1
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Corleto KA, Strandmo JL, Giles ED. Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals (Basel) 2024; 17:396. [PMID: 38543182 PMCID: PMC10974219 DOI: 10.3390/ph17030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Over the last several decades, a growing body of research has investigated the potential to repurpose the anti-diabetic drug metformin for breast cancer prevention and/or treatment. Observational studies in the early 2000s demonstrated that patients with diabetes taking metformin had decreased cancer risk, providing the first evidence supporting the potential role of metformin as an anti-cancer agent. Despite substantial efforts, two decades later, the exact mechanisms and clinical efficacy of metformin for breast cancer remain ambiguous. Here, we have summarized key findings from studies examining the effect of metformin on breast cancer across the translational spectrum including in vitro, in vivo, and human studies. Importantly, we discuss critical factors that may help explain the significant heterogeneity in study outcomes, highlighting how metformin dose, underlying metabolic health, menopausal status, tumor subtype, membrane transporter expression, diet, and other factors may play a role in modulating metformin's anti-cancer effects. We hope that these insights will help with interpreting data from completed studies, improve the design of future studies, and aid in the identification of patient subsets with breast cancer or at high risk for the disease who are most likely to benefit from metformin treatment.
Collapse
Affiliation(s)
- Karen A. Corleto
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L. Strandmo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
| | - Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Zhao D, Sohouli MH, Rohani P, Fotros D, Velu P, Ziamanesh F, Fatahi S, Shojaie S, Li Y. The effect of metformin on adipokines levels: A systematic review and meta-analysis of randomized-controlled trials. Diabetes Res Clin Pract 2024; 207:111076. [PMID: 38154535 DOI: 10.1016/j.diabres.2023.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Considering the role of adipokine on diseases related to metabolic syndrome and even chronic diseases, it seems necessary to investigate effective interventions on these factors. This study aimed to comprehensively investigate the effects of metformin on adipokines. METHODS A comprehensive search was conducted in five databases using established keywords. The purpose of this search was to uncover controlled studies that have examined the impact of metformin on adipokines, specifically leptin, adiponectin, and resistin. The random-effects model analysis was used to provide pooled weighted mean difference and 95% confidence intervals. RESULTS Forty-nine studies were included in this article. The pooled findings showed that that the administration of metformin significantly decreases leptin (WMD: -3.06 ng/ml, 95 % CI: -3.81, -2.30, P < 0.001) and resistin (WMD: -1.27 µg/mL, 95 % CI: -2.22, -0.31, P = 0.009) levels in different populations compared to the control group. However, no significant effect of this antidiabetic drug on adiponectin levels was reported. The results obtained from the subgroup results in the present study also showed that metformin in people with a BMI greater than 30 kg/m2 compared to a BMI ≤ 30 kg/m2 causes a significant decrease in leptin levels and an increase in adiponectin levels. Also, metformin in lower doses (≤1500 mg/day) and younger people (<30 years) causes a significant increase in adiponectin levels. CONCLUSIONS In general, considering the role of adipokines on metabolic disease and even chronic disease, this drug can be used as a potentially useful drug, especially in obese people, to improve these factors.
Collapse
Affiliation(s)
- Dan Zhao
- Department of stomatology, Chongqing Hospital of People's Armed Police, 400000, China
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt. Ltd., Nagapattinam, Tamil Nadu, India
| | - Fateme Ziamanesh
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yoya Li
- Department of stomatology, Chongqing Hospital of People's Armed Police, 400000, China
| |
Collapse
|
4
|
Liu J, Zhao J, Qiao X. Research Progress of Metformin in the Treatment of Oral Squamous Cell Carcinoma. Endocrinology 2023; 164:bqad139. [PMID: 37738154 DOI: 10.1210/endocr/bqad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a high mortality, posing a great threat to both human physical and mental health. With the advancement of scientific research, a variety of cancer therapies have been used for OSCC treatment. However, the prognosis of OSCC shows no significant improvement. Metformin has been recognized as the first-line drug for the treatment of diabetes, and recent studies have shown that metformin has a remarkable suppressive effect on tumor progression. Metformin can not only affect the energy metabolism of tumor cells but also play an antitumor role by modulating the tumor microenvironment and cancer stem cells. In this review, the molecular mechanism of metformin and its anticancer mechanism in OSCC are summarized. In addition, this article summarizes the side effects of metformin and the future prospects of its application in the treatment of OSCC.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jing Zhao
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
| |
Collapse
|
5
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|