1
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
2
|
Sopjani M, Millaku L, Nebija D, Emini M, Rifati-Nixha A, Dërmaku-Sopjani M. The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Curr Med Chem 2020; 26:6817-6829. [PMID: 30306852 DOI: 10.2174/0929867325666181009122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Lulzim Millaku
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | - Dashnor Nebija
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Merita Emini
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Arleta Rifati-Nixha
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | | |
Collapse
|
3
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
5
|
Bertoldo MJ, Guibert E, Faure M, Ramé C, Foretz M, Viollet B, Dupont J, Froment P. Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS One 2015; 10:e0119680. [PMID: 25767884 PMCID: PMC4359026 DOI: 10.1371/journal.pone.0119680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK), an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO) female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK) involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues). Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.
Collapse
Affiliation(s)
- Michael J. Bertoldo
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
- School of Women’s and Children’s Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, NSW, Australia
| | - Edith Guibert
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Melanie Faure
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Christelle Ramé
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Dupont
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Pascal Froment
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| |
Collapse
|
6
|
Dërmaku-Sopjani M, Abazi S, Faggio C, Kolgeci J, Sopjani M. AMPK-sensitive cellular transport. J Biochem 2014; 155:147-58. [PMID: 24440827 DOI: 10.1093/jb/mvu002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The energy sensing AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance through stimulating catabolic ATP-generating and suppressing anabolic ATP-consuming pathways thereby helping cells survive during energy depletion. The kinase has previously been reported to be either directly or indirectly involved in the regulation of several carriers, channels and pumps of high significance in cellular physiology. Thus AMPK provides a necessary link between cellular energy metabolism and cellular transport activity. Better understanding of the AMPK role in cellular transport offers a potential for improved therapies in various human diseases and disorders. In this review, we discuss recent advances in understanding the role and function of AMPK in transport regulation under physiological and pathological states.
Collapse
Affiliation(s)
- Miribane Dërmaku-Sopjani
- Faculty of Medicine, University of Prishtina, Str. Bulevardi i Dëshmorëve, p.n. 10 000 Prishtina, Kosova; Department of Chemistry, University of Prishtina, Str. 'Nëna Terezë' p.n. 10 000 Prishtina, Kosova; Department of Chemistry, University of Tirana, Tirana, Albania; and Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S.Agata-Messina, Italy
| | | | | | | | | |
Collapse
|
7
|
Lang F, Föller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin) 2013; 8:20-8. [PMID: 24366036 DOI: 10.4161/chan.27423] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K(+) channels, Na(+) channels, Ca(2+) release activated Ca(2+) channels, Cl(-) channels, gap junctional channels, glucose carriers, Na(+)/H(+)-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na(+)/Ca(2+)-exchanger, H(+)-ATPase and Na(+)/K(+)-ATPase. AMPK activates ubiquitin ligase Nedd4-2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology; University of Tübingen; Tübingen, Germany
| | - Michael Föller
- Department of Physiology; University of Tübingen; Tübingen, Germany
| |
Collapse
|
8
|
Pakladok T, Hosseinzadeh Z, Lebedeva A, Alesutan I, Lang F. Upregulation of the Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb by B-RAF. J Membr Biol 2013; 247:137-45. [PMID: 24258620 DOI: 10.1007/s00232-013-9616-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Abstract
B-RAF, a serine/threonine protein kinase, contributes to signaling of insulin-like growth factor IGF1. Effects of IGF1 include stimulation of proximal renal tubular phosphate transport, accomplished in large part by Na⁺-coupled phosphate cotransporter NaPi-IIa. The related Na⁺-coupled phosphate cotransporter NaPi-IIb accomplishes phosphate transport in intestine and tumor cells. The present study explored whether B-RAF influences protein abundance and/or activity of type II Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb. cRNA encoding wild-type NaPi-IIa and wild-type NaPi-IIb was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type B-RAF, and electrogenic phosphate transport determined by dual-electrode voltage clamp. NaPi-IIa protein abundance in Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified by chemiluminescence. Moreover, in HEK293 cells, the effect of B-RAF inhibitor PLX-4720 on NaPi-IIa cell surface protein abundance was quantified utilizing biotinylation of cell surface proteins and western blotting. In NaPi-IIa-expressing Xenopus oocytes, but not in oocytes injected with water, addition of phosphate to extracellular bath generated a current (I P), which was significantly increased following coexpression of B-RAF. According to kinetic analysis, coexpression of B-RAF enhanced the maximal IP. Coexpression of B-RAF further enhanced NaPi-IIa protein abundance in the Xenopus oocyte cell membrane. Treatment of HEK293 cells for 24 h with PLX-4720 significantly decreased NaPi-IIa cell membrane protein abundance. Coexpression of B-RAF, further significantly increased IP in NaPi-IIb-expressing Xenopus oocytes. Again, B-RAF coexpression enhanced the maximal IP. In conclusion, B-RAF is a powerful stimulator of the renal and intestinal type II Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb, respectively.
Collapse
Affiliation(s)
- Tatsiana Pakladok
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
9
|
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 2012; 52:347-54. [PMID: 22682960 DOI: 10.1016/j.ceca.2012.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
STIM and Orai isoforms orchestrate store operated Ca2+ entry (SOCE) and thus cytosolic Ca2+ fluctuations following stimulation by hormones, growth factors and further mediators. Orai1 is a target of Nedd4-2, an ubiquitin ligase preparing several plasma membrane proteins for degradation. Phosphorylation of Nedd4-2 by the serum and glucocorticoid inducible kinase SGK1 leads to the binding of Nedd4-2 to the protein 14-3-3 thus preventing its interaction with Orai1. Nedd4-2 is activated by the energy sensing AMP activated kinase AMPK. Thus, SGK1 disrupts and AMPK fosters degradation of Orai1. New synthesis of both, Orai1 and STIM1, is stimulated by the transcription factor NF-κB (nuclear factor kappa B), which binds to the respective promoter regions of the genes encoding STIM1 and Orai1. SGK1 upregulates and AMPK presumably downregulates NF-κB and thus de novo synthesis of Orai1 and STIM1 proteins. The regulation by SGK1 links SOCE to the signaling of a wide variety of hormones and growth factors, the AMPK dependent regulation of Orai1 and STIM1 may serve to limit inadequate activation of SOCE following energy depletion, which is otherwise expected to activate SOCE by depletion of intracellular Ca2+ stores due to impairment of the ATP consuming sarco/endoplasmatic reticulum Ca2+ ATPase SERCA.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
10
|
Nurbaeva MK, Schmid E, Szteyn K, Yang W, Viollet B, Shumilina E, Lang F. Enhanced Ca²⁺ entry and Na+/Ca²⁺ exchanger activity in dendritic cells from AMP-activated protein kinase-deficient mice. FASEB J 2012; 26:3049-58. [PMID: 22474243 DOI: 10.1096/fj.12-204024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In dendritic cells (DCs), chemotactic chemokines, such as CXCL12, rapidly increase cytosolic Ca(2+)concentrations ([Ca(2+)](i)) by triggering Ca(2+) release from intracellular stores followed by store-operated Ca(2+) (SOC) entry. Increase of [Ca(2+)](i) is blunted and terminated by Ca(2+) extrusion, accomplished by K(+)-independent Na(+)/Ca(2+) exchangers (NCXs) and K(+)-dependent Na(+)/Ca(2+) exchangers (NCKXs). Increased [Ca(2+)](i) activates energy-sensing AMP-activated protein kinase (AMPK), which suppresses proinflammatory responses of DCs and macrophages. The present study explored whether AMPK participates in the regulation of DC [Ca(2+)](i) and migration. DCs were isolated from AMPKα1-deficient (ampk(-/-)) mice and, as control, from their wild-type (ampk(+/+)) littermates. AMPKα1, Orai1-2, STIM1-2, and mitochondrial calcium uniporter protein expression was determined by Western blotting, [Ca(2+)](i) by Fura-2 fluorescence, SOC entry by inhibition of endosomal Ca(2+) ATPase with thapsigargin (1 μM), Na(+)/Ca(2+) exchanger activity from increase of [Ca(2+)](i), and respective whole-cell current in patch clamp following removal of extracellular Na(+). Migration was quantified utilizing transwell chambers. AMPKα1 protein is expressed in ampk(+/+) DCs but not in ampk(-/-) DCs. CXCL12 (300 ng/ml)-induced increase of [Ca(2+)](i), SOC entry, Orai 1 protein abundance, NCX, and NCKX were all significantly higher in ampk(-/-) DCs than in ampk(+/+) DCs. NCX and NCKX currents were similarly increased in ampk(-/-) DCs. Moreover, CXCL12 (50 ng/ml)-induced DC migration was enhanced in ampk(-/-) DCs. AMPK thus inhibits SOC entry, Na(+)/Ca(2+) exchangers, and migration of DCs.
Collapse
|