1
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
2
|
Parshina EY, Yusipovich AI, Brazhe AR, Silicheva MA, Maksimov GV. Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J Biol Phys 2019; 45:367-377. [PMID: 31758351 PMCID: PMC6917684 DOI: 10.1007/s10867-019-09533-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/31/2019] [Indexed: 11/30/2022] Open
Abstract
The intensity of erythrocyte membrane fluctuations was studied by laser interference microscopy (LIM), which provide information about mechanical properties of the erythrocyte membrane. Atomic force microscopy (AFM) was used to study erythrocyte surface relief; it is related to the cytoskeleton structure of erythrocyte membrane. Intact human erythrocytes and erythrocytes with a destroyed cytoskeleton were used. According to the obtained results, cytoskeleton damage induced by heating up to 50 °С results in a reduced intensity of cell membrane fluctuations compared to non-treated cells (20.6 ± 10.2 vs. 30.5 ± 5.5 nm, correspondingly), while the roughness of the membrane increases (4.5 ± 1.5 vs. 3.4 ± 0.5 nm, correspondingly).
Collapse
Affiliation(s)
- E Yu Parshina
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie gory, 1-12, 119234, Moscow, Russia.
| | - A I Yusipovich
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie gory, 1-12, 119234, Moscow, Russia
| | - A R Brazhe
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie gory, 1-12, 119234, Moscow, Russia
| | - M A Silicheva
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie gory, 1-12, 119234, Moscow, Russia
| | - G V Maksimov
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie gory, 1-12, 119234, Moscow, Russia
| |
Collapse
|
3
|
Ren MQ, Kazman JB, Abraham PA, Atias-Varon D, Heled Y, Deuster PA. Gene expression profiling of humans under exertional heat stress: Comparisons between persons with and without exertional heat stroke. J Therm Biol 2019; 85:102423. [PMID: 31657764 DOI: 10.1016/j.jtherbio.2019.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/20/2019] [Accepted: 09/24/2019] [Indexed: 11/15/2022]
Abstract
Exertional heat stroke (EHS) is a leading cause of preventable morbidity and mortality among both athletes and warfighters. Therefore, it is important to find blood biomarkers to predict susceptibility to EHS. We compared gene expression profiling from blood cells between two groups of participants - those with and those without a history EHS - by using genome-wide microarray analysis. Subjects with a history of EHS (n = 6) and non-EHS controls without a history of EHS (n = 18) underwent a heat tolerance test and a thermoneutral exercise challenge on separate days. The heat tolerance test comprised of 2-h of walking, at 5 km/h and 2% incline, with ambient conditions set at 40 °C, 40% relative humidity; the thermoneutral test was similar, but had ambient conditions set at 22 °C. Next, we examined gene expression profiles, quantified based on arithmetic differences (post minus pre) during the heat test minus changes during the thermoneutral test. Genes related to interleukins and cellular stress were significantly down-regulated in participants with a history of EHS compared to their non-EHS counterparts. Suppression of these genes may be associated with susceptibility to exertional heat injury. Prospective research is required to determine whether similar gene expression profiling can be potentially used as blood biomarkers to predict susceptibility to EHS.
Collapse
Affiliation(s)
- Ming Qiang Ren
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA
| | - Josh B Kazman
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA.
| | - Preetha A Abraham
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, USA
| | - Danit Atias-Varon
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, USA
| |
Collapse
|
4
|
Shakya B, Penn WD, Nakayasu ES, LaCount DJ. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1. Mol Biochem Parasitol 2017; 216:5-13. [PMID: 28627360 PMCID: PMC5738903 DOI: 10.1016/j.molbiopara.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Wesley D Penn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Chang CH, Lo WY, Lee TH. The Antioxidant Peroxiredoxin 6 (Prdx6) Exhibits Different Profiles in the Livers of Seawater- and Fresh Water-Acclimated Milkfish, Chanos chanos, upon Hypothermal Challenge. Front Physiol 2016; 7:580. [PMID: 27965586 PMCID: PMC5126087 DOI: 10.3389/fphys.2016.00580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
A tropical species, the euryhaline milkfish (Chanos chanos), is a crucial economic species in Southeast Asia and is intolerant of water temperature below 12°C. Large numbers of milkfish die during cold periods in winter. Hypothermal environments usually increase oxidative stress in teleosts, and the liver is the major organ for anti-oxidative responses in the body. Peroxiredoxin-6 (Prdx6) in mammals is a multi-functional enzyme and acts as both glutathione peroxidase, phospholipase A2 and acyl-transferase for maintenance of redox status and prevention of cell membrane peroxidation. Prdx6 can protect cells from oxidant-induced membrane damage by translocating the Prdx6 protein from the cytosol to the membrane. Upon cold stress, Ccprdx6 transcript levels were up-regulated after 24 h and 96 h in livers of fresh water (FW)- and seawater (SW)-acclimated milkfish, respectively. In the hypothermal FW group, the Prdx6 protein was up-regulated in the cytosol of hepatocytes with a similar role as glutathione peroxidase to reduce oxidative stress upon hypothermal challenge. Conversely, in hypothermal SW milkfish, total Prdx6 protein was down-regulated. However, cytosolic Prdx6 protein was translocated to the membrane, using the ability of phospholipase A2 to stabilize the membrane redox state. Moreover, H2O2 content was increased in FW-acclimated milkfish livers upon hypothermal challenge. Ex vivo H2O2 treatment of milkfish livers also induced Ccprdx6 transcriptional expression, which provided more evidence of the antioxidant role of milkfish Prdx6. Taken together, upon hypothermal challenge, greater oxidative stress in livers of FW-acclimated milkfish rather than SW-acclimated individuals led to different profiles of hepatic CcPrdx6 expression between the FW and SW group. The results indicated that CcPrdx6 played the role of antioxidant with different mechanisms, i.e., binding to reactive oxygen species and stabilizing membrane fluidity, in livers of hypothermal FW and SW milkfish, respectively.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Wan-Yu Lo
- Department of Biotechnology, Hung Kuang University Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
6
|
Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock 2015; 43:39-46. [PMID: 25072794 DOI: 10.1097/shk.0000000000000245] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION We have recently identified a spectrum of fibrinolysis in response to injury, in which there is increased mortality in patients who have either excessive fibrinolysis (hyperfibrinolysis [HF]) or impaired fibrinolysis (shutdown). The regulation of the fibrinolytic system after trauma remains poorly understood. Our group's previous proteomic and metabolomic work identified elevated red blood cell (RBC) degradation products in trauma patients manifesting HF. We therefore hypothesized that hemolysis was contributory to the pathogenesis of HF. Given the central role of platelets in the cell-based model of coagulation, we further investigated the potential role of platelet lysis in mediation of the fibrinolytic system. METHODS Red blood cells from healthy donors were frozen in liquid nitrogen and vortexed to create mechanical membrane disruption. Platelets were prepared in a similar fashion. Assays were performed with citrated whole blood mixed ex vivo with either RBC or platelet lysates. Tissue plasminogen activator (tPA) was then added to promote fibrinolysis, mimicking the tPA release from ischemic endothelium during hemorrhagic shock. The degree of fibrinolysis was evaluated with thromboelastography. To identify the mediators of the fibrinolysis system present in RBC and platelet lysates, these lysates were passed over immobilized tPA and plasminogen affinity columns to capture protein-binding partners from RBC or platelet lysates. RESULTS The addition of 75 ng/mL of tPA to whole blood increased fibrinolysis from median 30-min lysis of 1.4% (interquartile range [IQR], 0.9%-2.0%) to 8.9% (IQR, 6.5%-11.5%). Red blood cell lysate with tPA increased fibrinolysis to 20.1% (IQR, 12.5%-33.7%), which was nearly three times as much lysis as tPA alone (P < 0.001). Conversely, the addition of platelet lysate decreased tPA-mediated fibrinolysis to 0.35% (IQR, 0.2%-0.8%; P < 0.001). Affinity chromatography coupled with tandem mass spectrometry identified a number of proteins not previously associated with regulation of fibrinolysis and trauma. CONCLUSION Red blood cell lysate is a potent enhancer of fibrinolysis, whereas platelet lysate inhibits fibrinolysis. Intracellular proteins from circulating blood cells contain proteins that interact with the two key proteins of tPA-mediated fibrinolysis. Understanding the effect of tissue injury and shock on the lysis of circulating cells may provide insight to comprehending the spectrum of fibrinolysis in response to trauma.
Collapse
|
7
|
Matté A, Pantaleo A, Ferru E, Turrini F, Bertoldi M, Lupo F, Siciliano A, Ho Zoon C, De Franceschi L. The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence. Free Radic Biol Med 2014; 76:80-8. [PMID: 25151118 DOI: 10.1016/j.freeradbiomed.2014.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2(-/-) mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2(-/-) red cells and reduced Prx2(-/-) red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2(-/-) mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2(-/-) mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2(-/-) mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.
Collapse
Affiliation(s)
- Alessandro Matté
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Emanuela Ferru
- Department of Oncology, University of Torino, Torino, Italy
| | - Franco Turrini
- Department of Oncology, University of Torino, Torino, Italy
| | - Mariarita Bertoldi
- Department of Oncology, University of Torino, Torino, Italy; Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Francesca Lupo
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Angela Siciliano
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Chae Ho Zoon
- School of Biological Science and Technology, Chonnam National University, Gwangjiu, Korea
| | - Lucia De Franceschi
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy.
| |
Collapse
|
8
|
A comparative protein profile of mammalian erythrocyte membranes identified by mass spectrometry. J Membr Biol 2014; 247:1181-9. [PMID: 25150706 DOI: 10.1007/s00232-014-9718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
A comparative analysis of erythrocyte membrane proteins of economically important animals, goat (Capra aegagrus hircus), buffalo (Bubalus bubalis), pig (Sus scrofa), cow (Bos tauras), and human (Homo sapiens) was performed. Solubilized erythrocyte membrane proteins were separated by sodium dodecyl sulfate-polyacryamide gel electrophoresis (SDS-PAGE), visualized by staining the gels with Commassie Brilliant Blue (CBB), and identified by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Emerging results show that all major erythrocyte membrane proteins present in human are also seen in all the animals except for band 4.5 which could not be identified. Band 3 is seen as more intense and compact, band 4.1 appears as a doublet in all the animal erythrocyte membranes, band 4.2 exhibits a slightly higher molecular weight (Mr) in buffalo, and cow and band 4.9 has a higher Mr in all the animals relative to the human protein. In addition, there are two new bands in the goat membrane, band G1, identified as HSP 90α, and band G2 identified as HSP 70. A new band C2 identified as HSP 70 is also seen in cow membranes. Peroxiredoxin II is of lower intensity and/or higher Mr in the animals. The difference in size of the proteins possibly indicates the variations in the composition of the amino acids. The difference in intensity of the proteins among these mammalians highlights the presence of less or more number of copies of that protein per cell. This data complement the earlier observations of differences in the sialoglycoprotein profile and effect of proteases and neuraminidase on agglutination among the mammalian erythrocytes. This study provides a platform to understand the molecular architecture of the individual erythrocytes, and in turn the dependent disorders, their phylogenetic relationship and also generates a database of erythrocyte membrane proteins of mammals. The animals selected for this study are of economic importance as they provide milk for the dairy industry and raw material for leather industry and are routinely sacrificed to obtain non vegetarian food worldwide.
Collapse
|