1
|
Dai B, Liu H, Juan D, Wu K, Cao R. The role of miRNA-29b1 on the hypoxia-induced apoptosis in mammalian cardiomyocytes. Eur J Histochem 2024; 68:4021. [PMID: 38934067 PMCID: PMC11228570 DOI: 10.4081/ejh.2024.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocyte apoptosis is a complex biological process involving the interaction of many factors and signaling pathways. In hypoxic environment, cardiomyocytes may trigger apoptosis due to insufficient energy supply, increased production of oxygen free radicals, and disturbance of intracellular calcium ion balance. The present research aimed to investigate the role of microRNA-29b1 (miR-29b1) in hypoxia-treated cardiomyocytes and its potential mechanism involved. We established an in vitro ischemia model using AC16 and H9C2 cardiomyocytes through hypoxia treatment (1% O2, 48 h). Cell apoptosis was evaluated by flow cytometry using Annexin V FITC-PI staining assay. Moreover, we used Western blot and immunofluorescence analysis to determine the expression of Bcl-2, Bax caspase-3 and Cx43 proteins. We found that miR-29b1 protected AC16 and H9C2 cells from hypoxia-induced injury as evidence that miR-29b1 attenuated the effects of hypoxia treatment on AC16 and H9C2 cell apoptosis after hypoxia treatment. In conclusion, our findings suggest that miR-29b1 may have potential cardiovascular protective effects during ischemia-related myocardial injury.
Collapse
Affiliation(s)
- Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Hailin Liu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Dingmin Juan
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Kaize Wu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| | - Ruhao Cao
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan.
| |
Collapse
|
2
|
Lillo MA, Muñoz M, Rhana P, Gaul-Muller K, Quan J, Shirokova N, Xie LH, Santana LF, Fraidenraich D, Contreras JE. Remodeled connexin 43 hemichannels alter cardiac excitability and promote arrhythmias. J Gen Physiol 2023; 155:e202213150. [PMID: 37191672 PMCID: PMC10192603 DOI: 10.1085/jgp.202213150] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the β-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pretreatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability, greater plasma membrane depolarization, and Ca2+ overload, which likely caused prolonged action potentials, delayed after depolarizations, and triggered activity. All these cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac-stress-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Manuel Muñoz
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Paula Rhana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Kelli Gaul-Muller
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jonathan Quan
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| |
Collapse
|
3
|
Zhang M, Wang ZZ, Chen NH. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023; 28:4914. [PMID: 37446576 DOI: 10.3390/molecules28134914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Connexin 43 (Cx43) is most widely distributed in mammals, especially in the cardiovascular and nervous systems. Its phosphorylation state has been found to be regulated by the action of more than ten kinases and phosphatases, including mitogen-activated protein kinase/extracellular signaling and regulating kinase signaling. In addition, the phosphorylation status of different phosphorylation sites affects its own synthesis and assembly and the function of the gap junctions (GJs) to varying degrees. The phosphorylation of Cx43 can affect the permeability, electrical conductivity, and gating properties of GJs, thereby having various effects on intercellular communication and affecting physiological or pathological processes in vitro and in vivo. Therefore, clarifying the relationship between Cx43 phosphorylation and specific disease processes will help us better understand the disease. Based on the above clinical and preclinical findings, we present in this review the functional significance of Cx43 phosphorylation in multiple diseases and discuss the potential of Cx43 as a drug target in Cx43-related disease pathophysiology, with an emphasis on the importance of connexin 43 as an emerging therapeutic target in cardiac and neuroprotection.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
5
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
6
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
7
|
Fu YL, Tao L, Peng FH, Zheng NZ, Lin Q, Cai SY, Wang Q. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol Sin 2021; 42:536-549. [PMID: 32620936 PMCID: PMC8115281 DOI: 10.1038/s41401-020-0459-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy (CH) is characterized by an increase in cardiomyocyte size, and is the most common cause of cardiac-related sudden death. A decrease in gap junction (GJ) coupling and mitochondrial dysfunction are important features of CH, but the mechanisms of decreased coupling and energy impairment are poorly understood. It has been reported that GJA1-20k has a strong tropism for mitochondria and is required for the trafficking of connexin 43 (Cx43) to cell-cell borders. In this study, we investigated the effects of GJA1-20k on Cx43 GJ coupling and mitochondrial function in the pathogenesis of CH. We performed hematoxylin-eosin (HE) and Masson staining, and observed significant CH in 18-week-old male spontaneously hypertensive rats (SHRs) compared to age-matched normotensive Wistar-Kyoto (WKY) rats. In cardiomyocytes from SHRs, the levels of Cx43 at the intercalated disc (ID) and the expression of GJA1-20k were significantly reduced, whereas JAK-STAT signaling was activated. Furthermore, the SHR rats displayed suppressed mitochondrial GJA1-20k and mitochondrial biogenesis. Administration of valsartan (10 mg· [Formula: see text] d-1, i.g., for 8 weeks) prevented all of these changes. In neonatal rat cardiomyocytes (NRCMs), overexpression of GJA1-20k attenuated Ang II-induced cardiomyocyte hypertrophy and caused elevated levels of GJ coupling at the cell-cell borders. Pretreatment of NRCMs with the Jak2 inhibitor AG490 (10 µM) blocked Ang II-induced reduction in GJA1-20k expression and Cx43 gap junction formation; knockdown of Jak2 in NRCMs significantly lessened Ang II-induced cardiomyocyte hypertrophy and normalized GJA1-20k expression and Cx43 gap junction formation. Overexpression of GJA1-20k improved mitochondrial membrane potential and respiration and lowered ROS production in Ang II-induced cardiomyocyte hypertrophy. These results demonstrate the importance of GJA1-20k in regulating gap junction formation and mitochondrial function in Ang II-induced cardiomyocyte hypertrophy, thus providing a novel therapeutic strategy for patients with cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yi-le Fu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fu-Hua Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ning-Ze Zheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Jin Y, Zhou TY, Cao JN, Feng QT, Fu YJ, Xu X, Yang CJ. MicroRNA-206 Downregulates Connexin43 in Cardiomyocytes to Induce Cardiac Arrhythmias in a Transgenic Mouse Model. Heart Lung Circ 2018; 28:1755-1761. [PMID: 30322759 DOI: 10.1016/j.hlc.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are critical modulators of various physiological and pathological processes, but their role in cardiac arrhythmias remains yet to be completely understood. Connexin43 (Cx43) is an important cardiac gap junction protein and a potential target of miR-206, and downregulation of Cx43 induces ventricular tachyarrhythmias. METHODS We investigated the effects of miR-206 overexpression on the adult mouse heart and in cardiac arrhythmias. Luciferase activity assay was employed to validate Cx43 as a direct target of miR-206. Expression of Cx43 was measured in cardiac muscle cell line HL-1 securely expressing miR-206. An inducible miR-206 overexpression mouse model was established to evaluate the in vivo effect of miR-206 on Cx43 expression and cardiac rhythm. RESULTS MiR-206 directly recognised 3'-untranslated region of Cx43 mRNA to inhibit its expression in HL-1 cells. Induction of miR-206 in the adult mouse heart suppressed Cx43 expression, particularly in the atria and ventricle. Importantly, miR-206 overexpression also induced abnormal heart-rate and PR interval, and shortened life-span in the experimental mice. CONCLUSIONS In cardiomyocytes, miR-206 is a upstream regulator of Cx43, and its overexpression downregulates Cx43 to induce abnormal heart-rate and PR interval.
Collapse
Affiliation(s)
- Yan Jin
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Tian-Yi Zhou
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Jia-Ning Cao
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Qiu-Ting Feng
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Ya-Jing Fu
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Xin Xu
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China.
| | - Cheng-Jian Yang
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China.
| |
Collapse
|
9
|
Gonzalez JP, Ramachandran J, Himelman E, Badr MA, Kang C, Nouet J, Fefelova N, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. Normalization of connexin 43 protein levels prevents cellular and functional signs of dystrophic cardiomyopathy in mice. Neuromuscul Disord 2018; 28:361-372. [PMID: 29477453 DOI: 10.1016/j.nmd.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 11/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) associated cardiomyopathy remains incurable. Connexin 43 (Cx43) is upregulated and remodeled in the hearts of mdx mice, a mouse model of DMD. Hearts from Wild Type, mdx, and mdx:Cx43(+/-) mice were studied before (4-6 months) and after (10-15 months) the onset of cardiomyopathy to assess the impact of decreasing Cx43 levels on cardiac pathology in dystrophic mice. Increased connexin 43 protein levels in mdx hearts were not observed in mdx:Cx43(+/-) hearts. Cx43 remodeling in mdx hearts was attenuated in mdx:Cx43(+/-) hearts. At time-point 4-6 months, isolated cardiomyocytes from mdx hearts displayed enhanced ethidium bromide uptake, augmented intracellular calcium signals and increased production of reactive oxygen species. These pathological features were improved in mdx:Cx43(+/-) cardiomyocytes. Isoproterenol-challenged mdx:Cx43(+/-) mice did not show arrhythmias or acute lethality observed in mdx mice. Likewise, isoproterenol-challenged mdx:Cx43(+/-) isolated hearts were also protected from arrhythmogenesis. At time-point 10-15 months, mdx:Cx43(+/-) mice showed decreased cardiac fibrosis and improved ventricular function, relative to mdx mice. These results suggest that normalization of connexin 43 protein levels in mdx mice reduces overall cardiac pathology.
Collapse
Affiliation(s)
- J Patrick Gonzalez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Myriam A Badr
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Chifei Kang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Julie Nouet
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
10
|
Thévenin AF, Margraf RA, Fisher CG, Kells-Andrews RM, Falk MM. Phosphorylation regulates connexin43/ZO-1 binding and release, an important step in gap junction turnover. Mol Biol Cell 2017; 28:3595-3608. [PMID: 29021339 PMCID: PMC5706988 DOI: 10.1091/mbc.e16-07-0496] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
To investigate whether connexin phosphorylation regulates the known role of zonula occludens-1 protein (ZO-1) in gap junction (GJ) function, we generated and analyzed a series of phosphomimetic and phosphorylation-dead mutants by mutating known conserved regulatory serine (S) residues 255, 279/282, 365, 368, and 373 located in the C-terminal domain of connexin43 (Cx43) into glutamic acid (E) or alanine (A) residues. All connexin mutants were translated into stable, full-length proteins and assembled into GJs when expressed in HeLa or Madin-Darby canine kidney epithelial cells. However, mutants with S residues exchanged at positions 365, 368, and 373 exhibited a significantly altered ZO-1 interaction profile, while mutants with S residues exchanged at 255 and 279/282 did not. Unlike wild-type Cx43, in which ZO-1 binding is restricted to the periphery of GJ plaques, S365A, S365E, S368A, S368E, and S373A mutants bound ZO-1 throughout the GJ plaques, while the S373E mutant did not bind ZO-1 at all. Inability to disengage from ZO-1 correlated with increased GJ plaque size and increased connexin protein half-life, while maintaining GJ channels in an open, functional state. Quantitative clathrin-binding analyses revealed no significant alterations in clathrin-binding efficiency, suggesting that the inability to disengage from ZO-1 prevented maturation of functional into nonfunctional/endocytic channels, rather than ZO-1 interfering with GJ endocytosis directly. Collectively, our results indicate that ZO-1 binding regulates channel accrual, while disengagement from ZO-1 is critical for GJ channel closure and transitioning GJ channels for endocytosis. Intriguingly, these transitional ZO-1 binding/release and channel-aging steps are mediated by a series of hierarchical phosphorylation/dephosphorylation events at S373, S365, and S368, well-known Cx43 Akt, protein kinase A, and protein kinase C phosphorylation sites located in the vicinity of the ZO-1 binding site.
Collapse
Affiliation(s)
| | - Rachel A Margraf
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Charles G Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
11
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Abstract
Pulmonary arterial hypertension (PAH) is a complex, multi-factorial disorder characterized by both constriction and remodelling of the distal pulmonary vasculature. This leads to increased pulmonary pressures and eventually right heart failure. Current drugs, which primarily target the vasoconstriction, serve only to prolong life and novel therapies targeting both the vasoconstriction and the remodelling are required. Aberrant signalling between cells of the pulmonary vasculature has been associated with the development of PAH. In particular, endothelial dysfunction can lead to hyperplasia of the underlying medial layer. Connexins are a family of transmembrane proteins which can form intercellular communication channels known as gap junctions. This review will discuss recent evidence which shows that connexins play a role in regulation of the pulmonary vasculature and that dysregulation of connexins may contribute to PAH pathogenesis. Interaction of connexins with signalling pathways relevant to the pathogenesis of PAH, such as bone morphogenetic protein (BMP), serotonin and oestrogen are discussed.
Collapse
|
13
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
14
|
Basheer WA, Harris BS, Mentrup HL, Abreha M, Thames EL, Lea JB, Swing DA, Copeland NG, Jenkins NA, Price RL, Matesic LE. Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J Mol Cell Cardiol 2015; 88:1-13. [PMID: 26386426 DOI: 10.1016/j.yjmcc.2015.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/30/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Connexin 43/genetics
- Connexin 43/metabolism
- Disease Models, Animal
- Female
- Gap Junctions/metabolism
- Gap Junctions/pathology
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Male
- Mice
- Mice, Transgenic
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Promoter Regions, Genetic
- Proteasome Endopeptidase Complex/metabolism
- Protein Stability
- Proteolysis
- Signal Transduction
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Wassim A Basheer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Brett S Harris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heather L Mentrup
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Measho Abreha
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth L Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jessica B Lea
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Deborah A Swing
- Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Neal G Copeland
- Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Nancy A Jenkins
- Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Robert L Price
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
15
|
Huang WA, Shivkumar K, Vaseghi M. Device-based autonomic modulation in arrhythmia patients: the role of vagal nerve stimulation. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2015; 17:379. [PMID: 25894588 DOI: 10.1007/s11936-015-0379-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Vagal nerve stimulation (VNS) has shown promise as an adjunctive therapy for management of cardiac arrhythmias by targeting the cardiac parasympathetic nervous system. VNS has been evaluated in the setting of ischemia-driven ventricular arrhythmias and atrial arrhythmias, as well as a treatment option for heart failure. As better understanding of the complexities of the cardiac autonomic nervous system is obtained, vagal nerve stimulation will likely become a powerful tool in the current cardiovascular therapeutic armamentarium.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | | |
Collapse
|
16
|
Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias. J Mol Cell Cardiol 2014; 74:53-63. [PMID: 24819345 DOI: 10.1016/j.yjmcc.2014.04.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as critical regulators of diverse physiological and pathological processes; however, studies of miRNAs and arrhythmogenesis remain sparse. Connexin43 (Cx43), a major cardiac gap junction protein, has elicited great interest in its role in arrhythmias. Additionally, Cx43 was a potential target for miR-130a as predicted by several computational algorithms. This study investigates the effect of miR-130a overexpression in the adult heart and its effect on cardiac rhythm. Using a cardiac-specific inducible system, transgenic mice demonstrated both atrial and ventricular arrhythmias. We performed ventricular-programmed electrical stimulation and found that the αMHC-miR130a mice developed sustained ventricular tachycardia beginning 6weeks after overexpression. Western blot analysis demonstrated a steady decline in Cx43 after 2weeks of overexpression with over a 90% reduction in Cx43 levels by 10weeks. Immunofluorescent staining confirmed a near complete loss of Cx43 throughout the heart. To validate Cx43 as a direct target of miR-130a, we performed in vitro target assays in 3T3 fibroblasts and HL-1 cardiomyocytes, both known to endogenously express miR-130a. Using a luciferase reporter fused to the 3'UTR of Cx43, we found a 52.9% reduction in luciferase activity in 3T3 cells (p<0.0001) and a 47.6% reduction in HL-1 cells (p=0.0056) compared to controls. Addition of an antisense miR-130a inhibitor resulted in a loss of inhibitory activity of the Cx43 3'UTR reporter. We have identified an unappreciated role for miR-130a as a direct regulator of Cx43. Overexpression of miR-130a may contribute importantly to gap junction remodeling and to the pathogenesis of atrial and ventricular arrhythmias.
Collapse
|
17
|
Vite A, Radice GL. N-cadherin/catenin complex as a master regulator of intercalated disc function. ACTA ACUST UNITED AC 2014; 21:169-79. [PMID: 24766605 DOI: 10.3109/15419061.2014.908853] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intercellular adhesive junctions are essential for maintaining the physical integrity of tissues; this is particularly true for the heart that is under constant mechanical load. The correct functionality of the heart is dependent on the electrical and mechanical coordination of its constituent cardiomyocytes. The intercalated disc (ID) structure located at the termini of the rod-shaped adult cardiomyocyte contains various junctional proteins responsible for the integration of structural information and cell-cell communication. According to the classical description, the ID consists of three distinct junctional complexes: adherens junction (AJ), desmosome (Des), and gap junction (GJ) that work together to mediate mechanical and electrical coupling of cardiomyocytes. However, recent morphological and molecular studies indicate that AJ and Des components are capable of mixing together resulting in a "hybrid adhering junction" or "area composita." This review summarizes recent progress in understanding the in vivo function(s) of AJ components in cardiac homeostasis and disease.
Collapse
Affiliation(s)
- Alexia Vite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University , Philadelphia, PA , USA
| | | |
Collapse
|
18
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
19
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|