimus (TAC-BID) and early converted TAC-OD. MATERIAL AND METHODS This study was a single center, retrospective, cohort study. All new kidney transplant patients who received tacrolimus and presented an estimated glomerular filtration rate of more than 45 mL/min/1.73 m2 on the day of hospital discharge were included. Studied patients were divided into the standard TAC-BID and patients who were converted from TAC-BID to TAC-OD on the day of hospital discharge. We followed patients for 1 year after transplantation. RESULTS At the first follow-up visit, Cmin of TAC-OD was significantly lower than that of TAC-BID. However, Cmin and estimated glomerular filtration rate were comparable between TAC-BID and TAC-OD throughout 1-year follow-up. TAC-OD also provided a lower intrapatient variability of TAC-Cmin/D compared with TAC-BID when observed after 6 months post transplantation (17.40% and 23.27% for TAC-OD and TAC-BID, respectively; P = .13). The renal function, as well as other adverse outcomes, was similar between 2 formulations. DISCUSSION TAC-OD provided a similar Cmin with comparable renal function compared with TAC-BID during 1-year follow-up. In addition, TAC-OD is likely to have a benefit of a lower intrapatient variability of tacrolimus. CONCLUSION Early conversion from TAC-BID to TAC-OD with 1:1 ratio can be used with close long-term monitoring.
Collapse
|
12
|
Sukkha S, Chindavijak B, Nosoongnoen W, Phakdeekitchareon B, Kitiyakara C, Sumethkul V. The association between trough blood concentration and systemic exposure of tacrolimus: Comparison between once-daily (Advagraf®) and twice-daily (Prograf®) formulation in de novo kidney transplant recipients. Drug Metab Pharmacokinet 2020; 35:139-144. [PMID: 31727575 DOI: 10.1016/j.dmpk.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023]
Abstract
Available data of early conversion from twice-daily tacrolimus (TAC-BID) to once-daily tacrolimus (TAC-OD) in de novo kidney transplant (KT) recipients are limited. We conducted a prospective study of early conversion to TAC-OD in de novo KT recipients. Eligible patients were enrolled to receive TAC-BID (Prograf®) and then converted to TAC-OD (Advagraf®) by 1:1 ratio, approximately 14 days after KT (range 9-22). Blood samples were investigated for pharmacokinetic parameters before and 7-14 days after the conversion. Fifteen patients were included and provided AUC0-24 of 202.9 ± 44.4 ng h/mL for TAC-BID (pre-conversion) and 193.0 ± 63.4 ng h/mL for TAC-OD (post-conversion) (p = 0.41). Mean trough blood concentration (Cmin) of TAC-BID and TAC-OD was 6.4 ± 1.4 ng/mL and 4.9 ± 1.6 ng/mL (p = 0.01). Correlation coefficient (r) between Cmin and AUC0-24 of TAC-BID and TAC-OD were 0.620 and 0.875. Additional analysis found that patients with a drop of Cmin > 30% had a significant lower AUC0-24 after conversion. Renal function remains stable. We conclude that early conversion to TAC-OD is safe and well tolerated with an indifferent systemic exposure. However, patients with a drop of Cmin > 30% after conversion to TAC-OD will require additional dose adjustment.
Collapse
Affiliation(s)
- Sayamon Sukkha
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Busba Chindavijak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Wichit Nosoongnoen
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Bunyong Phakdeekitchareon
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Organ Transplantation, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Organ Transplantation, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasant Sumethkul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Organ Transplantation, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Larpparisuth N, Skulratanasak P, Vongwiwatana A, Premasathian N. Effect on Dosage Change and Intrapatient Variability After Conversion From Twice-Daily to Once-Daily Tacrolimus Among Thai Kidney Transplant Patients With and Without CYP3A4/5 Inhibitors. Transplant Proc 2019; 51:2620-2623. [PMID: 31474450 DOI: 10.1016/j.transproceed.2019.02.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Converting to once-daily tacrolimus (Advagraf [Adv]) among renal transplant patients results in better drug adherence. Data regarding dosage and intrapatient variability changes after conversion among patients with CYP3A4/5 inhibitors (CYPinh) is lacking. METHOD A retrospective chart review among all kidney transplant recipients at Siriraj Hospital was performed. Patients were enrolled who had been on standard release twice-daily tacrolimus and subsequently replaced it with Adv for at least 6 months with no change in CYPinh type or dosage. RESULTS Fifty-three patients were eligible. Conversion occurred at a mean time after transplant of 51.25 (SD, 40.30) months. Ten patients (18.9%) did not receive CYPinh, while 19 (35.8%), 21 (39.6%), and 3 (5.7%) received diltiazem, ketoconazole or fluconazole, and both diltiazem and ketoconazole, respectively. After conversion, median increment of tacrolimus dosage was 14.29% (-50% to 167%), while no significant change in IPV was demonstrated (17.46% [SD, 11.25%] vs 14.83% [SD, 6.78]; P = .11). Patients receiving azole had less dosage increment than those not receiving CYPinh (P = .02). After conversion, 14 of 22 patients with IPV > 17% (63.6%) had reduced IPV to ≤ 17%, while 25.8% of patients with lower IPV had an increase in IPV > 17%. CONCLUSION Conversion to Adv required a dosage increment of 30% to achieve the same trough level. Concomitant use of CYPinh significantly reduced tacrolimus dose increment. A trend was noted toward improved IPV after conversion. Conversion to Adv resulted in better IPV among patients with high IPV while receiving twice-daily tacrolimus.
Collapse
Affiliation(s)
- Nuttasith Larpparisuth
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Peenida Skulratanasak
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nalinee Premasathian
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Effect of CYP3A5 genotype on hospitalization cost for kidney transplantation. Int J Clin Pharm 2018; 41:88-95. [DOI: 10.1007/s11096-018-0750-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
|
15
|
Influence of CYP3A5 genetic differences in tacrolimus on quantitative interstitial fibrosis and long-term graft function in kidney transplant recipients. Int Immunopharmacol 2018; 58:57-63. [PMID: 29550576 DOI: 10.1016/j.intimp.2018.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023]
Abstract
The impact of CYP3A5 polymorphisms on clinical outcomes is controversial. The present study investigated the impact of CYP3A5 genetic differences on the development of interstitial fibrosis (IF) from 0 h to 1 year post-transplantation in biopsy sections from 96 living kidney recipients under the same target trough regimen of tacrolimus. The relationships between CYP3A5 polymorphisms and long-term graft function and death-censored graft survival were also examined. A quantitative analysis of IF was performed using computer-assisted imaging on virtual slides. Percent IF (%IF) in the cortical region at 0 h was defined as the baseline, and increases in the ratio of %IF 1 year post-transplantation were calculated. The relationships between CYP3A5 genetic differences and the development of IF, the incidence of clinical events, and the long-term function and death-censored survival of grafts were assessed. The mean increase in the ratio of %IF from 0 h to 1 year was 1.38 ± 0.74-fold. Despite therapeutic drug monitoring (TDM), trough levels of tacrolimus were lower in carriers with the CYP3A5*1 allele (expressers) than in those with the CTP3A5*3/*3 genotype (non-expressers) throughout the 1-year post-transplantation period. However, CYP3A5 genetic differences were not associated with the development of IF, any clinical events, or the long-term function and survival of grafts. The clinical impact of CYP3A5 genetic differences may be small under the current immunosuppressive regimen consisting of mycophenolate mofetil, steroids, basiliximab, and lower target trough levels of tacrolimus with suitable TDM in a low immunological risk population.
Collapse
|
16
|
Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:23-33. [PMID: 29563827 PMCID: PMC5846312 DOI: 10.2147/pgpm.s107710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tacrolimus is a commonly used immunosuppressant after kidney transplantation. It has a narrow therapeutic range and demonstrates wide interindividual variability in pharmacokinetics, leading to potential underimmunosuppression or toxicity. Genetic polymorphism in CYP3A5 enzyme expression contributes to differences in tacrolimus bioavailability between individuals. Individuals carrying one or more copies of the wild-type allele *1 express CYP3A5, which increases tacrolimus clearance. CYP3A5 expressers require 1.5 to 2-fold higher tacrolimus doses compared to usual dosing to achieve therapeutic blood concentrations. Individuals with homozygous *3/*3 genotype are CYP3A5 nonexpressers. CYP3A5 nonexpression is the most frequent phenotype in most ethnic populations, except blacks. Differences between CYP3A5 genotypes in tacrolimus disposition have not translated into differences in clinical outcomes, such as acute rejection and graft survival. Therefore, although genotype-based dosing may improve achievement of therapeutic drug concentrations with empiric dosing, its role in clinical practice is unclear. CYP3A5 genotype may predict differences in absorption of extended-release and immediate-release oral formulations of tacrolimus. Two studies found that CYP3A5 expressers require higher doses of tacrolimus in the extended-release formulation compared to immediate release. CYP3A5 genotype plays a role in determining the impact of interacting drugs, such as fluconazole, on tacrolimus pharmacokinetics. Evidence conflicts regarding the impact of CYP3A5 genotype on risk of nephrotoxicity associated with tacrolimus. Further study is required.
Collapse
Affiliation(s)
- Lucy Chen
- Kidney Transplant Program, St Michael's Hospital, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Madsen MJ, Bergmann TK, Brøsen K, Thiesson HC. The Pharmacogenetics of Tacrolimus in Corticosteroid-Sparse Pediatric and Adult Kidney Transplant Recipients. Drugs R D 2018; 17:279-286. [PMID: 28229376 PMCID: PMC5427048 DOI: 10.1007/s40268-017-0177-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Tacrolimus is a calcineurin inhibitor used as an immunosuppressant drug in solid organ transplantation, and is mainly metabolized by cytochrome P450 (CYP) 3A4 and CYP3A5. Studies have shown an association between the CYP3A5 genotype and tacrolimus dose-adjusted trough concentrations. Variants in the genes PPARA, POR and CYP3A4 have recently been shown to influence tacrolimus metabolism. Furthermore, pharmacokinetic interaction between corticosteroid treatment and tacrolimus has been shown. In the present study, we investigated a potential association between CYP3A5*3, PPARA c.209-1003G>A, POR*28 and CYP3A4*22 and dose-adjusted tacrolimus trough concentrations in a primarily corticosteroid-free (>85%) population of Danish pediatric and adult kidney transplant recipients. Methods Seventy-two patients receiving treatment with oral tacrolimus were genotyped using real-time polymerase chain reaction and Primer-Probe Detection. Tacrolimus trough concentrations, corresponding doses and covariates were retrospectively collected from the patients’ medical charts. Results It was confirmed that CYP3A5*1 wild-type carriers had lower median dose-adjusted tacrolimus trough concentrations compared with noncarriers. Adults had 56 and 77% lower trough concentrations at 6 weeks (p = 0.0003) and 1 year, respectively (p < 0.0017), and, similarly, children had 65 and 39% lower median concentrations, with p values of 0.006 and 0.011, respectively. No association was found for PPARA c.209-1003G>A, POR*28, or CYP3A4*22. An association between the PPARA c.209-1003G>A genotype and an increased number of infections with cytomegalovirus (CMV) within the first year was identified (p < 0.05). Only 29% of trough concentrations measured between 2 and 12 weeks post-transplantation were on target. Conclusion This study shows that the known association of the CYP3A5 genotype with tacrolimus dose-adjusted trough concentrations has the same impact in a corticosteroid-sparse population. The association between PPARA variance and infections with CMV will need further investigation. Electronic supplementary material The online version of this article (doi:10.1007/s40268-017-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mads Juul Madsen
- Department of Nephrology, Odense University Hospital, J B WinslowsVej 19, 5000, Odense C, Denmark
| | - Troels K Bergmann
- Department of Clinical Chemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
- Hospital Pharmacy, Hospital of South West Denmark, Esbjerg, Denmark.
| | - Kim Brøsen
- Department of Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, J B WinslowsVej 19, 5000, Odense C, Denmark
| |
Collapse
|
18
|
Sukkha S, Chindavijak B, Montakantikul P, Ingsathit A, Nosoongnoen W, Sumethkul V. Trough level from twice daily to once daily tacrolimus in early conversion kidney transplant recipients: a prospective study. Int J Clin Pharm 2017; 39:1298-1303. [PMID: 29101615 DOI: 10.1007/s11096-017-0549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/21/2017] [Indexed: 02/05/2023]
Abstract
Background Early conversion from twice-daily tacrolimus (TAC-BID) to once-daily tacrolimus (TAC-OD) provides a greater benefit of reducing under-exposure of TAC-OD during the first period after transplantation. Information regarding the conversion dose among Asian kidney transplant recipients is still limited. Objective This study aimed to compare the trough levels (Cmin) of TAC-BID (Prograf®) and TAC-OD (Advagraf®). The values were obtained from early conversion intervention by 1:1 milligram per-milligram. Setting A university-based hospital. Method This study employed a single-center, open-label, prospective and single-armed design. Fifteen de novo standard risk kidney transplant recipients were enrolled. Fourteen days after transplantation, the Cmin of TAC-BID (pre-conversion Cmin) was determined. Subsequently, TAC-BID was converted to TAC-OD with a similar dose. The Cmin of TAC-OD was first measured at a steady state (immediate post-conversion Cmin) and compared. All enrolled patients received therapeutic monitoring at the first and second months. Main outcome measure Pre-conversion Cmin of TAC-BID and immediate post-conversion Cmin of TAC-OD. Results The immediate post-conversion Cmin was found to be 23% lowered than the pre-conversion Cmin. However, the Cmin of TAC-OD was found to be similar to the pre-conversion Cmin compared during the follow-up period. Renal function was found to be stable in all patients over 2 months. Conclusion Early conversion therapy was associated with a significantly lower immediate post-conversion Cmin but comparable Cmin throughout the follow-up period. The "one to one conversion ratio" from TAC-BID to TAC-OD could be performed among Asian de novo kidney transplant recipients at an early period after transplantation.
Collapse
Affiliation(s)
- Sayamon Sukkha
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Busba Chindavijak
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Preecha Montakantikul
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Atiporn Ingsathit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Wichit Nosoongnoen
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayutthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Vasant Sumethkul
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
19
|
Trofe-Clark J, Brennan DC, West-Thielke P, Milone MC, Lim MA, Neubauer R, Nigro V, Bloom RD. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients. Am J Kidney Dis 2017; 71:315-326. [PMID: 29162334 DOI: 10.1053/j.ajkd.2017.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Differences in tacrolimus dosing across ancestries is partly attributable to polymorphisms in CYP3A5 genes that encode tacrolimus-metabolizing cytochrome P450 3A5 enzymes. The CYP3A5*1 allele, preponderant in African Americans, is associated with rapid metabolism, subtherapeutic concentrations, and higher dose requirements for tacrolimus, all contributing to worse outcomes. Little is known about the relationship between CYP3A5 genotype and the tacrolimus pharmacokinetic area under the curve (AUC) profile in African Americans or whether pharmacogenetic differences exist between conventional twice-daily, rapidly absorbed, immediate-release tacrolimus (IR-Tac) and once-daily extended-release tacrolimus (LifeCycle Pharma Tac [LCPT]) with a delayed absorption profile. STUDY DESIGN Randomized prospective crossover study. SETTING & PARTICIPANTS 50 African American maintenance kidney recipients on stable IR-Tac dosing. INTERVENTION Recipients were randomly assigned to continue IR-Tac on days 1 to 7 and then switch to LCPT on day 8 or receive LCPT on days 1 to 7 and then switch to IR-Tac on day 8. The LCPT dose was 85% of the IR-Tac total daily dose. OUTCOMES Tacrolimus 24-hour AUC (AUC0-24), peak and trough concentrations (Cmax and Cmin), time to peak concentration, and bioavailability of LCPT versus IR-Tac, according to CYP3A5 genotype. MEASUREMENTS CYP3A5 genotype, 24-hour tacrolimus pharmacokinetic profiles. RESULTS ∼80% of participants carried the CYP3A5*1 allele (CYP3A5 expressers). There were no significant differences in AUC0-24 or Cmin between CYP3A5 expressers and nonexpressers during administration of either IR-Tac or LCPT. With IR-Tac, tacrolimus Cmax was 33% higher in CYP3A5 expressers compared with nonexpressers (P=0.04): With LCPT, this difference was 11% (P=0.4). LIMITATIONS This was primarily a pharmacogenetic study rather than an efficacy study; the follow-up period was too short to capture clinical outcomes. CONCLUSIONS Achieving therapeutic tacrolimus trough concentrations with IR-Tac in most African Americans results in significantly higher peak concentrations, potentially magnifying the risk for toxicity and adverse outcomes. This pharmacogenetic effect is attenuated by delayed tacrolimus absorption with LCPT. TRIAL REGISTRATION Registered at ClinicalTrials.gov, with study number NCT01962922.
Collapse
Affiliation(s)
- Jennifer Trofe-Clark
- Department of Pharmacy Services, Hospital of the University of Pennsylvania, Philadelphia, PA; Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Michael C Milone
- Perelman School of Medicine, University of Pennsylvania, Penn Institute for Immunology, Philadelphia, PA
| | - Mary Ann Lim
- Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robin Neubauer
- Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Roy D Bloom
- Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
20
|
Dorr CR, Oetting WS, Jacobson PA, Israni AK. Genetics of acute rejection after kidney transplantation. Transpl Int 2017; 31:263-277. [PMID: 29030886 DOI: 10.1111/tri.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023]
Abstract
Treatment of acute rejection (AR) following kidney transplantation has improved in recent years, but there are still limitations to successful outcomes. This review article covers literature in regard to recipient and donor genetics of AR kidney and secondarily of liver allografts. Many candidate gene and some genome-wide association studies (GWASs) have been conducted for AR in kidney transplantation. Genetic associations with AR in kidney and liver are mostly weak, and in most cases, the associations have not been reproducible. A limitation in the study of AR is the lack of sufficiently large populations that account for population stratification to study the AR phenotype which in this era occurs in <10% of transplants. Furthermore, the AR phenotype has been difficult to define and the definitions of classifications have evolved over time. Literature related to the pharmacogenomics of tacrolimus is robust and has been validated in many studies. Associations between gene expression and AR are emerging as markers of outcomes and AR classification. In the future, combinations of pretransplant genotype for AR risk prediction, genotype-based immune suppressant dosing, and pharmacogenomic markers to select AR maintenance or treatment and expression markers from biopsies may provide valuable clinical tools for guiding treatment.
Collapse
Affiliation(s)
- Casey R Dorr
- Department of Nephrology, Minneapolis Medical Research Foundation, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K Israni
- Department of Nephrology, Minneapolis Medical Research Foundation, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Department of Medicine, Hennepin County Medical Center, Minneapolis, MN, USA
| |
Collapse
|
21
|
Shrestha BM. Two Decades of Tacrolimus in Renal Transplant: Basic Science and Clinical Evidences. EXP CLIN TRANSPLANT 2016; 15:1-9. [PMID: 27938316 DOI: 10.6002/ect.2016.0157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tacrolimus, a calcineurin inhibitor, has been the cornerstone of immunosuppressive regimens in renal transplant over 2 decades. This has significantly improved the outcomes of renal transplant, including reduction of acute rejection episodes, improvement of renal function and graft survival, and reduction of some of the adverse effects associated with cyclosporine. However, use of tacrolimus is associated with a number of undesirable effects, such as nephrotoxicity, posttransplant diabetes mellitus, neurotoxicity, and cosmetic and electrolyte disturbances. To alleviate these effects, several strategies have been adopted to minimize or eliminate tacrolimus from maintenance regimens of immunosuppression, with some success. This review focuses on advancements in the understanding of the basic science related to tacrolimus and the clinical evidences that have examined the efficacy and safety of tacrolimus in renal transplant over the past 2 decades and highlights the future directions.
Collapse
Affiliation(s)
- Badri Man Shrestha
- From the Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| |
Collapse
|
22
|
Chen P, Li J, Li J, Deng R, Fu Q, Chen J, Huang M, Chen X, Wang C. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients. J Clin Pharm Ther 2016; 42:93-97. [PMID: 27885697 DOI: 10.1111/jcpt.12480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tacrolimus is a widely used immunosuppressive drug with marked pharmacokinetic variability partly due to CYP3A5 polymorphism. Our study aimed to investigate the dynamic effects of CYP3A5 genotypes on dose requirement and trough concentration (C0 ) of tacrolimus in renal transplant recipients. METHODS A total of 194 Chinese renal transplant recipients received oral tacrolimus twice daily. Whole-blood C0 of tacrolimus were measured on the 3rd day, 7th day, 14th day, 1st month, 3rd month and 6th month post-transplantation. CYP3A5 genotypes were determined and the recipients were categorized as CYP3A5 expressers (CYP3A5*1 allele carriers) and non-expressers (homozygous CYP3A5*3). The correlated serum creatinine, haematocrit and albumin were also detected. RESULTS The allele frequencies for CYP3A5*1/*1, *1/*3 and *3/*3 were 7·7%, 44·8% and 47·4%, respectively. There were no significant variability in serum creatinine, haematocrit and albumin values between CYP3A5 expressers and non-expressers. Larger doses were administered to CYP3A5 expressers than to non-expressers after surgery except the initial dose. C0 were much lower in CYP3A5 expressers than in non-expressers on the 3rd day, 7th day, 14th day and 1st month post-transplantation (P < 0·01); however, no significant differences were found on the 3rd and 6th months post-transplantation. All of the dose-adjusted C0 in CYP3A5 expressers were significantly lower than non-expressers (P < 0·01). Less of the recipients achieving target C0 (4-8 ng/mL) were found in CYP3A5 expressers than in non-expressers after initial dose (35·7% vs. 50%). Meanwhile, CYP3A5 non-expressers were detected having higher C0 (>8 ng/mL) during 3 months post-transplantation. Besides, the proportions in the two groups both increased gradually over time and up to 91·8% and 94% on the 6th month, respectively. WHAT IS NEW AND CONCLUSION There are no significant differences in serum creatinine, haematocrit and albumin values between CYP3A5 expressers and non-expressers. CYP3A5 expressers have decreased dose-adjusted tacrolimus C0 when compared to non-expressers. Dose-adjusted C0 of tacrolimus increases in a time-dependent manner in both groups.
Collapse
Affiliation(s)
- P Chen
- Pharmacy Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Li
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - R Deng
- Pharmacy Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Fu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Chen
- Pharmacy Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - M Huang
- School of Pharmaceutical Sciences, Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - X Chen
- Pharmacy Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - C Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|