1
|
Petrič M, Vidović A, Dolinar K, Miš K, Chibalin AV, Pirkmajer S. Phosphorylation of Na +,K +-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells. J Membr Biol 2021; 254:531-548. [PMID: 34748042 PMCID: PMC8595181 DOI: 10.1007/s00232-021-00209-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100–1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.
Collapse
Affiliation(s)
- Metka Petrič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- National Research Tomsk State University, Tomsk, Russia. .,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Nepal N, Arthur S, Sundaram U. Unique Regulation of Na-K-ATPase during Growth and Maturation of Intestinal Epithelial Cells. Cells 2019; 8:cells8060593. [PMID: 31208048 PMCID: PMC6628168 DOI: 10.3390/cells8060593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
Na-K-ATPase on the basolateral membrane provides the favorable transcellular Na gradient for the proper functioning of Na-dependent nutrient co-transporters on the brush border membrane (BBM) of enterocytes. As cells mature from crypts to villus, Na-K-ATPase activity doubles, to accommodate for the increased BBM Na-dependent nutrient absorption. However, the mechanism of increased Na-K-ATPase activity during the maturation of enterocytes is not known. Therefore, this study aimed to determine the mechanisms involved in the functional transition of Na-K-ATPase during the maturation of crypts to villus cells. Na-K-ATPase activity gradually increased as IEC-18 cells matured in vitro from day 0 (crypts) through day 4 (villus) of post-confluence. mRNA abundance and Western blot studies showed no change in the levels of Na-K-ATPase subunits α1 and β1 from 0 to 4 days post-confluent cells. However, Na-K-ATPase α1 phosphorylation levels on serine and tyrosine, but not threonine, residues gradually increased. These data indicate that as enterocytes mature from crypt-like to villus-like in culture, the functional activity of Na-K-ATPase increases secondary to altered affinity of the α1 subunit to extracellular K+, in order to accommodate the functional preference of the intestinal cell type. This altered affinity is likely due to increased phosphorylation of the α1 subunit, specifically at serine and tyrosine residues.
Collapse
Affiliation(s)
- Niraj Nepal
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| |
Collapse
|
3
|
Regulation of Neuronal Na +/K +-ATPase by Specific Protein Kinases and Protein Phosphatases. J Neurosci 2019; 39:5440-5451. [PMID: 31085608 DOI: 10.1523/jneurosci.0265-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasmalemma of living cells. Numerous studies in non-neuronal tissues have shown that this transport mechanism is reversibly regulated by phosphorylation/dephosphorylation of the catalytic α subunit and/or associated proteins. In neurons, Na+/K+ transport by NKA is essential for almost all neuronal operations, consuming up to two-thirds of the neuron's energy expenditure. However, little is known about its cellular regulatory mechanisms. Here we have used an electrophysiological approach to monitor NKA transport activity in male rat hippocampal neurons in situ We report that this activity is regulated by a balance between serine/threonine phosphorylation and dephosphorylation. Phosphorylation by the protein kinases PKG and PKC inhibits NKA activity, whereas dephosphorylation by the protein phosphatases PP-1 and PP-2B (calcineurin) reverses this effect. Given that these kinases and phosphatases serve as downstream effectors in key neuronal signaling pathways, they may mediate the coupling of primary messengers, such as neurotransmitters, hormones, and growth factors, to the NKAs, through which multiple brain functions can be regulated or dysregulated.SIGNIFICANCE STATEMENT The Na+/K+-ATPase (NKA), known as the "Na+ pump," is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasma membrane of living cells. In neurons, as in most types of cells, the NKA generates the negative resting membrane potential, which is the basis for almost all aspects of cellular function. Here we used an electrophysiological approach to monitor physiological NKA transport activity in single hippocampal pyramidal cells in situ We have found that neuronal NKA activity is oppositely regulated by phosphorylation and dephosphorylation, and we have identified the main protein kinases and phosphatases mediating this regulation. This fundamental form of NKA regulation likely plays a role in multiple brain functions.
Collapse
|
4
|
Sütt S, Altpere A, Reimets R, Visnapuu T, Loomets M, Raud S, Salum T, Mahlapuu R, Kairane C, Zilmer M, Vasar E. Wfs1-deficient animals have brain-region-specific changes of Na+, K+-ATPase activity and mRNA expression of α1 and β1 subunits. J Neurosci Res 2014; 93:530-7. [PMID: 25385034 DOI: 10.1002/jnr.23508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Mutations in the WFS1 gene, which encodes the endoplasmic reticulum (ER) glycoprotein, cause Wolfram syndrome, a disease characterized by juvenile-onset diabetes mellitus, optic atrophy, deafness, and different psychiatric abnormalities. Loss of neuronal cells and pancreatic β-cells in Wolfram syndrome patients is probably related to the dysfunction of ER stress regulation, which leads to cell apoptosis. The present study shows that Wfs1-deficient mice have brain-region-specific changes in Na(+),K(+)-ATPase activity and in the expression of the α1 and β1 subunits. We found a significant (1.6-fold) increase of Na-pump activity and β1 subunit mRNA expression in mice lacking the Wfs1 gene in the temporal lobe compared with their wild-type littermates. By contrast, exposure of mice to the elevated plus maze (EPM) model of anxiety decreased Na-pump activity 1.3-fold in the midbrain and dorsal striatum and 2.0-fold in the ventral striatum of homozygous animals compared with the nonexposed group. Na-pump α1 -subunit mRNA was significantly decreased in the dorsal striatum and midbrain of Wfs1-deficient homozygous animals compared with wild-type littermates. In the temporal lobe, an increase in the activity of the Na-pump is probably related to increased anxiety established in Wfs1-deficient mice, whereas the blunted dopamine function in the forebrain of Wfs1-deficient mice may be associated with a decrease of Na-pump activity in the dorsal and ventral striatum and in the midbrain after exposure to the EPM.
Collapse
Affiliation(s)
- S Sütt
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence for Translational Medicine, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shahidullah M, Mandal A, Beimgraben C, Delamere NA. Hyposmotic stress causes ATP release and stimulates Na,K-ATPase activity in porcine lens. J Cell Physiol 2012; 227:1428-37. [PMID: 21618533 DOI: 10.1002/jcp.22858] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purinergic receptors in lens epithelium suggest lens function can be altered by chemical signals from aqueous humor or the lens itself. Here we show release of ATP by intact porcine lenses exposed to hyposmotic solution (200 mOsm). 18α-glycyrrhetinic acid (AGA) added together with probenecid eliminated the ATP increase. N-ethylmaleimide (200 µM), an exocytotic inhibitor, had no significant effect on ATP increase. Lenses exposed to hyposmotic solution displayed a ~400% increase of propidium iodide (PI) entry into the epithelium. The increased ability of PI (MW 668) to enter the epithelium suggests possible opening of connexin and/or pannexin hemichannels. This is consistent with detection of connexin 43, connexin 50, and pannexin 1 in the epithelium and the ability of AGA + probenecid to prevent ATP release. Na,K-ATPase activity doubled in the epithelium of lenses exposed to hyposmotic solution. The increase of Na,K-ATPase activity did not occur when apyrase was used to prevent extracellular ATP accumulation or when AGA + probenecid prevented ATP release. The increase of Na,K-ATPase activity was inhibited by the purinergic P2 antagonist reactive blue-2 and pertussis toxin, a G-protein inhibitor, but not by the P2X antagonist PPADS. Hyposmotic solution activated Src family kinase (SFK) in the epithelium, judged by Western blot. The SFK inhibitor PP2 abolished both SFK activation and the Na,K-ATPase activity increase. In summary, hyposmotic shock-induced ATP release is sufficient to activate a purinergic receptor- and SFK-dependent mechanism that stimulates Na,K-ATPase activity. The responses might signify an autoregulatory loop initiated by mechanical stress or osmotic swelling.
Collapse
Affiliation(s)
- M Shahidullah
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
6
|
Mandal A, Shahidullah M, Beimgraben C, Delamere NA. The effect of endothelin-1 on Src-family tyrosine kinases and Na,K-ATPase activity in porcine lens epithelium. J Cell Physiol 2011; 226:2555-61. [PMID: 21792912 DOI: 10.1002/jcp.22602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies show Src family kinase (SFK) activation is involved in a response that stimulates Na,K-ATPase. Here, we tested whether SFK activation is involved in the Na,K-ATPase response to endothelin-1 (ET-1). Intact porcine lenses were exposed to 100 nM ET-1 for 5-30 min. Then, the epithelium was removed and used for Na,K-ATPase activity measurement and Western blot analysis of SFK activation. Na,K-ATPase activity was reduced by ∼30% in lenses exposed to ET-1 for 15 min. The response was abolished by the SFK inhibitor PP2 or the ET receptor antagonist, PD145065. Activation of a ∼61 kDa SFK was evident from an increase in Y416 phosphorylation, which reached a maximum at 15 min ET-1 treatment, and a decrease in Y527 phosphorylation. PP2 prevented SFK activation. Since Fyn, Src, Hck, and Yes may contribute to the observed 61 kDa band, these SFKs were isolated by immunoprecipitation and analyzed. Based on Y416 phosphorylation, ET-1 appeared to activate Fyn, while Src and Hck were inhibited and Yes was unaltered. ET-1 requires SFK activation to cause Na,K-ATPase inhibition. ET-1 elicits a different pattern of SFK activation from that reported earlier for purinergic agonists that stimulate Na,K-ATPase activity and activate Src. In the ET-1 response Src is inhibited and Fyn is activated. The findings suggest SFK phosphorylation is involved in a regulatory mechanism for Na,K-ATPase. Knowing this may help us understand drug actions on Na,K-ATPase. Faulty regulation of Na,K-ATPase in the lens could contribute to cataract formation since an abnormal sodium content is associated with lens opacification.
Collapse
Affiliation(s)
- A Mandal
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
7
|
Soltoff SP, Asara JM, Hedden L. Regulation and identification of Na,K-ATPase alpha1 subunit phosphorylation in rat parotid acinar cells. J Biol Chem 2010; 285:36330-8. [PMID: 20841356 DOI: 10.1074/jbc.m110.136465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The stimulation of fluid and electrolyte secretion in salivary cells results in ionic changes that promote rapid increases in the activity of the Na,K-ATPase. In many cell systems, there are conflicting findings concerning the regulation of the phosphorylation of the Na,K-ATPase α subunit, which is the catalytic moiety. Initially, we investigated the phosphorylation sites on the α1 subunit in native rat parotid acinar cells using tandem mass spectrometry and identified two new phosphorylation sites (Ser(222), Ser(407)), three sites (Ser(217), Tyr(260), Ser(47)) previously found from large scale proteomic screens, and two sites (Ser(23), Ser(16)) known to be phosphorylated by PKC. Subsequently, we used phospho-specific antibodies to examine the regulation of phosphorylation on Ser(23) and Ser(16) and measured changes in ERK phosphorylation in parallel. The G-protein-coupled muscarinic receptor mimetic carbachol, the phorbol ester phorbol 12-myristate 13-acetate, the Ca(2+) ionophore ionomycin, and the serine/threonine phosphatase inhibitor calyculin A increased Ser(23) α1 phosphorylation. Inhibition of classical PKC proteins blocked carbachol-stimulated Ser(23) α1 subunit phosphorylation but not ERK phosphorylation, which was blocked by an inhibitor of novel PKC proteins. The carbachol-initiated phosphorylation of Ser(23) α1 subunit was not modified by ERK or PKA activity. The Na,K-ATPase inhibitor ouabain reduced and enhanced the carbachol-promoted phosphorylation of Ser(23) and Ser(16), respectively, the latter because ouabain itself increased Ser(16) phosphorylation; thus, both sites display conformational-dependent phosphorylation changes. Ouabain-initiated phosphorylation of Ser(16) α1 was not blocked by PKC inhibitors, unlike carbachol- or phorbol 12-myristate 13-acetate-initiated phosphorylations, suggesting that this site was also a substrate for a kinase other than PKC.
Collapse
Affiliation(s)
- Stephen P Soltoff
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|