1
|
Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. Int J Mol Sci 2022; 23:ijms23094908. [PMID: 35563296 PMCID: PMC9102975 DOI: 10.3390/ijms23094908] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Renal inflammation is an initial pathological process during progressive renal injury regardless of the initial cause. Macrophage migration inhibitory factor (MIF) is a truly proinflammatory stress mediator that is highly expressed in a variety of both inflammatory cells and intrinsic kidney cells. MIF is released from the diseased kidney immediately upon stimulation to trigger renal inflammation by activating macrophages and T cells, and promoting the production of proinflammatory cytokines, chemokines, and stress molecules via signaling pathways involving the CD74/CD44 and chemokine receptors CXCR2, CXCR4, and CXCR7 signaling. In addition, MIF can function as a stress molecule to counter-regulate the immunosuppressive effect of glucocorticoid in renal inflammation. Given the critical position of MIF in the upstream inflammatory cascade, this review focuses on the regulatory role and molecular mechanisms of MIF in kidney diseases. The therapeutic potential of targeting MIF signaling to treat kidney diseases is also discussed.
Collapse
|
2
|
The Role of Cytokines in Nephrotic Syndrome. Mediators Inflamm 2022; 2022:6499668. [PMID: 35185384 PMCID: PMC8849808 DOI: 10.1155/2022/6499668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is an important primary glomerular disease characterized by severe proteinuria. Evidence supports a role for T cell dysfunction in the pathogenesis of INS. Glucocorticoids are the primary therapy for INS; however, steroid-resistant NS (SRNS) patients are at a higher risk of drug-induced side effects and harbor poor prognosis. Although the exact mechanism of the resistance is unknown, the imbalances of T helper subtype 1 (Th1), Th2, and regulatory T cells (Tregs) and their cytokines may be involved in the pathogenesis of glucocorticoid responsiveness. Up to now, no confirmed biomarkers have been able to predict SRNS; however, a panel of cytokines may predict responsiveness and identify SRNS patients. Thus, the introduction of distinctive cytokines as novel biomarkers of SRNS enables both preventions of drug-related toxicity and earlier switch to more effective therapies. This review highlights the impacts of T cell population imbalances and their downstream cytokines on response to glucocorticoid responsiveness state in INS.
Collapse
|
3
|
Macrophage migration inhibitory factor in Nodding syndrome. PLoS Negl Trop Dis 2021; 15:e0009821. [PMID: 34662363 PMCID: PMC8553141 DOI: 10.1371/journal.pntd.0009821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Nodding syndrome (NS) is a catastrophic and enigmatic childhood epilepsy, accompanied by multiple neurological impairments and neuroinflammation. Of all the infectious, environmental and psychological factors associated with NS, the major culprit is Onchocerca Volvulus (Ov)-a parasitic worm transmitted to human by blackflies. NS seems to be an 'Autoimmune Epilepsy' in light of the recent findings of deleterious autoimmune antibodies to Glutamate receptors and to Leiomodin-I in NS patients. Moreover, we recently found immunogenetic fingerprints in HLA peptide-binding grooves associate with protection or susceptibility to NS. Macrophage migration inhibitory factor (MIF) is an immune-regulatory cytokine playing a central role in modulating innate and adaptive immunity. MIF is also involved in various pathologies: infectious, autoimmune and neurodegenerative diseases, epilepsy and others. Herein, two functional polymorphisms in the MIF gene, a -794 CATT5-8 microsatellite repeat and a -173 G/C single-nucleotide polymorphism, were assessed in 49 NS patients and 51 healthy controls from South Sudan. We also measured MIF plasma levels in established NS patients and healthy controls. We discovered that the frequency of the high-expression MIF -173C containing genotype was significantly lower in NS patients compared to healthy controls. Interestingly however, MIF plasma levels were significantly elevated in NS patients than in healthy controls. We further demonstrated that the HLA protective and susceptibility associations are dominant over the MIF association with NS. Our findings suggest that MIF might have a dual role in NS. Genetically controlled high-expression MIF genotype is associated with disease protection. However, elevated MIF in the plasma may contribute to the detrimental autoimmunity, neuroinflammation and epilepsy.
Collapse
|
4
|
Pasini A, Bertulli C, Casadio L, Corrado C, Edefonti A, Ghiggeri G, Ghio L, Giordano M, La Scola C, Malaventura C, Maringhini S, Mastrangelo AP, Materassi M, Mencarelli F, Messina G, Monti E, Morello W, Puccio G, Romagnani P, Montini G. Childhood Idiopathic Nephrotic Syndrome: Does the Initial Steroid Treatment Modify the Outcome? A Multicentre, Prospective Cohort Study. Front Pediatr 2021; 9:627636. [PMID: 34307246 PMCID: PMC8295604 DOI: 10.3389/fped.2021.627636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background: A great majority of children with idiopathic nephrotic syndrome will relapse after successful treatment of the initial episode. The possibility that different steroid dosing regimens at onset, adjusted for risk factors, can reduce the rate of relapse represents an interesting option to investigate. Objectives: To evaluate the effect of the initial steroid regimen, adjusted for time to remission (TTR), on the frequency of relapses and steroid dependence, and to verify the influence of prognostic factors on disease course. Methods: A multicentre, prospective, cohort study. Children with nephrotic syndrome, with TTR ≤ 10 days (Group A), were given a 20-week prednisone regimen (2,828 mg/m2) and those with a TTR >10 days, a 22-week regimen (3,668 mg/m2) (Group B). Previously published retrospective data from the same centers were also evaluated. Main outcomes were: relapse rate, number of frequent relapsers + steroid dependent children and total prednisone dose after induction. Results: 143 children were enrolled. Rate of relapsed subjects (77 vs. 79%) and frequent relapsers + steroid dependent subjects (40 vs. 53%) did not differ between Groups A and B, or between the retrospective and prospective cohorts. The cumulative prednisone dose taken after the induction treatment was similar in both groups and in the retrospective and prospective cohorts. TTR was not associated with relapse risk. Age at onset and total serum protein were significantly lower in relapsing patients. At ROC analysis, the best cut-off was 5.3 years for age at onset and 4.2 g/dL for total serum protein. According to these cut-offs, older children with higher total serum protein had a higher relapse free survival rate (58%) than younger children with lower total serum protein (17%). Conclusions: TTR was not found to be a prognostic factor of relapse; because of this, different steroid regimens, adjusted for TTR, did not modify the relapse rate in any relevant measure. Conversely, younger age and low total serum protein were independent predictors of relapse risk, however this outcome was not modified by higher prednisone regimens. Clinical Trial Registration:https://www.ClinicalTrials.gov/, identifier: NCT01386957 (www.nefrokid.it).
Collapse
Affiliation(s)
- Andrea Pasini
- Nephrology and Dialysis Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Bertulli
- Nephrology and Dialysis Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Casadio
- Unità Operativa Complessa of Paediatrics and Neonatology, Local Health Authority of Romagna, Ravenna, Italy
| | - Ciro Corrado
- Pediatric Nephrology Unit, Children's Hospital “G. Di Cristina”, A.R.N.A.S. “Civico”, Palermo, Italy
| | - Alberto Edefonti
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
| | - GianMarco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Luciana Ghio
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Giordano
- Nephrology Unit, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Malaventura
- Section of Pediatrics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvio Maringhini
- Pediatric Nephrology Unit, Children's Hospital “G. Di Cristina”, A.R.N.A.S. “Civico”, Palermo, Italy
| | - Antonio P. Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Materassi
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Francesca Mencarelli
- Nephrology and Dialysis Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Messina
- Nephrology Unit, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Elena Monti
- Specialty School of Paediatrics - Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milan, Italy
- Giuliana and Bernardo Caprotti Chair of Pediatrics, Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | | |
Collapse
|
5
|
Guo HL, Li L, Xu ZY, Jing X, Xia Y, Qiu JC, Ji X, Chen F, Xu J, Zhao F. Steroid-resistant Nephrotic Syndrome in Children: A Mini-review on Genetic Mechanisms, Predictive Biomarkers and Pharmacotherapy Strategies. Curr Pharm Des 2021; 27:319-329. [PMID: 33138756 DOI: 10.2174/1381612826666201102104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) constitutes the second most frequent cause of chronic kidney disease in childhood. The etiology of SRNS remains largely unknown and no standardized treatment exists. Recent advances in genomics have helped to build understanding of the molecular mechanisms and pathogenesis of the disease. The genetic polymorphisms in genes encoding proteins which are involved in the pharmacokinetics and pharmacodynamics of glucocorticoids (GCs) partially account for the different responses between patients with nephrotic syndrome. More importantly, single-gene causation in podocytes-associated proteins was found in approximately 30% of SRNS patients. Some potential biomarkers have been tested for their abilities to discriminate against pediatric patients who are sensitive to GCs treatment and patients who are resistant to the same therapy. This article reviews the recent findings on genetic mechanisms, predictive biomarkers and current therapies for SRNS with the goal to improve the management of children with this syndrome.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ling Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ze-Yue Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Xia
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Urinary Extracellular Vesicle Protein Profiles Discriminate Different Clinical Subgroups of Children with Idiopathic Nephrotic Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11030456. [PMID: 33800879 PMCID: PMC7998527 DOI: 10.3390/diagnostics11030456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is the most frequent primary glomerular disease in children, displaying high grade proteinuria and oedema. The mainstay of therapy are steroids, and patients are usually classified according to the treatment response (sensitive vs. resistant). The mechanisms involved in INS pathogenesis and treatment responsiveness have not yet been identified. In this context, the analysis of urinary extracellular vesicles (UEv) is interesting, since they represent a molecular snapshot of the parental cells, offering a “fingerprint” for monitoring their status. Therefore, the aim of this study is to verify the feasibility of using UEv of INS patients as indicators of therapy response and its prediction. UEv were isolated from the urine of pediatric patients in remission after therapy; they showed characteristic electrophoresis profiles that matched specific patient subgroups. We then built a statistical model to interpret objectively each patient UEv protein profile: in particular, steroid-resistant patients cluster together with a very distinct pattern from other INS patients and controls. In conclusion, the evaluation of the UEv protein profile looks promising in the investigation of INS, showing a disease signature that might predict clinical evolution.
Collapse
|
7
|
Plasma Cytokine Profiling to Predict Steroid Resistance in Pediatric Nephrotic Syndrome. Kidney Int Rep 2021; 6:785-795. [PMID: 33732993 PMCID: PMC7938200 DOI: 10.1016/j.ekir.2020.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Glucocorticoids (GCs) are the primary treatment for nephrotic syndrome (NS), although ∼10% to 20% of children develop steroid-resistant NS (SRNS). Unfortunately, there are no validated biomarkers able to predict SRNS at initial disease presentation. We hypothesized that a plasma cytokine panel could predict SRNS at disease presentation, and identify potential pathways regulating SRNS pathogenesis. Methods Paired plasma samples were collected from 26 children with steroid-sensitive NS (SSNS) and 14 with SRNS at NS presentation and after ∼7 weeks of GC therapy, when SSNS versus SRNS was clinically determined. Plasma cytokine profiling was performed with a panel of 27 cytokines. Results We identified 13 cytokines significantly different in Pretreatment SSNS versus SRNS samples. Statistical modeling identified a cytokine panel (interleukin [IL]-7, IL-9, monocyte chemoattractant protein–1 [MCP-1]) able to discriminate between SSNS and SRNS at disease presentation (receiver operating characteristic [ROC] value = 0.846; sensitivity = 0.643; specificity = 0.846). Furthermore, GC treatment resulted in significant decreases in plasma interferon-γ (IFN-γ), tumor necrosis factor–α (TNF-α), IL-7, IL-13, and IL-5 in both SSNS and SRNS patients. Conclusions These studies suggest that initial GC treatment of NS reduces the plasma cytokines secreted by both CD4+ TH1 cells and TH2 cells, as well as CD8+ T cells. Importantly, a panel of 3 cytokines (IL-7, IL-9, and MCP-1) was able to predict SRNS prior to GC treatment at disease presentation. Although these findings will benefit from validation in a larger cohort, the ability to identify SRNS at disease presentation could greatly benefit patients by enabling both avoidance of unnecessary GC-induced toxicity and earlier transition to more effective alternative treatments.
Collapse
|
8
|
Ying D, Jiang M, Rong L, Zhuang H, Chen L, Xu Y, Jiang X. Association Between Macrophage Migration Inhibitory Factor -173 G>C Gene Polymorphism and Childhood Idiopathic Nephrotic Syndrome: A Meta-Analysis. Front Pediatr 2021; 9:724258. [PMID: 34722418 PMCID: PMC8555679 DOI: 10.3389/fped.2021.724258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Studies have identified that MIF -173 G>C gene polymorphism is associated with idiopathic nephrotic syndrome (INS) susceptibility and steroid resistance, but the results remain inconclusive. Methods: We searched PubMed, Embase, and Web of Science for relevant studies published before 31 March 2021. Pooled data were reported as odds ratio (OR) with 95% confidence interval (CI). Noteworthiness of significant OR was estimated by the false positive report probability (FPRP) test. Trial sequential analysis (TSA) was used to control type I and type II errors. Results: We selected seven case-control studies that included 1,026 INS children (362 were steroid-resistant NS and 564 were steroid-sensitive NS) and 870 controls. The results showed that MIF -173 G>C polymorphism was significantly associated with INS susceptibility in allelic, heterozygous and dominant genetic models (C vs. G: OR = 1.325, 95% CI: 1.011-1.738; GC vs. GG: OR = 1.540, 95% CI: 1.249-1.899; CC + GC vs. GG: OR = 1.507, 95% CI: 1.231-1.845), and FPRP test and TSA indicated that the associations were true in heterozygous and dominant models. The pooled results also revealed that MIF -173 G>C polymorphism was significantly associated with steroid resistance in allelic, homozygous and recessive models (C vs. G: OR = 1.707, 95% CI: 1.013-2.876; CC vs. GG: OR = 4.789, 95% CI: 2.109-10.877; CC vs. GC + GG: OR = 4.188, 95% CI: 1.831-9.578), but FPRP test indicated that all these associations were not noteworthy. Furthermore, TSA revealed that the non-significant associations between MIF -173 G>C polymorphism and steroid resistance in heterozygous and dominant models were potential false negative. Conclusions: This meta-analysis could draw a firm conclusion that MIF -173 G>C polymorphism was significantly associated with increased INS risk in heterozygous and dominant genetic models. MIF -173 G>C polymorphism was not likely to affect steroid responsiveness, but more studies were needed to confirm.
Collapse
Affiliation(s)
- Daojing Ying
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjie Jiang
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Rong
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Zhuang
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Xu
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|