1
|
Kim YK, Kang G, Zang DY, Lee DH. Precision Dosing of Meropenem in Adults with Normal Renal Function: Insights from a Population Pharmacokinetic and Monte Carlo Simulation Study. Antibiotics (Basel) 2024; 13:849. [PMID: 39335022 PMCID: PMC11429322 DOI: 10.3390/antibiotics13090849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to develop a population pharmacokinetic (PK) model for meropenem in healthy adults and explore optimal dosing regimens for patients with normal renal function. PK samples were obtained from 12 healthy participants, which were analyzed using noncompartmental analysis and nonlinear mixed-effect modeling. The PK profiles of meropenem were characterized using a two-compartment model, and serum creatinine level was identified as a significant covariate affecting total clearance. Monte Carlo simulations were conducted using this model to inform dosing recommendations. The target index for meropenem efficacy was defined as the cumulative percentage over 24 h during which free (f) drug concentration exceeded the minimum inhibitory concentration (MIC) under steady state conditions (fT>MIC). These simulations indicated that the current dosage regimen of 1 g for 30 min infusions every 8 h achieved a 90% probability of target attainment (PTA) for 40%fT>MIC when the MIC was <2 mg/L. However, to achieve more stringent therapeutic targets, such as a 90%PTA for 100%fT>MIC or a 90%PTA for 100%fT>4MIC, higher doses administered as 3 h extended infusions or as continuous infusions may be necessary. These results highlight the need for model-informed precision dosing to enhance the efficacy of meropenem therapy across various MIC levels and therapeutic targets.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Republic of Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gfwangju 61469, Republic of Korea
| | - Dae Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Republic of Korea
| | - Dong Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Republic of Korea
| |
Collapse
|
2
|
Hou J, Zhang M, Ma SQ, Cong RN, Li JF. Application of Monte Carlo simulation to optimise the dosage regimen of meropenem in patients with augmented renal clearance for Pseudomonas aeruginosa infection. Heliyon 2024; 10:e32600. [PMID: 38975089 PMCID: PMC11225735 DOI: 10.1016/j.heliyon.2024.e32600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Objective To optimise the dosing regimen of meropenem for treating Pseudomonas aeruginosa (PA) infections in critically ill patients with augmented renal clearance (ARC) using pharmacokinetic/pharmacodynamic (PK/PD) principles and Monte Carlo simulation (MCS). Methods This research involves an MCS based on PK data from patients with ARC and a minimum inhibitory concentration (MIC) distribution of PA. This study simplifies the methods section, focusing on the critical aspects of simulation and target values for effective treatment. Results The study highlights key findings and emphasises that tailored dosing based on bacterial MIC values is essential for patients with ARC. It also notes that empirical treatment in patients with ARC should consider the MIC distribution, with 2 g every (q) 6 h administered to achieve the PK/PD target, while 3 g q 6 h is effective in inhibiting resistance. Conclusion Tailored dosing based on bacterial MIC values is crucial for patients with ARC. Prolonged infusion time alone does not enhance efficacy. Empirical treatment in patients with ARC should consider MIC distribution; a dosage of 2 g q 6 h achieves the PK/PD target, while 3 g q 6 h (≥12 g daily) inhibits resistance.
Collapse
Affiliation(s)
- Jia Hou
- Department of Pharmacy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Min Zhang
- Department of Clinical Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Shu-Qing Ma
- Department of Central Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Ri-Nan Cong
- Department of Pharmacy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Jin-Feng Li
- Department of Pharmacy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| |
Collapse
|
3
|
Jin Y, Ma H, Fu L, Qi X, Zhang M, Di X, Zheng L, He C, Wang Z. Quantification of meropenem in serum and cerebrospinal fluid in children with bacterial meningitis with augmented renal clearance by UPLC-MS/MS. Heliyon 2024; 10:e26132. [PMID: 38390088 PMCID: PMC10881352 DOI: 10.1016/j.heliyon.2024.e26132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Meropenem is an ultrabroad-spectrum antimicrobial agent that is often recommended for the treatment of bacterial meningitis (BM) in children. However, a subtherapeutic phenomenon occurred in BM children complicated with augmented renal clearance (ARC) at the recommended dose of meropenem. To support its pharmacokinetics, a sensitive, fast and robust ultra-liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to measure meropenem concentrations in serum and cerebrospinal fluid (CSF). The method involved protein precipitation, and samples were diluted with a large proportion of water to eliminate solvent effects. The separation of samples was performed on a Waters Acquity™ BEH C18 column (2.1 × 50 mm i.d., 1.7 μm) with a gradient profile. The mobile phases were formic acid-water (1:1000, v/v) and acetonitrile. The linear range was good, with a concentration range of 0.100-100 μg/mL for serum and 0.0400-20.0 μg/mL for CSF. The intra-day and inter-day precisions were less than 8.0%, and the intra-day and inter-day accuracies varied -6.6% from 6.5% for the both serum and CSF. The selectivity, carry-over, dilution integrity, matrix effect, recovery and stability were validated according to international guidelines. The developed UPLC-MS/MS method successfully determined the meropenem concentrations in the serum and CSF of children with BM complicated with ARC. The results indicated that under the recommended dosing regimen (40 mg/kg every 8 h), the time to reach the effective treatment target of 50%T > MIC was only approximately 3 h and lower CSF concentrations of meropenem were observed in children with BM with ARC.
Collapse
Affiliation(s)
- Ying Jin
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongtu Ma
- Department of Neurosurgery Children's Hospital of Chongqing Medical University. Chongqi, China
| | - Lisha Fu
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohui Qi
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Mengyu Zhang
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangjie Di
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zheng
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuiyao He
- Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Road, Yuzhong District, Chongqing 400014, China
| | - Zhenlei Wang
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Hyun DG, Seo J, Lee SY, Ahn JH, Hong SB, Lim CM, Koh Y, Huh JW. Extended Versus Intermittent Meropenem Infusion in the Treatment of Nosocomial Pneumonia: A Retrospective Single-Center Study. Antibiotics (Basel) 2023; 12:1542. [PMID: 37887243 PMCID: PMC10604670 DOI: 10.3390/antibiotics12101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The efficacy of extended meropenem infusions in patients with nosocomial pneumonia is not well defined. Therefore, we compared the clinical outcomes of extended versus intermittent meropenem infusions in the treatment of nosocomial pneumonia. We performed a retrospective analysis of extended versus intermittent meropenem infusions in adult patients who had been treated for nosocomial pneumonia at a medical ICU between 1 May 2018 and 30 April 2020. The primary outcome was mortality at 14 days. Overall, 64 patients who underwent an extended infusion and 97 with an intermittent infusion were included in this study. At 14 days, 10 (15.6%) patients in the extended group and 22 (22.7%) in the intermittent group had died (adjusted hazard ratio (HR), 0.55; 95% confidence interval (CI): 0.23-1.31; p = 0.174). In the subgroup analysis, significant differences in mortality at day 14 were observed in patients following empirical treatment with meropenem (adjusted HR, 0.17; 95% CI: 0.03-0.96; p = 0.045) and in Gram-negative pathogens identified by blood or sputum cultures (adjusted HR, 0.01; 95% CI: 0.01-0.83; p = 0.033). Extended infusion of meropenem compared with intermittent infusion as a treatment option for nosocomial pneumonia may have a potential advantage in specific populations.
Collapse
Affiliation(s)
- Dong-gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jarim Seo
- Department of Pharmacy, Asan Medical Centre, Seoul 05505, Republic of Korea
| | - Su Yeon Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jee Hwan Ahn
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (D.-g.H.)
| |
Collapse
|
5
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
6
|
Pajot O, Lakhal K, Lambert J, Gros A, Bruel C, Boulain T, Garot D, Das V, Timsit JF, Cerf C, Souweine B, Chaffaut C, Mentec H, Zahar JR, Mira JP, Jullien V. Empirical Antibiotic Therapy for Gram-Negative Bacilli Ventilator-Associated Pneumonia: Observational Study and Pharmacodynamic Assessment. Antibiotics (Basel) 2022; 11:antibiotics11111664. [PMID: 36421308 PMCID: PMC9686941 DOI: 10.3390/antibiotics11111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Strong evidence suggests a correlation between pharmacodynamics (PD) index and antibiotic efficacy while dose adjustment should be considered in critically ill patients due to modified pharmacokinetic (PK) parameters and/or higher minimum inhibitory concentrations (MICs). This study aimed to assess pharmacodynamic (PD) target attainment considering both antibiotics serum concentrations and measured MICs in these patients. Method: A multicentric prospective open-label trial conducted in 11 French ICUs involved patients with Gram-negative bacilli (GNB) ventilator-associated pneumonia (VAP) confirmed by quantitative cultures. Results: We included 117 patients. Causative GNBs were P. aeruginosa (40%), Enterobacter spp. (23%), E. coli (20%), and Klebsiella spp. (16%). Hence, 117 (100%) patients received β-lactams, 65 (58%) aminoglycosides, and two (1.5%) fluoroquinolones. For β-lactams, 83% of the patients achieved a Cmin/MIC > 1 and 70% had a Cmin/MIC > 4. In the case of high creatinine clearance (CrCL > 100 mL/min/1.73 m2), 70.4% of the patients achieved a Cmin/MIC ratio > 1 versus 91% otherwise (p = 0.041), and 52% achieved a Cmin/MIC ratio > 4 versus 81% (p = 0.018). For aminoglycosides, 94% of the patients had a Cmax/MIC ratio > 8. Neither β-lactams nor aminoglycosides PK/PD parameters were associated clinical outcomes, but our data suggest a correlation between β-lactams Cmin/MIC and microbiological success. Conclusion: In our ICU patients treated for GNB VAP, using recommended antibiotic dosage led in most cases to PK/PD targets attainment for aminoglycosides and β-lactams. High creatinine clearance should encourage clinicians to focus on PK/PD issues.
Collapse
Affiliation(s)
- Olivier Pajot
- Victor Dupouy Hospital, Intensive Care Unit, F-95100 Argenteuil, France
- Correspondence: ; Tel.: +33-134232455
| | - Karim Lakhal
- Service d’Anesthésie-Réanimation, Hôpital Laënnec, Centre Hospitalier Universitaire, F-44093 Nantes, France
| | - Jérome Lambert
- Department of Biostatistics and Medical Information, APHP, Saint-Louis Hospital, F-75010 Paris, France
| | - Antoine Gros
- Medical-Surgical Intensive Care Unit, André Mignot Hospital, F-78150 Le Chesnay, France
| | - Cédric Bruel
- Medical and Surgical Intensive Care Unit, Paris Saint-Joseph Hospital Network, F-75014 Paris, France
| | - Thierry Boulain
- Intensive Care Unit, Orleans Regional Hospital, 14 Avenue de L’Hôpital CS 86709, CEDEX 02, F-45067 Orléans, France
| | - Denis Garot
- Service de Médecine Intensive Réanimation, Hôpital Bretonneau, CHU Tours, F-37000 Tours, France
| | - Vincent Das
- Service de Médecine Intensive Réanimation, Centre Hospitalier Intercommunal André Grégoire, F-93100 Montreuil, France
| | - Jean François Timsit
- AP-HP, Bichat Hospital, Medical and Infectious Diseases Intensive Care Unit (MI2), F-75018 Paris, France
| | - Charles Cerf
- Intensive Care Unit, Foch Hospital, F-92150 Suresnes, France
| | - Bertrand Souweine
- CHU Clermont-Ferrand, Service de Réanimation Médicale, F-63000 Clermont-Ferrand, France
| | - Cendrine Chaffaut
- Department of Biostatistics and Medical Information, APHP, Saint-Louis Hospital, F-75010 Paris, France
| | - Hervé Mentec
- Victor Dupouy Hospital, Intensive Care Unit, F-95100 Argenteuil, France
| | - Jean Ralph Zahar
- AP-HP, Hôpital Avicenne, Prévention du Risque Infectieux, GH Paris Seine Saint-Denis, F-93000 Bobigny, France
| | - Jean Paul Mira
- Department of Medical Intensive Care, Cochin University Hospital, F-75014 Paris, France
| | - Vincent Jullien
- Pharmacology Unit, University Sorbonne Paris Nord, Groupe Hospitalier Paris Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris, Hôpital Jean Verdier, F-93140 Bondy, France
| |
Collapse
|
7
|
C/MIC > 4: A Potential Instrument to Predict the Efficacy of Meropenem. Antibiotics (Basel) 2022; 11:antibiotics11050670. [PMID: 35625314 PMCID: PMC9137711 DOI: 10.3390/antibiotics11050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/01/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
This prospective study aimed to explore the determinants of meropenem trough concentration (Ctrough) in patients with bacterial pneumonia and to investigate the association between its concentration and efficacy. From January 2019 to December 2019, patients with pulmonary infections were prospectively enrolled from the intensive care unit. Factors affecting the meropenem trough concentration were analyzed, and a multiple linear regression model was constructed. Logistic regression analyses were used to investigate the relationship between Ctrough and clinical efficacy. A total of 64 patients were enrolled, in whom 210 meropenem concentrations were measured. Of the total, 60.9% (39/64) were considered clinically successful after treatment. Ctrough may increase with increased blood urea nitrogen, albumin, and concomitant antifungal use. By contrast, concentration may decrease with increased endogenous creatinine clearance rate. Six variables, including Ctrough/minimum inhibitory concentration (MIC) > 4, were associated with the efficacy of meropenem. There was an independent correlation between Ctrough/MIC > 4 and efficacy after fully adjusting for confounding factors. Based upon renal function indexes, it is possible to predict changes in meropenem concentration and adjust the dosage precisely and individually. Ctrough/MIC > 4 is a potential instrument to predict successful treatment with meropenem.
Collapse
|