1
|
Kirubakaran R, Singh RM, Carland JE, Day RO, Stocker SL. Evaluation of Published Population Pharmacokinetic Models to Inform Tacrolimus Therapy in Adult Lung Transplant Recipients. Ther Drug Monit 2024; 46:434-445. [PMID: 38723160 DOI: 10.1097/ftd.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The applicability of currently available tacrolimus population pharmacokinetic models in guiding dosing for lung transplant recipients is unclear. In this study, the predictive performance of relevant tacrolimus population pharmacokinetic models was evaluated for adult lung transplant recipients. METHODS Data from 43 lung transplant recipients (1021 tacrolimus concentrations) administered an immediate-release oral formulation of tacrolimus were used to evaluate the predictive performance of 17 published population pharmacokinetic models for tacrolimus. Data were collected from immediately after transplantation up to 90 days after transplantation. Model performance was evaluated using (1) prediction-based assessments (bias and imprecision) of individual predicted tacrolimus concentrations at the fourth dosing based on 1 to 3 previous dosings and (2) simulation-based assessment (prediction-corrected visual predictive check; pcVPC). Both assessments were stratified based on concomitant azole antifungal use. Model performance was clinically acceptable if the bias was within ±20%, imprecision was ≤20%, and the 95% confidence interval of bias crossed zero. RESULTS In the presence of concomitant antifungal therapy, no model showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33), and pcVPC plots displayed poor model fit to the data set. However, this fit slightly improved in the absence of azole antifungal use, where 4 models showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33). CONCLUSIONS Although none of the evaluated models were appropriate in guiding tacrolimus dosing in lung transplant recipients receiving concomitant azole antifungal therapy, 4 of these models displayed potential applicability in guiding dosing in recipients not receiving concomitant azole antifungal therapy. However, further model refinement is required before the widespread implementation of such models in clinical practice.
Collapse
Affiliation(s)
- Ranita Kirubakaran
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
- Department of Pharmacy, Ministry of Health, Putrajaya, Malaysia
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rani M Singh
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Jane E Carland
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Richard O Day
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Sophie L Stocker
- School of Clinical Medicine, St. Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia ; and
- Sydney Musculoskeletal Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Rower JE, McKnite A, Hong B, Daly KP, Hope KD, Cabrera AG, Molina KM. External assessment and refinement of a population pharmacokinetic model to guide tacrolimus dosing in pediatric heart transplant. Pharmacotherapy 2023; 43:650-658. [PMID: 37328271 PMCID: PMC10527671 DOI: 10.1002/phar.2836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/18/2023]
Abstract
STUDY OBJECTIVE The immunosuppressant tacrolimus is a first-line agent to prevent graft rejection following pediatric heart transplant; however, it suffers from extensive inter-patient variability and a narrow therapeutic window. Personalized tacrolimus dosing may improve transplant outcomes by more efficiently achieving and maintaining therapeutic tacrolimus concentrations. We sought to externally validate a previously published population pharmacokinetic (PK) model that was constructed with data from a single site. DATA SOURCE Data were collected from Seattle, Texas, and Boston Children's Hospitals, and assessed using standard population PK modeling techniques in NONMEMv7.2. MAIN RESULTS While the model was not successfully validated for use with external data, further covariate searching identified weight (p < 0.0001 on both volume and elimination rate) as a model-significant covariate. This refined model acceptably predicted future tacrolimus concentrations when guided by as few as three concentrations (median prediction error = 7%; median absolute prediction error = 27%). CONCLUSION These findings support the potential clinical utility of a population PK model to provide personalized tacrolimus dosing guidance.
Collapse
Affiliation(s)
- Joseph E. Rower
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
- Center for Human Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | - Autumn McKnite
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | - Borah Hong
- Division of Pediatric Cardiology, University of Washington and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Kevin P. Daly
- Department of Pediatric Cardiology, Harvard Medical School/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kyle D. Hope
- Lillie Frank Abercrombie Division of Pediatric Cardiology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Antonio G. Cabrera
- Lillie Frank Abercrombie Division of Pediatric Cardiology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Cardiology, University of Utah/Intermountain Primary Children’s Hospital, Salt Lake City, Utah, USA
| | - Kimberly M. Molina
- Division of Pediatric Cardiology, University of Utah/Intermountain Primary Children’s Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
El Hassani M, Marsot A. External Evaluation of Population Pharmacokinetic Models for Precision Dosing: Current State and Knowledge Gaps. Clin Pharmacokinet 2023; 62:533-540. [PMID: 37004650 DOI: 10.1007/s40262-023-01233-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Predicting drug exposures using population pharmacokinetic models through Bayesian forecasting software can improve individual pharmacokinetic/pharmacodynamic target attainment. However, selecting the most adapted model to be used is challenging due to the lack of guidance on how to design and interpret external evaluation studies. The confusion around the choice of statistical metrics and acceptability criteria emphasises the need for further research to fill this methodological gap as there is an urgent need for the development of standards and guidelines for external evaluation studies. Herein we discuss the scientific challenges faced by pharmacometric researchers and opportunities for future research with a focus on antibiotics.
Collapse
Affiliation(s)
- Mehdi El Hassani
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montréal, Canada.
| | - Amélie Marsot
- Faculté de pharmacie, Université de Montréal, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
- Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
4
|
Methaneethorn J, Lohitnavy M, Onlamai K, Leelakanok N. Predictive Performance of Published Tacrolimus Population Pharmacokinetic Models in Thai Kidney Transplant Patients. Eur J Drug Metab Pharmacokinet 2021; 47:105-116. [PMID: 34817826 DOI: 10.1007/s13318-021-00735-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus is a narrow therapeutic index drug with high pharmacokinetic variability, and several tacrolimus population pharmacokinetic (PopPK) models were developed to guide individualized drug dosing. These models, however, may not perform well in other clinical settings. Therefore, we aimed to assess the predictive ability of published tacrolimus PopPK models using a dataset of Thai kidney transplant patients. METHODS The external dataset was retrospectively collected from medical records of Bhumibol Adulyadej Hospital, Thailand. Published tacrolimus PopPK models were systematically searched from PubMed, Science Direct, CINAHL Complete, and Scopus databases. Models conducted using a nonlinear mixed-effects approach with covariate resemblance to our external dataset were selected. The external dataset consisted of Thai kidney transplant patients receiving oral immediate- or extended-release tacrolimus formulations twice or once daily, respectively. Accuracy and precision of predicted concentrations were evaluated using mean absolute prediction error (MAPE), root mean square error (RMSE), and goodness of fit plots. RESULTS Only three models produced acceptable population predictions with the MAPE of < 50%. By using the Bayesian posthoc estimate of individual pharmacokinetic parameters, all models well performed with the MAPE and RMSE of < 30% and 40%, respectively, except two models; one could not successfully converge and the other substantially underpredicted tacrolimus concentrations. CONCLUSION We evaluated ten tacrolimus PopPK models, and eight models resulted in satisfactorily individual predicted tacrolimus concentrations in Thai kidney transplant patients and may be used to aid tacrolimus dose adjustment along with a clinical judgment.
Collapse
Affiliation(s)
- Janthima Methaneethorn
- Pharmacokinetic Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand.
| | - Manupat Lohitnavy
- Pharmacokinetic Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand
| | - Kamonwan Onlamai
- Department of Pharmacy, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
5
|
Lenain R, Maanaoui M, Hamroun A, Larrue R, Van Der Hauwaert C, Gibier JB, Gnemmi V, Gomis S, Labalette M, Broly F, Hennart B, Pottier N, Hazzan M, Cauffiez C, Glowacki F. Impact of Tacrolimus Daily Dose Limitation in Renal Transplant Recipients Expressing CYP3A5: A Retrospective Study. J Pers Med 2021; 11:jpm11101002. [PMID: 34683143 PMCID: PMC8539387 DOI: 10.3390/jpm11101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
The pharmacokinetic variability of tacrolimus can be partly explained by CYP3A5 activity. Our objective was to evaluate a tacrolimus sparing policy on renal graft outcome according to CYP3A5 6986A>G genetic polymorphism. This retrospective study included 1114 recipients with a median follow-up of 6.3 years. Genotyping of the 6986A>G allelic variant corresponding to CYP3A5*3 was systematically performed. One year after transplantation, tacrolimus blood trough concentration (C0) target range was 5–7 ng/mL. However, daily dose was capped to 0.10 mg/kg/day regardless of the CYP3A5 genotype. A total 208 CYP3A5*1/- patients were included. Despite a higher daily dose, CYP3A5*1/- recipients exhibited lower C0 during follow-up (p < 0.01). Multivariate analysis did not show any significant influence of CYP3A5*1/- genotype (HR = 0.70, 0.46–1.07, p = 0.10) on patient-graft survival. Glomerular Filtration Rate (GFR) decline was significantly lower for the CYP3A5*1/- group (p = 0.02). The CYP3A5*1/- genotype did not significantly impact the risk of biopsy-proven acute rejection (BPAR) (HR = 1.01, 0.68–1.49, p = 0.97) despite significantly lower C0. Based on our experience, a strategy of tacrolimus capping is associated with a better GFR evolution in CYP3A5*1/- recipients without any significant increase of BPAR incidence. Our study raised some issues about specific therapeutic tacrolimus C0 targets for CYP3A5*1/- patients and suggests to set up randomized control studies in this specific population.
Collapse
Affiliation(s)
- Rémi Lenain
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
| | - Mehdi Maanaoui
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
| | - Aghilès Hamroun
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
| | - Romain Larrue
- UMR9020-U1277—CANTHER—Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (R.L.); (C.V.D.H.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France; (F.B.); (B.H.)
| | - Cynthia Van Der Hauwaert
- UMR9020-U1277—CANTHER—Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (R.L.); (C.V.D.H.); (N.P.)
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | - Jean-Baptiste Gibier
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France; (J.-B.G.); (V.G.)
| | - Viviane Gnemmi
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France; (J.-B.G.); (V.G.)
| | - Sébastien Gomis
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
| | - Myriam Labalette
- CHU de Lille, Institut D’Immunologie-HLA, F-59000 Lille, France;
| | - Franck Broly
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France; (F.B.); (B.H.)
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France; (F.B.); (B.H.)
| | - Nicolas Pottier
- UMR9020-U1277—CANTHER—Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (R.L.); (C.V.D.H.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France; (F.B.); (B.H.)
| | - Marc Hazzan
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
| | - Christelle Cauffiez
- UMR9020-U1277—CANTHER—Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (R.L.); (C.V.D.H.); (N.P.)
- Correspondence:
| | - François Glowacki
- CHU Lille, Service de Néphrologie, F-59000 Lille, France; (R.L.); (M.M.); (A.H.); (S.G.); (M.H.); (F.G.)
- UMR9020-U1277—CANTHER—Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (R.L.); (C.V.D.H.); (N.P.)
| |
Collapse
|
6
|
Kirubakaran R, Hennig S, Maslen B, Day RO, Carland JE, Stocker SL. Evaluation of published population pharmacokinetic models to inform tacrolimus dosing in adult heart transplant recipients. Br J Clin Pharmacol 2021; 88:1751-1772. [PMID: 34558092 DOI: 10.1111/bcp.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Identification of the most appropriate population pharmacokinetic model-based Bayesian estimation is required prior to its implementation in routine clinical practice to inform tacrolimus dosing decisions. This study aimed to determine the predictive performances of relevant population pharmacokinetic models of tacrolimus developed from various solid organ transplant recipient populations in adult heart transplant recipients, stratified based on concomitant azole antifungal use. Concomitant azole antifungal therapy alters tacrolimus pharmacokinetics substantially, necessitating dose adjustments. METHODS Population pharmacokinetic models of tacrolimus were selected (n = 17) for evaluation from a recent systematic review. The models were transcribed and implemented in NONMEM version 7.4.3. Data from 85 heart transplant recipients (2387 tacrolimus concentrations) administered the oral immediate-release formulation of tacrolimus (Prograf) were obtained up to 391 days post-transplant. The performance of each model was evaluated using: (i) prediction-based assessment (bias and imprecision) of the individual predicted tacrolimus concentration of the fourth dosing occasion (MAXEVAL = 0, FOCE-I) from 1-3 prior dosing occasions; and (ii) simulation-based assessment (prediction-corrected visual predictive check). Both assessments were stratified based on concomitant azole antifungal use. RESULTS Regardless of the number of prior dosing occasions (1-3) and concomitant azole antifungal use, all models demonstrated unacceptable individual predicted tacrolimus concentration of the fourth dosing occasion (n = 152). The prediction-corrected visual predictive check graphics indicated that these models inadequately predicted observed tacrolimus concentrations. CONCLUSION All models evaluated were unable to adequately describe tacrolimus pharmacokinetics in adult heart transplant recipients included in this study. Further work is required to describe tacrolimus pharmacokinetics for our heart transplant recipient cohort.
Collapse
Affiliation(s)
- Ranita Kirubakaran
- St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia.,Ministry of Health, Putrajaya, Malaysia
| | - Stefanie Hennig
- Certara Inc., Princeton, NJ, USA.,School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ben Maslen
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Richard O Day
- St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jane E Carland
- St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Sophie L Stocker
- St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Population Pharmacokinetic Models of Tacrolimus in Adult Transplant Recipients: A Systematic Review. Clin Pharmacokinet 2021; 59:1357-1392. [PMID: 32783100 DOI: 10.1007/s40262-020-00922-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Numerous population pharmacokinetic (PK) models of tacrolimus in adult transplant recipients have been published to characterize tacrolimus PK and facilitate dose individualization. This study aimed to (1) investigate clinical determinants influencing tacrolimus PK, and (2) identify areas requiring additional research to facilitate the use of population PK models to guide tacrolimus dosing decisions. METHODS The MEDLINE and EMBASE databases, as well as the reference lists of all articles, were searched to identify population PK models of tacrolimus developed from adult transplant recipients published from the inception of the databases to 29 February 2020. RESULTS Of the 69 studies identified, 55% were developed from kidney transplant recipients and 30% from liver transplant recipients. Most studies (91%) investigated the oral immediate-release formulation of tacrolimus. Few studies (17%) explained the effect of drug-drug interactions on tacrolimus PK. Only 35% of the studies performed an external evaluation to assess the generalizability of the models. Studies related variability in tacrolimus whole blood clearance among transplant recipients to either cytochrome P450 (CYP) 3A5 genotype (41%), days post-transplant (30%), or hematocrit (29%). Variability in the central volume of distribution was mainly explained by body weight (20% of studies). CONCLUSION The effect of clinically significant drug-drug interactions and different formulations and brands of tacrolimus should be considered for any future tacrolimus population PK model development. Further work is required to assess the generalizability of existing models and identify key factors that influence both initial and maintenance doses of tacrolimus, particularly in heart and lung transplant recipients.
Collapse
|
8
|
Zwart TC, Guchelaar HJ, van der Boog PJM, Swen JJ, van Gelder T, de Fijter JW, Moes DJAR. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today 2021; 26:2527-2546. [PMID: 34119665 DOI: 10.1016/j.drudis.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Immunosuppressive therapy is pivotal for sustained allograft and patient survival after renal transplantation. However, optimally balanced immunosuppressive therapy is challenged by between-patient and within-patient pharmacokinetic (PK) variability. This could warrant the application of personalised dosing strategies to optimise individual patient outcomes. Pharmacometrics, the science that investigates the xenobiotic-biotic interplay using computer-aided mathematical modelling, provides options to describe and quantify this PK variability and enables identification of patient characteristics affecting immunosuppressant PK and treatment outcomes. Here, we review and critically appraise the available pharmacometric model-informed dosing solutions for the typical immunosuppressants in modern renal transplantation, to guide their initial and subsequent dosing.
Collapse
Affiliation(s)
- Tom C Zwart
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Paul J M van der Boog
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands.
| |
Collapse
|
9
|
Nobakht E, Jagadeesan M, Paul R, Bromberg J, Dadgar S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant Direct 2021; 7:e650. [PMID: 33437865 PMCID: PMC7793397 DOI: 10.1097/txd.0000000000001102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desirable outcomes including rejection- and infection-free kidney transplantation are not guaranteed despite current strategies for immunosuppression and using prophylactic antimicrobial medications. Graft survival depends on factors beyond human leukocyte antigen matching such as the level of immunosuppression, infections, and management of other comorbidities. Risk stratification of transplant patients based on predisposing genetic modifiers and applying precision pharmacotherapy may help improving the transplant outcomes. Unlike certain fields such as oncology in which consistent attempts are being carried out to move away from the "error and trial approach," transplant medicine is lagging behind in implementing personalized immunosuppressive therapy. The need for maintaining a precarious balance between underimmunosuppression and overimmunosuppression coupled with adverse effects of medications calls for a gene-based guidance for precision pharmacotherapy in transplantation. Technologic advances in molecular genetics have led to increased accessibility of genetic tests at a reduced cost and have set the stage for widespread use of gene-based therapies in clinical care. Evidence-based guidelines available for precision pharmacotherapy have been proposed, including guidelines from Clinical Pharmacogenetics Implementation Consortium, the Pharmacogenomics Knowledge Base National Institute of General Medical Sciences of the National Institutes of Health, and the US Food and Drug Administration. In this review, we discuss the implications of pharmacogenetics and potential role for genetic variants-based risk stratification in kidney transplantation. A single score that provides overall genetic risk, a polygenic risk score, can be achieved by combining of allograft rejection/loss-associated variants carried by an individual and integrated into practice after clinical validation.
Collapse
Affiliation(s)
- Ehsan Nobakht
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Muralidharan Jagadeesan
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Rohan Paul
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sherry Dadgar
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
- Personalized Medicine Care Diagnostics Laboratory (PMCDx), Inc., Germantown, MD
| |
Collapse
|
10
|
Comparison of the Predictive Performance Between Cystatin C and Serum Creatinine by Vancomycin via a Population Pharmacokinetic Models: A Prospective Study in a Chinese Population. Eur J Drug Metab Pharmacokinet 2020; 45:135-149. [PMID: 31541402 DOI: 10.1007/s13318-019-00578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Most of the current published population pharmacokinetic (PopPK) models are based on serum creatinine, but we often encounter an underestimation of its concentration in our clinical work. Therefore, we established a cystatin C-based model of vancomycin. OBJECTIVES The purpose of this study was to externally verify the PopPK model of vancomycin based on the glomerular filtration rate (GFR) estimated by serum cystatin C in our previous study and to compare the prediction performance of cystatin C (Cys C) and serum creatinine (SCR)-based models. METHODS The external data set consists of adults receiving vancomycin treatment at The First Affiliated Hospital of Guangxi Medical University. We summarized and restored published models based on serum creatinine values from the literature and used our external data set for initial screening. Visual and external verifications were used to further select candidate models for comparison. The mean prediction error (ME), mean absolute error (MAE) and root mean squared error (RMSE) were the primary outcomes for the overall comparison. Group comparisons of patients with different glomerular filtration rates (GFRs), ages and body mass index (BMI) levels were obtained by the Bayesian method. RESULTS A total of 156 patients with 233 samples were collected as an external data set. Sixteen published models were summarized and restored. After screening, four candidate models suitable for the external data set were finally obtained for comparison. The cystatin C-based model has a smaller ME value in the overall comparison. In the group comparison, serum creatinine-based models were underestimated in the prediction for patient groups with age ≥ 60 years, abnormal BMI values and GFR < 90 ml/min/1.73 m2, for which the cystatin C-based model could solve this problem. CONCLUSION After comparison, we suggest that cystatin C is a superior renal function marker to serum creatinine for vancomycin PopPK models.
Collapse
|
11
|
Zhou S, Zhang R, Lv C, Lu J, Wei Y, Li C, Chen M, Li Q, Liu T. Initial Dosage Optimization of Tacrolimus in Pediatric Patients With Thalassemia Major Undergoing Hematopoietic Stem Cell Transplantation Based on Population Pharmacokinetics. Ann Pharmacother 2020; 55:440-451. [PMID: 32924532 DOI: 10.1177/1060028020959039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is an effective treatment for hematological disorders. Tacrolimus is widely used after HSCT, but it has highly interindividual variable pharmacokinetics. Population pharmacokinetics (PPK) researches of tacrolimus in children with β-thalassemia major (β-TM) undergoing HSCT are insufficient. OBJECTIVE To establish a PPK model of tacrolimus in children with β-TM and optimize initial dosing regimen for achieving target concentration of 5 to 15 ng/mL. METHODS Data on patients aged <18 years were retrospectively collected from January 2017 to December 2018. PPK analysis and Monte Carlo simulations were performed using nonlinear mixed-effects modeling. RESULTS A data set of 55 patients with 332 concentrations was included. A 2-compartment model could best describe the pharmacokinetics of tacrolimus. The body surface area and gender were significant covariates in the final model. The typical value of clearance, the distribution volume of the central room, the distribution volume of the peripheral room, and the intercompartmental clearance were 5.05L/h, 4.33L, 155L, and 6.22L/h, respectively. The optimal initial dosing regimen of 0.03, 0.04, 0.05, 0.06, and 0.10 mg/kg were appropriate for female children with a weight (WT) of 50 to 10 kg. The regimen of 0.04, 0.05, 0.06, 0.07, and 0.12 mg/kg is suitable for male children with a WT of 50 to 10 kg. The probability of target attainment (PTA) of each regimen reached 91%. CONCLUSION AND RELEVANCE A stable PPK model of tacrolimus was established. The proposed dosage regimen reached a good PTA, which could provide a reference for tacrolimus therapy.
Collapse
Affiliation(s)
- Siru Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ren Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunle Lv
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejiu Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yinyi Wei
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengxin Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaochuan Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
12
|
Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population Pharmacokinetic Analysis of Immediate-Release Oral Tacrolimus Co-administered with Mycophenolate Mofetil in Corticosteroid-Free Adult Kidney Transplant Recipients. Eur J Drug Metab Pharmacokinet 2019; 44:409-422. [PMID: 30377942 DOI: 10.1007/s13318-018-0525-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus is the mainstay calcineurin inhibitor frequently administered with mycophenolic acid with or without corticosteroids to prevent graft rejection in adult kidney transplant recipients. The primary objective of this study was to develop and evaluate a population pharmacokinetic model characterizing immediate-release oral tacrolimus co-administered with mycophenolate mofetil (a pro-drug of mycophenolic acid) in adult kidney transplant recipients on corticosteroid-free regimens. The secondary objective was to investigate the effects of clinical covariates on the pharmacokinetics of tacrolimus, emphasizing the interacting effects of mycophenolic acid. METHODS Population modeling and evaluation were conducted with Monolix (Suite-2018R1) using the stochastic approximation expectation-maximization algorithm in 49 adult subjects (a total of 320 tacrolimus whole-blood concentrations). Effects of clinical variables on tacrolimus pharmacokinetics were determined by population covariate modeling, regression modeling, and categorical analyses. RESULTS A two-compartment, first-order absorption with a lag-time, linear elimination, and constant error model best represented the population pharmacokinetics of tacrolimus. The apparent clearance value for tacrolimus was 17.9 l/h (6.95% relative standard error) in our model, which is lower compared with similar subjects on corticosteroid-based therapy. The glomerular filtration rate had significant effects on the apparent clearance and central compartment volume of distribution. Conversely, mycophenolic acid did not affect the apparent clearance of tacrolimus. CONCLUSION We have developed and internally evaluated a novel population pharmacokinetic model for tacrolimus co-administered with mycophenolate mofetil in corticosteroid-free adult kidney transplant patients. These findings are clinically important and provide further reasons for conducting therapeutic drug monitoring in this specific population.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Patrick Mayo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mary H H Ensom
- Professor Emerita, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada. .,Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, Room 3-142D, 11361-87 Ave, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
13
|
Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating B, Iklé D, Remmel RP, Dorr CR, Mannon RB, Matas AJ, Israni AK, Oetting WS, Jacobson PA. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transplant 2019; 19:2795-2804. [PMID: 30953600 PMCID: PMC6763344 DOI: 10.1111/ajt.15385] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Tacrolimus trough and dose requirements vary dramatically between individuals of European and African American ancestry. These differences are less well described in other populations. We conducted an observational, prospective, multicenter study from which 2595 kidney transplant recipients of European, African, Native American, and Asian ancestry were studied for tacrolimus trough, doses, and genetic determinants of metabolism. We studied the well-known variants and conducted a CYP3A4/5 gene-wide analysis to identify new variants. Daily doses, and dose-normalized troughs were significantly different between the four groups (P < .001). CYP3A5*3 (rs776746) was associated with higher dose-normalized tacrolimus troughs in all groups but occurred at different allele frequencies and had differing effect sizes. The CYP3A5*6 (rs10264272) and *7 (rs413003343) variants were only present in African Americans. CYP3A4*22 (rs35599367) was not found in any of the Asian ancestry samples. We identified seven suggestive variants in the CYP3A4/5 genes associated with dose-normalized troughs in Native Americans (P = 1.1 × 10-5 -8.8 × 10-6 ) and one suggestive variant in Asian Americans (P = 5.6 × 10-6 ). Tacrolimus daily doses and dose-normalized troughs vary significantly among different ancestry groups. We identified potential new variants important in Asians and Native Americans. Studies with larger populations should be conducted to assess the importance of the identified suggestive variants.
Collapse
Affiliation(s)
- Moataz E. Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA,Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan Keating
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rory P. Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Casey R. Dorr
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN
| | | | - Arthur J. Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K. Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN,Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
14
|
Maki MAA, Kumar PV, Cheah SC, Siew Wei Y, Al-Nema M, Bayazeid O, Majeed ABBA. Molecular Modeling- Based Delivery System Enhances Everolimus-Induced Apoptosis in Caco-2 Cells. ACS OMEGA 2019; 4:8767-8777. [PMID: 31459966 PMCID: PMC6649008 DOI: 10.1021/acsomega.9b00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
![]()
Several
studies have shown that the mammalian target of rapamycin
(mTOR) inhibitor; everolimus (EV) improves patient survival in several
types of cancer. However, the meaningful efficacy of EV as a single
agent for the treatment of colorectal cancer (CRC) has failed to be
proven in multiple clinical trials. Combination therapy is one of
the options that could increase the efficacy and decrease the toxicity
of the anticancer therapy. This study revealed that the β-cyclodextrin
(β-CD):FGF7 complex has the potential to improve the antiproliferative
effect of EV by preventing FGF receptor activation and by enhancing
EV cellular uptake and intracellular retention. Molecular docking
techniques were used to investigate the possible interaction between
EV, β-CD, and FGF7. Molecular docking insights revealed that
β-CD and EV are capable to form a stable inclusion complex with
FGF at the molecular level. The aqueous solubility of the inclusion
complex was increased (3.1 ± 0.23 μM) when compared to
the aqueous solubility of pure EV (1.7 ± 0.16 μM). In addition,
the in vitro cytotoxic activity of a FGF7:β-CD:EV complex on
Caco-2 cell line was investigated using real-time xCELLigence technology.
The FGF7:β-CD:EV complex has induced apoptosis of Caco-2 cells
and shown higher cytotoxic activity than the parent drug EV. With
the multitargets effect of β-CD:FGF7 and EV, the antiproliferative
effect of EV was remarkably improved as the IC50 value
of EV was reduced from 9.65 ± 1.42 to 1.87 ± 0.33 μM
when compared to FGF7:β-CD:EV complex activity. In conclusion,
the findings advance the understanding of the biological combinational
effects of the β-CD:FGF7 complex and EV as an effective treatment
to combat CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Omer Bayazeid
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, 06100 Ankara, Turkey
| | - Abu Bakar Bin Abdul Majeed
- Faculty of Pharmacy, Research Management Institute, Universiti Teknologi MARA, 42300 Shah Alam, Malaysia
| |
Collapse
|