1
|
An Assessment of Occasional Bio-Inequivalence for BCS1 and BCS3 Drugs: What are the Underlying Reasons? J Pharm Sci 2021; 111:124-134. [PMID: 34363838 DOI: 10.1016/j.xphs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Despite having adequate solubility properties, bioequivalence (BE) studies performed on immediate release formulations containing BCS1/3 drugs occasionally fail. By systematically evaluating a set of 17 soluble drugs where unexpected BE failures have been reported and comparing to a set of 29 drugs where no such reports have been documented, a broad assessment of the risk factors leading to BE failure was performed. BE failures for BCS1/3 drugs were predominantly related to changes in Cmax rather than AUC. Cmax changes were typically modest, with minimal clinical significance for most drugs. Overall, drugs with a sharp plasma peak were identified as a key factor in BE failure risk. A new pharmacokinetic term (t½Cmax) is proposed to identify drugs at higher risk due to their peak plasma profile shape. In addition, the analysis revealed that weak acids, and drugs with particularly high gastric solubility are potentially more vulnerable to BE failure, particularly when these features are combined with a sharp Cmax peak. BCS3 drugs, which are often characterised as being more vulnerable to BE failure due to their potential for permeation and transit to be altered, particularly by excipient change, were not in general at greater risk of BE failures. These findings will help to inform how biowaivers may be optimally applied in the future.
Collapse
|
2
|
Li AP. In Vitro Human Cell–Based Experimental Models for the Evaluation of Enteric Metabolism and Drug Interaction Potential of Drugs and Natural Products. Drug Metab Dispos 2020; 48:980-992. [DOI: 10.1124/dmd.120.000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
|
3
|
Petersen AS, Barloese MCJ, Snoer A, Soerensen AMS, Jensen RH. Verapamil and Cluster Headache: Still a Mystery. A Narrative Review of Efficacy, Mechanisms and Perspectives. Headache 2019; 59:1198-1211. [DOI: 10.1111/head.13603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Anja S. Petersen
- Department of Neurology, Danish Headache Center Rigshospitalet‐Glostrup Glostrup Denmark
| | - Mads C. J. Barloese
- Department of Neurology, Danish Headache Center Rigshospitalet‐Glostrup Glostrup Denmark
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging Hvidovre Hospital Hvidovre Denmark
| | - Agneta Snoer
- Department of Neurology, Danish Headache Center Rigshospitalet‐Glostrup Glostrup Denmark
| | - Anne Mette S. Soerensen
- Department of Clinical Pharmacology Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Rigmor H. Jensen
- Department of Neurology, Danish Headache Center Rigshospitalet‐Glostrup Glostrup Denmark
| |
Collapse
|
4
|
Hens B, Van Den Abeele J, Rubbens J, Keirsebilck M, Roelens J, Schreurs C, Verheyen K, Casteels M, Laekeman G, Augustijns P. Evaluation of real-life dosing of oral medicines with respect to fluid and food intake in a Dutch-speaking population. J Clin Pharm Ther 2017; 42:467-474. [DOI: 10.1111/jcpt.12535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Affiliation(s)
- B. Hens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
- College of Pharmacy; University of Michigan; Ann Arbor MI USA
| | | | - J. Rubbens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - M. Keirsebilck
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - J. Roelens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - C. Schreurs
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - K. Verheyen
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - M. Casteels
- Clinical Pharmacology and Pharmacotherapy; KU Leuven, O&N2; Leuven Belgium
| | - G. Laekeman
- Clinical Pharmacology and Pharmacotherapy; KU Leuven, O&N2; Leuven Belgium
| | - P. Augustijns
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| |
Collapse
|
5
|
Cardoso JLC, Lanchote VL, Pereira MPM, Capela JMV, de Moraes NV, Lepera JS. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats. Food Chem Toxicol 2015; 84:99-105. [PMID: 26265240 DOI: 10.1016/j.fct.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/23/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022]
Abstract
Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats.
Collapse
Affiliation(s)
- Juciane Lauren Cavalcanti Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Vera Lucia Lanchote
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Maria Paula Marques Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | - Natália Valadares de Moraes
- Departamento de Princípios Ativos Naturais e Toxicologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Brazil
| | - José Salvador Lepera
- Departamento de Princípios Ativos Naturais e Toxicologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Brazil.
| |
Collapse
|
6
|
Kogure N, Akiyoshi T, Imaoka A, Ohtani H. Prediction of the extent and variation of grapefruit juice-drug interactions from the pharmacokinetic profile in the absence of grapefruit juice. Biopharm Drug Dispos 2014; 35:373-81. [DOI: 10.1002/bdd.1904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/29/2014] [Accepted: 06/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Ayuko Imaoka
- Keio University Faculty of Pharmacy Tokyo; Japan
| | | |
Collapse
|
7
|
Wang J, Xia S, Xue W, Wang D, Sai Y, Liu L, Liu X. A semi-physiologically-based pharmacokinetic model characterizing mechanism-based auto-inhibition to predict stereoselective pharmacokinetics of verapamil and its metabolite norverapamil in human. Eur J Pharm Sci 2013; 50:290-302. [PMID: 23916407 DOI: 10.1016/j.ejps.2013.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/20/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022]
Abstract
Verapamil and its major metabolite norverapamil were identified to be both mechanism-based inhibitors and substrates of CYP3A and reported to have non-linear pharmacokinetics in clinic. Metabolic clearances of verapamil and norverapmil as well as their effects on CYP3A activity were firstly measured in pooled human liver microsomes. The results showed that S-isomers were more preferential to be metabolized than R-isomers for both verapamil and norverapamil, and their inhibitory effects on CYP3A activity were also stereoselective with S-isomers more potent than R-isomers. A semi-physiologically based pharmacokinetic model (semi-PBPK) characterizing mechanism-based auto-inhibition was developed to predict the stereoselective pharmacokinetic profiles of verapamil and norverapamil following single or multiple oral doses. Good simulation was obtained, which indicated that the developed semi-PBPK model can simultaneously predict pharmacokinetic profiles of S-verapamil, R-verapamil, S-norverapamil and R-norverapamil. Contributions of auto-inhibition to verapamil and norverapamil accumulation were also investigated following the 38th oral dose of verapamil sustained-release tablet (240mg once daily). The predicted accumulation ratio was about 1.3-1.5 fold, which was close to the observed data of 1.4-2.1-fold. Finally, the developed semi-PBPK model was further applied to predict drug-drug interactions (DDI) between verapamil and other three CYP3A substrates including midazolam, simvastatin, and cyclosporine A. Successful prediction was also obtained, which indicated that the developed semi-PBPK model incorporating auto-inhibition also showed great advantage on DDI prediction with CYP3A substrates.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Department of Drug Metabolism and Pharmacokinetics, Hutchison Medipharma Ltd., Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Neuhoff S, Yeo KR, Barter Z, Jamei M, Turner DB, Rostami-Hodjegan A. Application of permeability-limited physiologically-based pharmacokinetic models: part II - prediction of P-glycoprotein mediated drug-drug interactions with digoxin. J Pharm Sci 2013; 102:3161-73. [PMID: 23686764 DOI: 10.1002/jps.23607] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/26/2022]
Abstract
Digoxin is the recommended substrate for assessment of P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) in vivo. The overall aim of our study was to investigate the inhibitory potential of both verapamil and norverapamil on the P-gp-mediated efflux of digoxin in both gut and liver. Therefore, a physiologically-based pharmacokinetic (PBPK) model for verapamil and its primary metabolite was developed and validated through the recovery of observed clinical plasma concentration data for both moieties and the reported interaction with midazolam, albeit a cytochrome P450 3A4-mediated DDI. The validated inhibitor model was then used in conjunction with the model developed previously for digoxin. The range of values obtained for the 10 trials indicated that increases in area under the plasma concentration-time curve (AUC) profiles and maximum plasma concentration observed (Cmax ) values of digoxin following administration of verapamil were more comparable with in vivo observations, when P-gp inhibition by the metabolite, norverapamil, was considered as well. The predicted decrease in AUC and Cmax values of digoxin following administration of rifampicin because of P-gp induction was 1.57- (range: 1.42-1.77) and 1.62-fold (range: 1.53-1.70), which were reasonably consistent with observed values of 1.4- and 2.2-fold, respectively. This study demonstrates the application of permeability-limited models of absorption and distribution within a PBPK framework together with relevant in vitro data on transporters to assess the clinical impact of modulated P-gp-mediated efflux by drugs in development.
Collapse
Affiliation(s)
- Sibylle Neuhoff
- Simcyp Limited, Blades Enterprise Centre, Sheffield S2 4SU, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Mertens-Talcott SU, Zadezensky I, De Castro WV, Derendorf H, Butterweck V. Grapefruit-Drug Interactions: Can Interactions With Drugs Be Avoided? J Clin Pharmacol 2013; 46:1390-416. [PMID: 17101740 DOI: 10.1177/0091270006294277] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Grapefruit is rich in flavonoids, which have been demonstrated to have a preventive influence on many chronic diseases, such as cancer and cardiovascular disease. However, since the early 1990s, the potential health benefits of grapefruit have been overshadowed by the possible risk of interactions between drugs and grapefruit and grapefruit juice. Several drugs interacting with grapefruit are known in different drug classes, such as HMG-CoA reductase inhibitors, calcium antagonists, and immunosuppressives. Currently known mechanisms of interaction include the inhibition of cytochrome P450 as a major mechanism, but potential interactions with P-glycoprotein and organic anion transporters have also been reported. This review is designed to provide a comprehensive summary of underlying mechanisms of interaction and human clinical trials performed in the area of grapefruit drug interactions and to point out possible replacements for drugs with a high potential for interactions.
Collapse
Affiliation(s)
- S U Mertens-Talcott
- Department of Pharmaceutics, Center for Food Drug Interaction Research and Education, University of Florida, Gainesville, FL 32610-0494, USA
| | | | | | | | | |
Collapse
|
10
|
Influence of CYP3A5 and MDR1 Genetic Polymorphisms on Urinary 6β-Hydroxycortisol/Cortisol Ratio After Grapefruit Juice Intake in Healthy Chinese. J Clin Pharmacol 2013; 50:775-84. [DOI: 10.1177/0091270009354997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates – An evaluation and case study using GastroPlus™. Eur J Pharm Sci 2012; 47:375-86. [DOI: 10.1016/j.ejps.2012.06.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/11/2012] [Accepted: 06/23/2012] [Indexed: 01/10/2023]
|
12
|
Cheng J, Cheng L, Chen B, Xia G, Gao C, Song H, Bao W, Guo Q, Zhang H, Wang X. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line. Int J Nanomedicine 2012; 7:2843-52. [PMID: 22745547 PMCID: PMC3383324 DOI: 10.2147/ijn.s32065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multidrug resistance is the main obstacle to the efficiency of systemic chemotherapy against hematologic malignancy. This study investigated the reversible effect of the copolymer wogonin and daunorubicin coloaded into Fe(3)O(4) magnetic nanoparticles, and the mechanism potentially involved. METHODS The growth inhibition rate of K562/A02 cells was investigated by MTT assay, and apoptosis of cells and the intracellular daunorubicin concentration were detected by flow cytometry. Distribution of nanoparticles taken up by K562/A02 cells was observed under a transmission electron microscope and demonstrated by Prussian blue staining. The transcription level of MDR1 mRNA and expression of P-glycoprotein were determined by reverse transcriptase polymerase chain reaction and Western blotting assay, respectively. RESULTS The reversible effect of daunorubicin-wogonin magnetic nanoparticles was 8.87-fold that of daunorubicin + wogonin and of daunorubicin magnetic nanoparticles. Transmission electron microscopy and Prussian blue staining revealed that the nanoparticles were located in the endosome vesicles of cytoplasm. Also, the apoptosis rate and accumulation of intracellular daunorubicin in the daunorubicin-wogonin magnetic nanoparticle group were significantly higher than that in the daunorubicin, daunorubicin + wogonin, and daunorubicin magnetic nanoparticle groups. Furthermore, transcription of MDR1 mRNA and expression of P-glycoprotein in K562/A02 cells were significantly downregulated in the daunorubicin-wogonin magnetic nanoparticle group compared with the other groups. CONCLUSION These findings suggest that the remarkable effects of the novel daunorubicin-wogonin magnetic nanoparticle formulation on multidrug resistant K562/A02 leukemia cells would be a promising strategy for overcoming multidrug resistance.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chin AC, Baskin LB. Effect of Herbal Supplement–Drug Interactions on Therapeutic Drug Monitoring. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Rowland Yeo K, Walsky R, Jamei M, Rostami-Hodjegan A, Tucker G. Prediction of time-dependent CYP3A4 drug–drug interactions by physiologically based pharmacokinetic modelling: Impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci 2011; 43:160-73. [DOI: 10.1016/j.ejps.2011.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/05/2011] [Accepted: 04/14/2011] [Indexed: 11/25/2022]
|
15
|
Abstract
Grapefruit juice and grapefruit product consumption have potential health benefits; however, their intake is also associated with interactions with certain drugs, including calcium channel blockers, immunosuppressants and antihistamines. The primary mechanism through which interactions are mediated is mechanism-based intestinal cytochrome P450 3A4 inhibition by furanocoumarins resulting in increased bioavailability of administered medications that are substrates. Grapefruit products have also been associated with interactions with P-glycoprotein (P-gp) and uptake transporters (e.g. organic anion-transporting polypeptides [OATPs]). Polyphenolic compounds such as flavonoids have been proposed as the causative agents of the P-gp and OATP interactions. The mechanisms and magnitudes of the interactions can be influenced by the concentrations of furanocoumarins and flavonoids in the grapefruit product, the volume of juice consumed, and the inherent variability of specific enzymes and transporter components in humans. It is therefore challenging to predict the extent of grapefruit product-drug interactions and to compare available in vitro and in vivo data. The clinical significance of such interactions also depends on the disposition and toxicity profile of the drug being administered. The aim of this review is to outline the mechanisms of grapefruit-drug interactions and present a comprehensive summary of those agents affected and whether they are likely to be of clinical relevance.
Collapse
Affiliation(s)
- Kay Seden
- NIHR Biomedical Research Centre, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK.
| | | | | | | |
Collapse
|
16
|
Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ. The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 2011; 7:267-86. [PMID: 21254874 DOI: 10.1517/17425255.2011.553189] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Since their initial discovery in 1989, grapefruit juice (GFJ)-drug interactions have received extensive interest from the scientific, medical, regulatory and lay communities. Although knowledge regarding the effects of GFJ on drug disposition continues to expand, the list of drugs studied in the clinical setting remains relatively limited. AREAS COVERED This article reviews the in vitro effects of GFJ and its constituents on the activity of CYP enzymes, organic anion-transporting polypeptides (OATPs), P-glycoprotein, esterases and sulfotransferases. The translational applicability of the in vitro findings to the clinical setting is discussed for each drug metabolizing enzyme and transporter. Reported AUC ratios for available GFJ-drug interaction studies are also provided. Relevant investigations were identified by searching the PubMed electronic database from 1989 to 2010. EXPERT OPINION GFJ increases the bioavailability of some orally administered drugs that are metabolized by CYP3A and normally undergo extensive presystemic extraction. In addition, GFJ can decrease the oral absorption of a few drugs that rely on OATPs in the gastrointestinal tract for their uptake. The number of drugs shown to interact with GFJ in vitro is far greater than the number of clinically relevant GFJ-drug interactions. For the majority of patients, complete avoidance of GFJ is unwarranted.
Collapse
Affiliation(s)
- Michael J Hanley
- Tufts University School of Medicine, Program in Pharmacology and Experimental Therapeutics, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
17
|
Zhao LM, He XJ, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of verapamil among healthy Chinese Han ethnic subjects. Br J Clin Pharmacol 2010; 68:395-401. [PMID: 19740397 DOI: 10.1111/j.1365-2125.2009.03467.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS To assess the association between polymorphisms of the ABCB1 gene and the pharmacokinetics of verapamil among healthy Chinese Han ethnic subjects. METHODS Based on polymorphisms of the ABCB1 gene at positions 2677 and 3435, 24 healthy male participants were divided into three groups: 2677GG/3435CC (n = 6), 2677GT/3435CT (n = 12) and 2677TT/3435TT (n = 6). Each subject had received a single oral dose of verapamil (80 mg) under fasting conditions. Multiple blood samples were collected over 24 h, and plasma concentrations of verapamil were determined by HPLC. Pharmacokinetic characteristics were compared between the different genotypic groups. RESULTS The pharmacokinetics parameters of verapamil differed significantly among the three genotypic groups. AUC(last) was significantly lower among individuals with the 2677TT/3435TT (159.5 +/- 79.0 ng ml(-1) h) and 2677GT/3435CT (189.3 +/- 73.1 ng ml(-1) h) genotypes than those with the 2677GG/3435CC genotype (303.1 +/- 83.7 ng ml(-1) h) (P= 0.004 and P= 0.008, respectively). However, the CL/F value was higher among subjects with the 2677TT/3435TT (523.0 +/- 173.7 l h(-1)) genotype than those with the 2677GT/3435CT (452.2 +/- 188.6 l h(-1)) or 2677GG/3435CC (265.4 +/- 72.8 l h(-1)) genotypes. A significant difference was also found between the latter two groups (P= 0.034). In addition, the C(max) tended to be higher among subjects with the 2677GG/3435CC genotype than those with the 2677GT/3435CT or 2677TT/3435TT genotypes (42.2 +/- 3.9 vs 32.2 +/- 16.2 vs 38.1 +/- 13.7 ng ml(-1)). CONCLUSIONS Our study showed for the first time that verapamil pharmacokinetics may be influenced by particular genetic polymorphisms of the ABCB1 gene among healthy Chinese Han ethnic subjects. An individualized dosage regimen design incorporating such information may improve the efficacy of the drug whilst reducing adverse reactions.
Collapse
Affiliation(s)
- Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | | | | | | | | |
Collapse
|
18
|
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 2009; 125:230-48. [PMID: 19951720 DOI: 10.1016/j.pharmthera.2009.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023]
Abstract
The aim of the present paper was to present an overview of the current status of the methods used to predict the magnitude of pharmacokinetic drug-drug interactions (DDIs) which are caused by apparent changes in cytochrome P450 (CYP) activity with an emphasis on a method using in vivo information. In addition, more than a hundred representative CYP substrates, inhibitor and inducer drugs involved in significant pharmacokinetic DDIs were selected from the literature and are listed. Although the magnitude of DDIs has been conventionally predicted based on in vitro experiments, their predictability is restricted occasionally due to several difficulties, including a precise determination of the unbound inhibitor concentrations at the enzyme site and a reliable in vitro measurement of the inhibition constant (K(i)). Alternatively, a simple method has been recently proposed for the prediction of the magnitude of DDIs based on information fully available from in vivo clinical studies. The new in vivo-based method would be applicable to the adjustment of dose regimens in actual pharmacotherapy situations although it requires a prior clinical study for the prediction. In this review, theoretical and quantitative relationships between the in vivo- and the in vitro-based prediction methods are considered. One of the interesting outcomes of the consideration is that the K(i)-normalized dose (dose/in vitro K(i)) of larger than approximately 20L (2-200L, when variability is considered) may be a pragmatic index which predicts significant in vivo DDIs. In the last part of the article, the relevance of the inclusion of the in vivo-based method into the process of new drug development is discussed for good prediction of in vivo DDIs.
Collapse
Affiliation(s)
- Akihiro Hisaka
- Pharmacology and Pharmacokinetics, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
19
|
Fakeye TO, Tijani A, Adebisi O. A survey of the use of herbs among patients attending secondary-level health care facilities in southwestern Nigeria. ACTA ACUST UNITED AC 2008; 7:213-27. [PMID: 18928143 DOI: 10.1080/15228940802152901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was carried out to evaluate the herb usage among patients attending secondary health facilities in Southwestern Nigeria. Data including allergies to drug and herbs, use of social drugs, and herbs and their perceived efficacy to herbs was collected from 265 patients (inpatients n = 65; outpatients n = 200) using structured questionnaire and patients' drug charts. A total of 15.4% of inpatients were found to be using herbs that may be potentially harmful due to drug-drug/drug-herb interactions. Nine percent experienced adverse effects with the use of herbs, whereas 2% experienced adverse reactions on coadministration with prescribed drugs. A high percent of outpatients, 38%, were using alcoholic beverages for extracting the plant materials themselves. The study showed that the use of herbs with drugs is widely practiced among patients attending secondary health care facilities in Nigeria, usually without the doctor or pharmacist's knowledge.
Collapse
Affiliation(s)
- Titilayo Oyelola Fakeye
- Department of Clinical Pharmacy and Pharmacy Administration, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
20
|
Brocks DR. Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 2007; 27:387-406. [PMID: 16944450 DOI: 10.1002/bdd.517] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many marketed drugs are chiral and are administered as the racemate, a 50:50 combination of two enantiomers. Pharmacodynamic and pharmacokinetic differences between enantiomers are well documented. Because of enantioselectivity in pharmacokinetics, results of in vitro pharmacodynamic studies involving enantiomers may differ from those in vivo where pharmacokinetic processes will proceed. With respect to pharmacokinetics, disparate plasma concentration vs time curves of enantiomers may result from the pharmacokinetic processes proceeding at different rates for the two enantiomers. At their foundation, pharmacokinetic processes may be enantioselective at the levels of drug absorption, distribution, metabolism and excretion. In some circumstances, one enantiomer can be chemically or biochemically inverted to its antipode in a unidirectional or bidirectional manner. Genetic consideration such as polymorphic drug metabolism and gender, and patient factors such as age, disease state and concomitant drug intake can all play a role in determining the relative plasma concentrations of the enantiomers of a racemic drug. The use of a nonstereoselective assay method for a racemic compound can lead to difficulties in interpretation of data from, for example, bioequivalence or dose/concentration vs effect assessments. In this review data from a number of representative studies involving pharmacokinetics of chiral drugs are presented and discussed.
Collapse
Affiliation(s)
- Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Fakeye TO, Adegoke AO, Omoyeni OC, Famakinde AA. Effects of water extract ofHibiscus sabdariffa, Linn (Malvaceae) ‘Roselle’ on excretion of a diclofenac formulation. Phytother Res 2006; 21:96-8. [PMID: 17094172 DOI: 10.1002/ptr.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of beverages prepared from the dried calyx of the flowers of Hibiscus sabdariffa on the excretion of diclofenac was investigated using a controlled study in healthy human volunteers. A high pressure liquid chromatographic method was used to analyse the 8 h urine samples collected after the administration of diclofenac with 300 mL (equivalent to 8.18 mg anthocyanins) of the beverage administered daily for 3 days. An unpaired two-tailed t-test was used to analyse for significant difference observed in the amount of diclofenac excreted before and after administration of the beverage. There was a reduction in the amount of diclofenac excreted and the wide variability observed in the control with the water beverage of Hibiscus sabdariffa (p < 0.05). There is an increasing need to counsel patients against the use of plant beverages with drugs.
Collapse
Affiliation(s)
- T O Fakeye
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | | | | | | |
Collapse
|
22
|
Blower P, de Wit R, Goodin S, Aapro M. Drug–drug interactions in oncology: Why are they important and can they be minimized? Crit Rev Oncol Hematol 2005; 55:117-42. [PMID: 15890526 DOI: 10.1016/j.critrevonc.2005.03.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 12/22/2022] Open
Abstract
Adverse drug-drug interactions are a major cause of morbidity and mortality. Cancer patients are at particularly high risk of such interactions because they commonly receive multiple medications, including cytotoxic chemotherapy, hormonal agents and supportive care drugs. In addition, the majority of cancer patients are elderly, and so require medications for co-morbid conditions such as cardiovascular, gastrointestinal, and rheumatological diseases. Furthermore, the age-related decline in hepatic and renal function reduces their ability to metabolize and clear drugs and so increases the potential for toxicity. Not all drug-drug interactions can be predicted, and those that are predictable are not always avoidable. However, increased awareness of the potential for these interactions will allow healthcare providers to minimize the risk by choosing appropriate drugs and also by monitoring for signs of interaction. This review considers the basic principles of drug-drug interactions, and presents specific examples that are relevant to oncology.
Collapse
Affiliation(s)
- Peter Blower
- Biophar Consulting, Poole House, Great Yeldham, Halstead, Essex CO9 4HP, UK.
| | | | | | | |
Collapse
|
23
|
Kim HJ, Choi JS. Effects of naringin on the pharmacokinetics of verapamil and one of its metabolites, norverapamil, in rabbits. Biopharm Drug Dispos 2005; 26:295-300. [PMID: 16013069 DOI: 10.1002/bdd.459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It was reported that verapamil is metabolized via hepatic microsomal cytochrome P450 (CYP) 3A4 and that naringin (a component of grapefruit juice) inhibits CYP3A4 in humans. Hence, after oral administration of verapamil, the total area under the plasma concentration-time curve from time zero to time infinity (AUC) of verapamil and the AUC(verapamil)/AUC(D-617 (a metabolite of verapamil)) ratio were significantly greater after oral grapefruit juice in humans. The aim of this study was to determine whether similar results could be obtained from rabbits. The pharmacokinetics of verapamil and one of its metabolites, norverapamil, were investigated after oral administration of verapamil at a dose of 9 mg/kg without or with oral naringin at a dose of 7.5 mg/kg in rabbits. With naringin, the AUC of verapamil was significantly greater (28.4 versus 18.4 microg min/ml). Although, the AUC values of norverapamil were not significantly different between groups without and with naringin, the AUC(verapamil)/AUC(norverapamil) ratio was considerably greater (1.49 versus 1.11) with naringin. The above data suggested that the metabolism of verapamil and the formation of norverapamil was inhibited by naringin possibly by inhibition of CYP3A in rabbits.
Collapse
Affiliation(s)
- Hyoung J Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | | |
Collapse
|
24
|
Abstract
P-glycoprotein (Pgp) is a 170 kDa phosphorylated glycoprotein encoded by human MDR1 gene. It is responsible for the systemic disposition of numerous structurally and pharmacologically unrelated lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics in many organs, such as the intestine, liver, kidney, and brain. Like cytochrome P450s (CYP3A4), Pgp is vulnerable to inhibition, activation, or induction by herbal constituents. This was demonstrated by using an ATPase assay, purified Pgp protein or intact Pgp-expressing cells, and proper probe substrates and inhibitors. Curcumin, ginsenosides, piperine, some catechins from green tea, and silymarin from milk thistle were found to be inhibitors of Pgp, while some catechins from green tea increased Pgp-mediated drug transport by heterotropic allosteric mechanism, and St. John's wort induced the intestinal expression of Pgp in vitro and in vivo. Some components (e.g., bergamottin and quercetin) from grapefruit juice were reported to modulate Pgp activity. Many of these herbal constituents, in particular flavonoids, were reported to modulate Pgp by directly interacting with the vicinal ATP-binding site, the steroid-binding site, or the substrate-binding site. Some herbal constituents (e.g., hyperforin and kava) were shown to activate pregnane X receptor, an orphan nuclear receptor acting as a key regulator of MDR1 and many other genes. The inhibition of Pgp by herbal constituents may provide a novel approach for reversing multidrug resistance in tumor cells, whereas the stimulation of Pgp expression or activity has implication for chemoprotective enhancement by herbal medicines. Certain natural flavonols (e.g., kaempferol, quercetin, and galangin) are potent stimulators of the Pgp-mediated efflux of 7,12-dimethylbenz(a)-anthracene (a carcinogen). The modulation of Pgp activity and expression by these herb constituents may result in altered absorption and bioavailability of drugs that are Pgp substrates. This is exemplified by increased oral bioavailability of phenytoin and rifampin by piperine and decreased bioavailability of indinavir, tacrolimus, cyclosporine, digoxin, and fexofenadine by coadministered St. John's wort. However, many of these drugs are also substrates of CYP3A4. Thus, the modulation of intestinal Pgp and CYP3A4 represents an important mechanism for many clinically important herb-drug interactions. Further studies are needed to explore the relative role of Pgp and CYP3A4 modulation by herbs and the mechanism for the interplay of these two important proteins in herb-drug interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | |
Collapse
|
25
|
Abstract
The elderly consume a disproportionate amount of prescription and nonprescription medications. Alterations in physiology, polypharmacy, multiple prescribers, and other factors place the elderly population at risk of developing clinically significant drug-drug interactions. The incidence of potential drug-drug interactions increases with increased drug use and are responsible for numerous emergency room and physician visits. Drug interactions have been shown to cause a decline in functional abilities in older people. Drugs can interact to alter the absorption, distribution, metabolism, or excretion of a drug or interact in a synergistic or antagonist fashion altering their pharmacodynamics. Drug interactions are often clinically unrecognized and responsible for increased morbidity in elderly patients. Prudent use of medications and vigilant drug monitoring are essential to avoid drug-drug interactions.
Collapse
Affiliation(s)
- Jeffrey C Delafuente
- Virginia Commonwealth University School of Pharmacy, P.O. Box 980533, 410 N. 12th Street, Room 454, Richmond, VA 23298-0533, USA.
| |
Collapse
|
26
|
Dahan A, Altman H. Food-drug interaction: grapefruit juice augments drug bioavailability--mechanism, extent and relevance. Eur J Clin Nutr 2004; 58:1-9. [PMID: 14679360 DOI: 10.1038/sj.ejcn.1601736] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
More than a decade has passed since it was unintentionally discovered that grapefruit juice interacts with certain drugs. The coadministration of these drugs with grapefruit juice can markedly elevate drug bioavailability, and can alter pharmacokinetic and pharmacodynamic parameters of the drug. The predominant mechanism for this interaction is the inhibition of cytochrome P-450 3A4 in the small intestine, resulting in a significant reduction of drug presystemic metabolism. An additional mechanism is, presumably, the inhibition of P-glycoprotein, a transporter that carries drug from the enterocyte back to the gut lumen, resulting in a further increase in the fraction of drug absorbed. Some calcium channel antagonists, benzodiazepines, HMG-CoA reductase inhibitors and cyclosporine are the most affected drugs. A single exposure to one glass of the juice can usually produce the maximal magnitude of the interaction. The data available so far, concerning this interaction and its clinical implications, are reviewed in this article. It is likely that more information regarding this interaction will accumulate in the future, and awareness of such is necessary for achieving optimal drug therapy.
Collapse
Affiliation(s)
- A Dahan
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
27
|
Molden E. Variability in Cytochrome P450-Mediated Metabolism of Cardiovascular Drugs: Clinical Implications and Practical Attempts to Avoid Potential Problems. ACTA ACUST UNITED AC 2004. [DOI: 10.1159/000076934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Abstract
Today, the lifetime risk of patients aged 55-65 years to receive antihypertensive drugs approaches 60%. Yet, recent trials suggest that hypertension is not adequately controlled in the majority of patients. The prevalence of hypertension increases with advancing age, as does the prevalence of comorbid conditions and the total number of medications taken. Multi-drug therapy, advancing age and comorbid conditions are also key risk factors for adverse drug reactions and drug interactions. In this review, the authors evaluate the most frequently used antihypertensive drugs (diuretics, beta-adrenergic blockers, angiotensin-converting enzyme inhibitors, calcium channel blockers, angiotensin II receptor Type 1 blockers and alpha-adrenergic blockers) with special reference to pharmacodynamic and pharmacokinetic drug interactions. As the spectrum of drugs prescribed is constantly changing, safety yesterday does not imply safety today and safety today does not imply safety tomorrow. Furthermore, therapeutic efficacy should not be neglected over concerns regarding drug interactions. Many patients are at risk of clinically relevant drug interactions involving antihypertensive drugs but, presently, even more patients may be at risk of suffering from the consequences of their inadequately treated hypertension. In this respect, the authors discuss controversial viewpoints on the overall clinical relevance of drug interactions occurring at the level of cytochrome P450 metabolism.
Collapse
Affiliation(s)
- Renke Maas
- Institut für Experimentelle und Klinische Pharmakologie, Universitätsklinikum HamburgEppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
29
|
Choi JS, Burm JP. Pharmacokinetic Interaction between Verapamil and Quercetin in Rabbits. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2004. [DOI: 10.4333/kps.2004.34.1.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Yoon MK, Choi YW. Improved Antigen Delivery Systems with PLGA Microsphere for a Single-Step Immunization. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2004. [DOI: 10.4333/kps.2004.34.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Sagir A, Schmitt M, Dilger K, Häussinger D. Inhibition of cytochrome P450 3A: relevant drug interactions in gastroenterology. Digestion 2004; 68:41-8. [PMID: 12949438 DOI: 10.1159/000073224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome P450 3A (CYP3A) is involved in biotransformation of more than half of all drugs currently available. Drug interactions by inhibition of CYP3A are of major interest in patients receiving combinations of drugs. Some interactions with CYP3A inhibitors also involve inhibition of the multidrug export pump, P-glycoprotein. An increasing number of adverse drug reactions might be avoided on the basis of knowledge about CYP3A substrates and inhibitors. This article summarizes some examples of such interactions relevant to gastroenterologists. Serious cases by coadministration of CYP3A inhibitors resulting in acute hepatitis, hypotension, rhabdomyolyis, torsade de pointes, sedation, or ergotism are presented: interactions with azole antifungals (ketoconazole, itraconazole, fluconazole), HIV protease inhibitors (ritonavir, indinavir, saquinavir, nelfinavir), macrolide antibiotics (clarithromycin, erythromycin), and grapefruit juice. In addition, 1 case is reported who presented the highest trough levels of the CYP3A substrate budesonide in serum ever measured. Practitioners have to be aware of the high potential of metabolic drug interactions when they prescribe a CYP3A inhibitor. It is wise to check carefully comedication in patients complaining of side effects with substrates of CYP3A.
Collapse
Affiliation(s)
- A Sagir
- Klinik für Gastroenterologie, Hepatologie und Infektiologie des Universitätsklinikums Düsseldorf, Deutschland
| | | | | | | |
Collapse
|
32
|
Abdel-Rahman SM, Kauffman RE. THEINTEGRATION OFPHARMACOKINETICS ANDPHARMACODYNAMICS: Understanding Dose-Response. Annu Rev Pharmacol Toxicol 2004; 44:111-36. [PMID: 14744241 DOI: 10.1146/annurev.pharmtox.44.101802.121347] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic (PK) and pharmacodynamic (PD) studies have proven to be powerful and instructive tools, particularly in elucidating important aspects of human pharmacology. Nevertheless, they remain imperfect tools in that they only allow researchers to indirectly extrapolate, through computational modeling, the dynamic processes of drug action. Furthermore, neither tool alone provides a complete nor necessarily relevant picture of drug action. This review explores the utility and applications of PK and PD in the study of drugs, provides examples of lessons learned from their application to studies of human pharmacology, points out some of their limitations, and advances the thesis that these tools ideally should be employed together in an integrated approach. As we continue to apply these tools across the continuum of age and disease, they provide a powerful means to enhance our understanding of drug action, drug interactions, and intrinsic host factors that influence pharmacologic response.
Collapse
Affiliation(s)
- Susan M Abdel-Rahman
- Division of Pediatric Clinical Pharmacology and Medical Toxicology, The Children's Mercy Hospital and Clinics, Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | |
Collapse
|
33
|
Sistla A, Sunga A, Phung K, Koparkar A, Shenoy N. Powder‐in‐Bottle Formulation of SU011248. Enabling Rapid Progression into Human Clinical Trials. Drug Dev Ind Pharm 2004; 30:19-25. [PMID: 15000426 DOI: 10.1081/ddc-120027507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
SU011248 is an oral, multitargeted receptor tyrosine kinase inhibitor (anti PDGFR, VEGFR, Kit, and Flt3) for the treatment of solid tumors. The powder-in-bottle (PIB) approach was used to accelerate development and introduction into Phase I clinical trials. This approach consists of extemporaneously compounding the active pharmaceutical ingredient (API) into a solution or a suspension in the clinic prior to oral administration. The development consisted of physico-chemical assessment, constitution fluid selection, weighing and dosing validation, and stability evaluation of API, before and after constitution with the fluid. Of the oral liquids evaluated, apple juice was selected as the constitution fluid. Particle size of SU011248 had an impact on the weighing validation and the dissolution time. Particle size specifications of breadth d90 < 180 microm and length d90 < 750 microm were set to achieve pharmaceutical acceptability. Dosing validation studies showed complete recovery of SU011248 from the bottle over a dose range of 10 to 2200 mg. SU011248 is stable as the solid API. Following constitution with apple juice, the product is stable through the predicted duration of compounding and dosing at the clinical site. This approach provided a high degree of dosing flexibility during the initial phase of clinical trials. Additionally, the PIB approach reduced the time and API required for clinical development and supplies to < 2 months and < 100 gm, respectively.
Collapse
Affiliation(s)
- Anand Sistla
- Sugen Inc. (a Pharmacia Company), S. San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Grapefruit juice can alter oral drug pharmacokinetics by different mechanisms. Irreversible inactivation of intestinal cytochrome P450 (CYP) 3A4 is produced by commercial grapefruit juice given as a single normal amount (e.g. 200-300 mL) or by whole fresh fruit segments. As a result, presystemic metabolism is reduced and oral drug bioavailability increased. Enhanced oral drug bioavailability can occur 24 hours after juice consumption. Inhibition of P-glycoprotein (P-gp) is a possible mechanism that increases oral drug bioavailability by reducing intestinal and/or hepatic efflux transport. Recently, inhibition of organic anion transporting polypeptides by grapefruit juice was observed in vitro; intestinal uptake transport appeared decreased as oral drug bioavailability was reduced. Numerous medications used in the prevention or treatment of coronary artery disease and its complications have been observed or are predicted to interact with grapefruit juice. Such interactions may increase the risk of rhabdomyolysis when dyslipidemia is treated with the HMG-CoA reductase inhibitors atorvastatin, lovastatin, or simvastatin. Potential alternative agents are pravastatin, fluvastatin, or rosuvastatin. Such interactions might also cause excessive vasodilatation when hypertension is managed with the dihydropyridines felodipine, nicardipine, nifedipine, nisoldipine, or nitrendipine. An alternative agent could be amlodipine. In contrast, the therapeutic effect of the angiotensin II type 1 receptor antagonist losartan may be reduced by grapefruit juice. Grapefruit juice interacting with the antidiabetic agent repaglinide may cause hypoglycemia, and interaction with the appetite suppressant sibutramine may cause elevated BP and HR. In angina pectoris, administration of grapefruit juice could result in atrioventricular conduction disorders with verapamil or attenuated antiplatelet activity with clopidrogel. Grapefruit juice may enhance drug toxicity for antiarrhythmic agents such as amiodarone, quinidine, disopyramide, or propafenone, and for the congestive heart failure drug, carvediol. Some drugs for the treatment of peripheral or central vascular disease also have the potential to interact with grapefruit juice. Interaction with sildenafil, tadalafil, or vardenafil for erectile dysfunction, may cause serious systemic vasodilatation especially when combined with a nitrate. Interaction between ergotamine for migraine and grapefruit juice may cause gangrene or stroke. In stroke, interaction with nimodipine may cause systemic hypotension. If a drug has low inherent oral bioavailability from presystemic metabolism by CYP3A4 or efflux transport by P-gp and the potential to produce serious overdose toxicity, avoidance of grapefruit juice entirely during pharmacotherapy appears mandatory. Although altered drug response is variable among individuals, the outcome is difficult to predict and avoiding the combination will guarantee toxicity is prevented. The elderly are at particular risk, as they are often prescribed medications and frequently consume grapefruit juice.
Collapse
Affiliation(s)
- David G Bailey
- Department of Medicine and Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.
| | | |
Collapse
|
35
|
Le Goff-Klein N, Koffel JC, Jung L, Ubeaud G. In vitro inhibition of simvastatin metabolism, a HMG-CoA reductase inhibitor in human and rat liver by bergamottin, a component of grapefruit juice. Eur J Pharm Sci 2003; 18:31-5. [PMID: 12554070 DOI: 10.1016/s0928-0987(02)00222-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Grapefruit juice is responsible for many drug interactions but the exact components involved in this interaction are not precisely known. Flavonoids and furocoumarin derivatives such as naringenin and bergamottin, respectively, could be involved in the inhibition of drug metabolism. The objective of this paper is to investigate in vitro the possible metabolic hepatic interaction between simvastatin (SV) and bergamottin (BG) and thus to compare its effects to those of naringenin (NRG) the aglycone form of naringin (NR) (a flavonoid present in grapefruit juice). In human and rat microsomes and in rat hepatocytes, BG was found to be a mixed type inhibitor of SV metabolism. In rat liver microsomes the K(i) value of BG (K(i)=174+/-36 microM) is higher than the K(i) value of NRG (K(i)=29+/-11 microM). However, in human liver microsomes the K(i) values are similar in BG and NRG (K(i)=34+/-5 microM and 29+/-11 microM, respectively). Moreover, it seems that there is an interspecies difference between human and rat hepatic metabolism of SV involving different isoenzymes of CYP 450. In conclusion, our study shows that BG inhibits SV metabolism. BG and NRG could therefore be applied as markers in food-drug interaction studies in order to adjust posology.
Collapse
Affiliation(s)
- Nathalie Le Goff-Klein
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
36
|
Barth A, Müller D, Dürrling K. In vitro investigation of a standardized dried extract of Citrullus colocynthis on liver toxicity in adult rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2002; 54:223-30. [PMID: 12484560 DOI: 10.1078/0940-2993-00252] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A standardized extract of Citrullus colocynthis used as an oral natural laxative in folk medicine was tested for its influence on liver function parameters in vitro. Cytochrome P450 (CYP) dependent production of reactive oxygen species (ROS) under the influence of Citrullus colocynthis extract was investigated by means of stimulated lipid peroxidation (LPO), H2O2 formation and amplified chemiluminescence in rat liver microsomes. In rat liver 9000 x g supernatants 4 monooxygenase reactions mediated by different CYP forms were measured. Putative hepatotoxic effects of Citrullus colocynthis extract were measured by means of potassium and GSH concentrations in and LDH leakage from precision-cut rat liver slices. For possible hepatoprotective effects the influence of the extract on carbon tetrachloride-induced changes of these parameters was investigated. Citrullus colocynthis extract in concentrations higher than 10 microg/ml incubation mixture proved to inhibit lipid peroxidation and ROS-production as well as CYP1A-, 2B- and 3A-dependent reactions with typical substrates. In contrast, H2O2 production was not reduced under the influence of the extract, a slight but significant increase was seen. Citrullus colocynthis extract was found to be free of hepatotoxic effects in concentrations up to 100 microg/ml incubation mixture when liver slices were incubated in William's medium E for 22 hours. All viability parameters used were not influenced by the extract of Citrullus colocynthis. Carbon tetrachloride induced hepatotoxicity could not be prevented or alleviated. Moreover, the damage was sometimes enhanced by higher extract concentrations.
Collapse
Affiliation(s)
- Astrid Barth
- Institute of Pharmacology and Toxicology, Friedrich-Schiller-University Jena, Germany.
| | | | | |
Collapse
|
37
|
Mehvar R, Brocks DR, Vakily M. Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin Pharmacokinet 2002; 41:533-58. [PMID: 12102640 DOI: 10.2165/00003088-200241080-00001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many antiarrhythmic drugs introduced into the market during the past three decades have a chiral centre in their structure and are marketed as racemates. Most of these agents, including disopyramide, encainide, flecainide, mexiletine, propafenone and tocainide, belong to class I antiarrhythmics, whereas verapamil is a class IV antiarrhythmic agent. Except for encainide and flecainide, there is substantial stereoselectivity in one or more of the pharmacological actions of chiral antiarrhythmics, with the activity of enantiomers differing by as much as 100-fold or more for some of these drugs. The absorption of chiral antiarrhythmics appears to be nonstereoselective. However, their distribution, metabolism and renal excretion usually favour one enantiomer versus the other. In terms of distribution, plasma protein binding is stereoselective for most of these drugs, resulting in up to two-fold differences between the enantiomers in their unbound fractions in plasma and volume of distribution. For disopyramide, stereoselective plasma protein binding is further complicated by nonlinearity in the binding at therapeutic concentrations. Hepatic metabolism plays a significant role in the elimination of these antiarrhythmics, accounting for >90% of the elimination of mexiletine, propafenone and verapamil. Additionally, in most cases, significant stereoselectivity is observed in different pathways of metabolism of these drugs. For some drugs, such as propafenone and verapamil, the stereoselectivity in metabolism is further complicated by nonlinearity in one or more of the metabolic pathways. Further, the metabolism of a number of chiral antiarrhythmics, such as mexiletine, propafenone, encainide and flecainide, cosegregates with debrisoquine/sparteine hydroxylation phenotype. Therefore, it is not surprising that a wide interindividual variability exists in the metabolism of these drugs. Excretion of the unchanged enantiomers in urine is an important pathway for the elimination of disopyramide, flecainide and tocainide. The renal clearances of both disopyramide and flecainide exceed the filtration rate for these drugs, suggesting the involvement of active tubular secretion. However, the stereoselectivity in the renal clearance of these drugs, if any, is minimal. Similarly, there is no stereoselectivity in the renal clearance of tocainide, a drug that undergoes tubular reabsorption in addition to glomerular filtration. Overall, substantial stereoselectivity has been observed in both the pharmacokinetics and pharmacodynamics of chiral antiarrhythmic agents. Because the effects of these drugs are related to their plasma concentrations, this information is of special clinical relevance.
Collapse
Affiliation(s)
- Reza Mehvar
- School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
38
|
Zou L, Harkey MR, Henderson GL. Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci 2002; 71:1579-89. [PMID: 12127912 DOI: 10.1016/s0024-3205(02)01913-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit metabolism of surrogate substrates by 50%) was estimated and compared with IC50's for the positive control inhibitory drugs furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole. Constituents of Ginkgo biloba (ginkgolic acids I and II), kava (desmethoxyyangonin, dihydromethysticin, and methysticin), garlic (allicin), evening primrose oil (cis-linoleic acid), and St. John's wort (hyperforin and quercetin) significantly inhibited one or more of the cDNA human P450 isoforms at concentrations of less than 10 uM. Some of the test compounds (components of Ginkgo biloba, kava, and St. John's wort) were more potent inhibitors of the isoforms 1A2, 2C19, and 2C19 than the positive controls used in each assay (furafylline, sulfaphenazole, and tranylcypromine, respectively), which are known to produce clinically significant drug interactions. The enzyme most sensitive to the inhibitory of effects of these compounds was CYP2C19, while the isoform least effected was CYP2D6. These data suggest that herbal products containing evening primrose oil, Ginkgo biloba, kava, and St. John's Wort could potentially inhibit the metabolism of co-administered medications whose primary route of elimination is via cytochrome P450.
Collapse
Affiliation(s)
- L Zou
- Department of Medical Pharmacology and Toxicology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
39
|
Li Z, Vachharajani NN, Krishna R. On the assessment of effects of food on the pharmacokinetics of drugs in early development. Biopharm Drug Dispos 2002; 23:165-71. [PMID: 12015791 DOI: 10.1002/bdd.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The impact of food on the pharmacokinetics of a drug has important implications in drug development. This commentary is aimed at addressing two key challenges, developability of drugs whose pharmacokinetics are severely influenced by food, and the need for addressing the effects of fruit juice ingredients which modulate metabolic/efflux properties of a compound. Perspectives on the value in predicting food-drug interactions during preclinical development, timing of clinical food-drug interaction studies, and implications of food effects are presented herein.
Collapse
Affiliation(s)
- Zhihong Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
40
|
Desta Z, Kivistö KT, Lilja JJ, Backman JT, Soukhova N, Neuvonen PJ, Flockhart DA. Stereoselective pharmacokinetics of cisapride in healthy volunteers and the effect of repeated administration of grapefruit juice. Br J Clin Pharmacol 2001; 52:399-407. [PMID: 11678783 PMCID: PMC2014582 DOI: 10.1046/j.0306-5251.2001.01473.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS To determine whether the pharmacokinetics of cisapride and its interaction with grapefruit juice are stereoselective. METHODS The study was a randomized, two-phase cross over design with a washout period of 2 weeks. Ten healthy volunteers were pretreated with either water or 200 ml double strength grapefruit juice three times a day for 2 days. On the 3rd each subject ingested a single 10 mg dose of rac-cisapride tablet. Double strength grapefruit juice (200 ml) or water was administered during cisapride dosing and 0.5 and 1.5 h thereafter. Blood samples were collected before and for 32 h after cisapride administration. Plasma concentrations of cisapride enantiomers were measured by a chiral h.p.l.c. method. A standard 12-lead ECG was recorded before cisapride administration (baseline) and 2, 5, 8, and 12 h later. RESULTS This study showed that cisapride pharmacokinetics are stereoselective. In control (water treated) subjects, the mean Cmax (30 +/- 13.6 ng ml-1; P = 0.0008) and AUC(0, infinity) (201 +/- 161 ng ml-1 h; P = 0.029) of (-)-cisapride were significantly higher than the Cmax (10.5 +/- 3.4 ng ml-1) and AUC(0, infinity) (70 +/- 51.5 ng ml-1 h) of (+)-cisapride. There was no marked difference in elimination half-life between (-)-cisapride (4.7 +/- 2.7 h) and (+)-cisapride (4.8 +/- 3 h). Compared with the water treated group, grapefruit juice significantly increased the mean Cmax of (-)-cisapride from 30 +/- 13.6-55.5 +/- 18 ng ml-1 (95% CI on mean difference, -33, -17; P = 0.00005) and of (+)-cisapride from 10.5 +/- 3.4 to 18.4 +/- 6.2 ng ml-1 (95% CI on mean difference, -11.8, -3.9, P = 0.00015). The mean AUC(0, infinity) of (-)-cisapride was increased from 201 +/- 161 to 521.6 +/- 303 ng ml-1 h (95% CI on mean difference, -439, -202; P = 0.0002) and that of (+)-cisapride from 70 +/- 51.5 to 170 +/- 91 ng ml-1 h (95% CI on mean difference, -143, -53; P = 0.0005). The tmax was also significantly increased for both enantiomers (from 1.35 to 2.8 h for (-)-cisapride and from 1.75 to 2.9 h for (+)-cisapride in the control and grapefruit juice group, respectively; P < 0.05). The t(1/2) of (-)-cisapride was significantly increased by grapefruit juice, while this change did not reach significant level for (+)-cisapride. The proportion of pharmacokinetic changes brought about by grapefruit juice was similar for both enantiomers, suggesting non-stereoselective interaction. We found no significant difference in mean QTc intervals between the water and grapefruit juice treated groups. CONCLUSIONS The pharmacokinetics of cisapride is stereoselective. Grapefruit juice elevates plasma concentrations of both (-)- and (+)-cisapride, probably through inhibition of CYP3A in the intestine. At present, there are no data on whether the enantiomers exhibit stereoselective pharmacodynamic actions. If they do, determination of plasma concentrations of the individual enantiomers as opposed to those of racemic cisapride may better predict the degree of drug interaction, cardiac safety and prokinetic efficacy of cisapride.
Collapse
Affiliation(s)
- Z Desta
- Division of Clinical Pharmacology, Georgetown University Medical Center, Washington DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|