1
|
Peluffo RD, Hernández JA. The Na +,K +-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophys Rev 2023; 15:539-552. [PMID: 37681108 PMCID: PMC10480117 DOI: 10.1007/s12551-023-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Almost seventy years after its discovery, the sodium-potassium adenosine triphosphatase (the sodium pump) located in the cell plasma membrane remains a source of novel mechanistic and physiologic findings. A noteworthy feature of this enzyme/transporter is its robust stoichiometric ratio under physiological conditions: it sequentially counter-transports three sodium ions and two potassium ions against their electrochemical potential gradients per each hydrolyzed ATP molecule. Here we summarize some present knowledge about the sodium pump and its physiological roles, and speculate whether energetic constraints may have played a role in the evolutionary selection of its characteristic stoichiometric ratio.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay
| | - Julio A. Hernández
- Biophysics and Systems Biology Section, Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de La República, Iguá 4225, CP: 11400 Montevideo, Uruguay
| |
Collapse
|
2
|
Moreau CJ, Audic G, Lemel L, García-Fernández MD, Nieścierowicz K. Interactions of cholesterol molecules with GPCRs in different states: A comparative analysis of GPCRs' structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184100. [PMID: 36521554 DOI: 10.1016/j.bbamem.2022.184100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Guillaume Audic
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
3
|
Meza U, Delgado-Ramírez M, Romero-Méndez C, Sánchez-Armass S, Rodríguez-Menchaca AA. Functional marriage in plasma membrane: Critical cholesterol level-optimal protein activity. Br J Pharmacol 2020; 177:2456-2465. [PMID: 32060896 DOI: 10.1111/bph.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.
Collapse
Affiliation(s)
- Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
4
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
5
|
Garcia A, Lev B, Hossain KR, Gorman A, Diaz D, Pham THN, Cornelius F, Allen TW, Clarke RJ. Cholesterol depletion inhibits Na +,K +-ATPase activity in a near-native membrane environment. J Biol Chem 2019; 294:5956-5969. [PMID: 30770471 PMCID: PMC6463725 DOI: 10.1074/jbc.ra118.006223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-β-cyclodextrin (mβCD). The mβCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.
Collapse
Affiliation(s)
- Alvaro Garcia
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Bogdan Lev
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Khondker R Hossain
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Amy Gorman
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Dil Diaz
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Toby W Allen
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia; the Department of Chemistry, University of California, Davis, California 95616
| | - Ronald J Clarke
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Si Y, Wen H, Li Y, He F, Li J, Li S, He H. Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis. BMC Genomics 2018; 19:464. [PMID: 29914359 PMCID: PMC6006554 DOI: 10.1186/s12864-018-4825-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Salinity is an important abiotic stress that influences the physiological and metabolic activity, reproduction, growth and development of marine fish. It has been suggested that half-smooth tongue sole (Cynoglossus semilaevis), a euryhaline fish species, uses a large amount of energy to maintain osmotic pressure balance when exposed to fluctuations in salinity. To delineate the molecular response of C. semilaevis to different levels of salinity, we performed RNA-seq analysis of the liver to identify the genes and molecular and biological processes involved in responding to salinity changes. RESULTS The present study yielded 330.4 million clean reads, of which 83.9% were successfully mapped to the reference genome of C. semilaevis. One hundred twenty-eight differentially expressed genes (DEGs), including 43 up-regulated genes and 85 down-regulated genes, were identified. These DEGs were highly represented in metabolic pathways, steroid biosynthesis, terpenoid backbone biosynthesis, butanoate metabolism, glycerolipid metabolism and the 2-oxocarboxylic acid metabolism pathway. In addition, genes involved in metabolism, osmoregulation and ion transport, signal transduction, immune response and stress response, and cytoskeleton remodeling were affected during acclimation to low salinity. Genes acat2, fdps, hmgcr, hmgcs1, mvk, pmvk, ebp, lss, dhcr7, and dhcr24 were up-regulated and abat, ddc, acy1 were down-regulated in metabolic pathways. Genes aqp10 and slc6a6 were down-regulated in osmoregulation and ion transport. Genes abat, fdps, hmgcs1, mvk, pmvk and dhcr7 were first reported to be associated with salinity adaptation in teleosts. CONCLUSIONS Our results revealed that metabolic pathways, especially lipid metabolism were important for salinity adaptation. The candidate genes identified from this study provide a basis for further studies to investigate the molecular mechanism of salinity adaptation and transcriptional plasticity in marine fish.
Collapse
Affiliation(s)
- Yufeng Si
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.
| | - Feng He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Jifang Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Siping Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| | - Huiwen He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Roy S, Dasgupta A. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism. Endocrinol Metab (Seoul) 2017; 32:129-139. [PMID: 28256112 PMCID: PMC5368112 DOI: 10.3803/enm.2017.32.1.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/08/2016] [Accepted: 12/15/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Metabolic dysfunctions characteristic of overt hypothyroidism (OH) start at the early stage of subclinical hypothyroidism (SCH). Na⁺/K⁺-ATPase (the sodium pump) is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients. METHODS In 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T₄) and thyroid stimulating hormone (TSH) levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis. RESULTS Sodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T₄ levels. No dependence on serum cholesterol was observed in either case. CONCLUSION Despite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.
Collapse
Affiliation(s)
- Suparna Roy
- Department of Biochemistry, Calcutta National Medical College, Kolkata, India
| | - Anindya Dasgupta
- Department of Biochemistry, Calcutta National Medical College, Kolkata, India.
| |
Collapse
|