1
|
Tzirkel-Hancock N, Sharabi L, Argov-Argaman N. Milk fat globule size: Unraveling the intricate relationship between metabolism, homeostasis, and stress signaling. Biochimie 2023; 215:4-11. [PMID: 37802210 DOI: 10.1016/j.biochi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.
Collapse
Affiliation(s)
- Noam Tzirkel-Hancock
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Lior Sharabi
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Li T, Yan X, Dong X, Pan S, Tan B, Zhang S, Suo X, Huang W, Zhou M, Yang Y. Effects of choline supplementation on growth performance, liver histology, nonspecific immunity and related genes expression of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed with high-lipid diets. FISH & SHELLFISH IMMUNOLOGY 2023:108815. [PMID: 37216997 DOI: 10.1016/j.fsi.2023.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
This study was conducted to evaluate the effect of dietary choline levels on growth performance, liver histology, nonspecific immunity and related gene expression of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed with high-lipid diets. The fish (initial body weight 6.86 ± 0.01 g) were fed diets containing different choline levels (0, 5, 10, 15, and 20 g/kg, named D1, D2, D3, D4, and D5, respectively) for 8 weeks. The results showed that:(1) dietary choline levels had no significant effect on final body weight (FBW), feed conversion rate (FCR), visceral somatic index(VSI) and condition factor (CF) compared with the control group (P > 0.05). However, the hepato somatic index (HSI) in the D2 group was significantly lower than that in the control group and the survival rate (SR) in the D5 group was significantly lower (P < 0.05). (2) with dietary choline level increasing, alkaline phosphatase (AKP) and superoxide dismutase (SOD) of serum showed a tendency to increase and then decrease, and the maximum values were obtained in the D3 group, but the contents of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) decreased significantly (P < 0.05). (3) Immunoglobulin M (IgM), lysozyme (LYZ), catalase (CAT), total antioxidative capacity (T-AOC), and SOD in the liver all showed a trend of first increase and then decrease with the dietary choline level increased, and all of them achieved the maximum value at D4 group (P < 0.05), while reactive oxygen species (ROS) and malondialdehyde (MDA) in the liver decreased significantly (P < 0.05). (4) results from liver sections suggest that appropriate levels of choline can improve cell structure, compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal in D3 group. (5) in the D3 group, choline significantly upregulated the expression of hepatic sod and cat mRNA, whereas the expression of cat in the D5 group was significantly lower than that in the control group (P < 0.05); And the supply of choline stimulated a significant down-regulation of interleukin 6 (il6), myeloid differentiation factor 8 (myd88), toll-like receptor 22 (tlr22) mRNA expression levels in liver, while the expression of cellular tumor antigen p53 (p53) and interleukin 10 (il10) showed an upward and then downward trend (P < 0.05). In general, choline can improve the immunity of hybrid grouper by regulating non-specific immune-related enzyme activity and gene expression and reducing oxidative stress induced by high-lipid diet.
Collapse
Affiliation(s)
- Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
3
|
Bäßler SC, Kenéz Á, Scheu T, Koch C, Meyer U, Dänicke S, Huber K. Association between alterations in plasma metabolome profiles and laminitis in intensively finished Holstein bulls in a randomized controlled study. Sci Rep 2021; 11:12735. [PMID: 34140596 PMCID: PMC8211646 DOI: 10.1038/s41598-021-92163-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Metabolic consequences of an energy and protein rich diet can compromise metabolic health of cattle by promoting a pro-inflammatory phenotype. Laminitis is a common clinical sign, but affected metabolic pathways, underlying pathophysiology and causative relationships of a systemic pro-inflammatory phenotype are unclear. Therefore, the aim of this study was to elucidate changes in metabolome profiles of 20 months old Holstein bulls fed a high energy and protein diet and to identify novel metabolites and affected pathways, associated with diet-related laminitis. In a randomized controlled feeding trial using bulls fed a high energy and protein diet (HEP; metabolizable energy [ME] intake 169.0 ± 1.4 MJ/day; crude protein [CP] intake 2.3 ± 0.02 kg/day; calculated means ± SEM; n = 15) versus a low energy and protein diet (LEP; ME intake 92.9 ± 1.3 MJ/day; CP intake 1.0 ± 0.01 kg/day; n = 15), wide ranging effects of HEP diet on metabolism were demonstrated with a targeted metabolomics approach using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Multivariate statistics revealed that lower concentrations of phosphatidylcholines and sphingomyelins and higher concentrations of lyso-phosphatidylcholines, branched chain amino acids and aromatic amino acids were associated with an inflammatory state of diet-related laminitis in Holstein bulls fed a HEP diet. The latter two metabolites share similarities with changes in metabolism of obese humans, indicating a conserved pathophysiological role. The observed alterations in the metabolome provide further explanation on the underlying metabolic consequences of excessive dietary nutrient intake.
Collapse
Affiliation(s)
- Sonja Christiane Bäßler
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ákos Kenéz
- grid.35030.350000 0004 1792 6846Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, SAR China
| | - Theresa Scheu
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler a.d. Alsenz, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler a.d. Alsenz, Germany
| | - Ulrich Meyer
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Huang Y, Shen L, Jiang J, Xu Q, Luo Z, Luo Q, Yu S, Yao X, Ren Z, Hu Y, Yang Y, Cao S. Metabolomic Profiles of Bovine Mammary Epithelial Cells Stimulated by Lipopolysaccharide. Sci Rep 2019; 9:19131. [PMID: 31836784 PMCID: PMC6911109 DOI: 10.1038/s41598-019-55556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/30/2019] [Indexed: 12/20/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) are the main cells of the dairy cow mammary gland. In addition to their role in milk production, they are effector cells of mammary immunity. However, there is little information about changes in metabolites of bMECs when stimulated by lipopolysaccharide (LPS). This study describes a metabolomics analysis of the LPS-stimulated bMECs to provide a basis for the identification of potential diagnostic screening biomarkers and possible treatments for bovine mammary gland inflammation. In the present study, bMECs were challenged with 500 ng/mL LPS and samples were taken at 0 h, 12 h and 24 h post stimulation. Metabolic changes were investigated using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS) with univariate and multivariate statistical analyses. Clustering and metabolic pathway changes were established by MetaboAnalyst. Sixty-three differential metabolites were identified, including glycerophosphocholine, glycerol-3-phosphate, L-carnitine, L-aspartate, glutathione, prostaglandin G2, α-linolenic acid and linoleic acid. They were mainly involved in eight pathways, including D-glutamine and D-glutamic acid metabolism; linoleic acid metabolism; α-linolenic metabolism; and phospholipid metabolism. The results suggest that bMECs are able to regulate pro-inflammatory, anti-inflammatory, antioxidation and energy-producing related metabolites through lipid, antioxidation and energy metabolism in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Yixin Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China.,Institute of Biodiversity Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Jing Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Qipin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Qiao Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Zhihua Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Yanchun Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China
| | - Yongxin Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, Chengdu, 611130, China.
| |
Collapse
|
5
|
Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019; 103:668-678. [PMID: 30507741 DOI: 10.1097/tp.0000000000002568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis, defined as a maladaptive gut microbial imbalance, has been demonstrated in patients with end-stage liver disease, defined as a contributor to disease progression, and associated clinically with severity of disease and liver-related morbidity and mortality. Despite this well-recognized phenomena in patients with end-stage liver disease, the impact of gut dysbiosis and its rate of recovery following liver transplantation (LT) remains incompletely understood. The mechanisms by which alterations in the gut microbiota impact allograft metabolism and immunity, both directly and indirectly, are multifactorial and reflect the complexity of the gut-liver axis. Importantly, while research has largely focused on quantitative and qualitative changes in gut microbial composition, changes in microbial functionality (in the presence or absence of compositional changes) are of critical importance. Therefore, to translate functional microbiomics into clinical practice, one must understand not only the compositional but also the functional changes associated with gut dysbiosis and its resolution post-LT. In this review, we will summarize critical advances in functional microbiomics in LT recipients as they apply to immune-mediated allograft injury, posttransplant complications, and disease recurrence, while highlighting potential areas for microbial-based therapeutics in LT recipients.
Collapse
|
6
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L, Cheng L, Shang F, Sun J. Berberine Could Ameliorate Cardiac Dysfunction via Interfering Myocardial Lipidomic Profiles in the Rat Model of Diabetic Cardiomyopathy. Front Physiol 2018; 9:1042. [PMID: 30131709 PMCID: PMC6090155 DOI: 10.3389/fphys.2018.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is considered to be a distinct clinical entity independent of concomitant macro- and microvascular disorders, which is initiated partly by disturbances in energy substrates. This study was to observe the dynamic modulations of berberine in DCM rats and explore the changes of lipidomic profiles of myocardial tissue. Methods: Sprague-Dawley (SD) rats were fed high-sucrose and high-fat diet (HSHFD) for totally 22 weeks and intraperitoneally (i.p.) injected with 30 mg/kg of streptozotocin (STZ) at the fifth week to induce DCM. Seventy-two hours after STZ injection, the rats were orally given with berberine at 10, 30 mg/kg and metformin at 200 mg/kg, respectively. Dynamic changes of cardiac function, heart mass ratios and blood lipids were observed at f 4, 10, 16, and 22, respectively. Furthermore, lipid metabolites in myocardial tissue at week 16 were profiled by the ultra-high-performance liquid chromatography coupled to a quadruple time of flight mass spectrometer (UPLC/Q-TOF/MS) approach. Results: Berberine could protect against cardiac diastolic and systolic dysfunctions, as well as cardiac hypertrophy, and the most effective duration is with 16-week of administration. Meanwhile, 17 potential biomarkers of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingolipids (SMs) of DCM induced by HSFD/STZ were identified. The perturbations of lipidomic profiles could be partly reversed with berberine intervention, i.e., PC (16:0/20:4), PC (18:2/0:0), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0), PC (20:4/18:1), PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0). Conclusions: These results indicated a close relationship between PCs, PEs and SMs and cardiac damage mechanisms during development of DCM. The therapeutic effects of berberine on DCM are partly caused by interferences with PCs, PEs, and SMs metabolisms.
Collapse
Affiliation(s)
- Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Department of Pharmacology, Analysis and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Zhao HF, Jiang WD, Liu Y, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 52:139-150. [PMID: 26988287 DOI: 10.1016/j.fsi.2016.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/20/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P < 0.05). In addition, appropriate dietary choline significantly decreased the oxidative damage, which might be partly due to increase copper, zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities and increased glutathione content in the gills of fish (P < 0.05). Moreover, appropriate dietary choline significantly up-regulated the mRNA levels of interleukin 10 and transforming growth factor β1, Zonula occludens 1, Occludin, Claudin-b, c, 3 and 12, inhibitor of κBα, target of rapamycin, Cu/Zn-SOD, CAT, GR, GPx, GST and NF-E2-related factor 2 in the gills of fish (P < 0.05). Conversely, appropriate dietary choline significantly down-regulated the mRNA levels of pro-inflammatory cytokines, tumor necrosis factor α, interleukin 8, interferon γ, interleukin 1β, and related signaling factors, nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, myosin light chain kinase and Kelch-like-ECH-associated protein 1a (Keap1a) in the gills of fish (P < 0.05). However, choline did not have a significant effect on the mRNA levels of IκB kinase α, Claudin-15 and Keap1b in the gills of fish. Collectively, appropriate dietary choline levels improved gill antibacterial properties and relative gene expression levels of tight junction proteins, and decreased inflammatory status, as well as up-regulated the mRNA levels of related signaling molecules in the gills of fish. Based on gill C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity. Int J Pharm 2015; 485:249-60. [DOI: 10.1016/j.ijpharm.2015.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022]
|