1
|
Zironi I, Cramer T, Fuschi A, Cioni M, Guerra G, Giuliani G, Calienni M, Caramazza L, Liberti M, Apollonio F, Remondini D, Castellani G. Enhancing cell motility via non-contact capacitively coupled electrostatic field. Sci Rep 2024; 14:28085. [PMID: 39543219 PMCID: PMC11564694 DOI: 10.1038/s41598-024-77384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Cellular motility is essential for making and maintaining multicellular organisms throughout their lifespan. Migrating cells can move either individually or collectively by a crawling movement that links the cytoskeletal activity to the adhesion surface. In vitro stimulation by electric fields can be achieved by direct, capacitive or inductive coupled setups. We tested the effects of electrical stimulation provided by capacitive coupling on glioma cells, using a capacitive-coupled system powered by a potential difference of 35 V between two electrodes placed outside the culture dish. Numerical dosimetry identified two different fields: (i) in the order of 103 V/m at the level of the dielectric substrates, with almost uniform distribution; (ii) in the order of 10-1 V/m at the level of the culture medium, with spatial and material-dependent distribution. The scratch assay and the tracking of single-cell movement showed a boosted motility when crawling occurs on polystyrene surfaces, demonstrating the feasibility of this peculiar exposure system to generate forces capable of influencing cell behavior.
Collapse
Affiliation(s)
- Isabella Zironi
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
- National Institute for Nuclear Physics (INFN BO), Bologna section, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
| | - Tobias Cramer
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Alessandro Fuschi
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Margherita Cioni
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
| | - Giada Guerra
- Department for Life Quality Studies (QUVI), Alma Mater Studiorum University of Bologna, C.so d'Augusto, 237, Rimini, 47921, Italy
| | - Giacomo Giuliani
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Maria Calienni
- Centro Laboratori di Didattica Chimica (CILDIC), Alma Mater Studiorum University of Bologna, Via Gobetti 87, Bologna, 40129, Italy
| | - Laura Caramazza
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Micaela Liberti
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Francesca Apollonio
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
- National Institute for Nuclear Physics (INFN BO), Bologna section, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, Bologna, 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti, 9, Bologna, 40138, Italy
| |
Collapse
|
2
|
Kumar M, Mishra A. A microdosimetry analysis of reversible electroporation in scattered, overlapping, and cancerous cervical cells. Biomed Phys Eng Express 2024; 10:035022. [PMID: 38479001 DOI: 10.1088/2057-1976/ad33a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| | - Ashutosh Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| |
Collapse
|
3
|
Kumar M, Kumar S, Chakrabartty S, Poulose A, Mostafa H, Goyal B. Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator. MICROMACHINES 2023; 14:2136. [PMID: 38138305 PMCID: PMC10745406 DOI: 10.3390/mi14122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
This paper creates an approximate three-dimensional model for normal and cancerous cervical cells using image processing and computer-aided design (CAD) tools. The model is then exposed to low-frequency electric pulses to verify the work with experimental data. The transmembrane potential, pore density, and pore radius evolution are analyzed. This work adds a study of the electrodeformation of cells under an electric field to investigate cytoskeleton integrity. The Maxwell stress tensor is calculated for the dispersive bi-lipid layer plasma membrane. The solid displacement is calculated under electric stress to observe cytoskeleton integrity. After verifying the results with previous experiments, the cells are exposed to a nanosecond pulsed electric field. The nanosecond pulse is applied using a drift-step rectifier diode (DSRD)-based generator circuit. The cells' transmembrane voltage (TMV), pore density, pore radius evolution, displacement of the membrane under electric stress, and strain energy are calculated. A thermal analysis of the cells under a nanosecond pulse is also carried out to prove that it constitutes a non-thermal process. The results showed differences in normal and cancerous cell responses to electric pulses due to changes in morphology and differences in the cells' electrical and mechanical properties. This work is a model-driven microdosimetry method that could be used for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Mayank Kumar
- Technical Research Analyst (TRA), Electronics/Biomedical Engineering, Aranca, Mumbai 400076, Maharastra, India;
| | - Sachin Kumar
- Department of Electronics and Communication Engineering, Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India;
| | - Shubhro Chakrabartty
- School of Computer Science Engineering and Applications, D Y Patil International University, Pune 411044, Maharastra, India
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Hala Mostafa
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Bhawna Goyal
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| |
Collapse
|
4
|
Kumar M, Mishra A. Reversible electroporation study of realistic normal and cancerous cervical cells model using avalanche transistor-based nano pulse generator. Biomed Phys Eng Express 2021; 7. [PMID: 34488195 DOI: 10.1088/2057-1976/ac240b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
In this paper, we study the reversible electroporation process on normal and cancerous cervical cells. The 2D contour of the cervical cells is extracted using image processing techniques from the Pap smear images. The conductivity change in the cancer cell model has been used to differentiate the effects of the high-frequency electric field on normal and cancerous cells. The cells' dielectric constant modulates when this high-frequency pulse is applied based on the Debye relaxation. To computationally visualize the effects of the electroporation on the cell membrane, the Smoluchowski equation is employed to estimate pore density, and Maxwell equations are used to determine the electric potential developed across the membrane of the cervical cell. The results demonstrate the suitability of this mathematical model for studying the response of normal and cancerous cells under electric stress. The electric field is supplied with the help of a realistic pulse generator which is designed on the principle of Marx circuit and avalanche transistor-based operations to produce a Gaussian pulse. The paper here uses a strength-duration curve to differentiate the electric field and time in nanoseconds required to electroporate normal and cancerous cells.
Collapse
Affiliation(s)
- Mayank Kumar
- Indian Institute of Information Technology Allahabad, Department of Applied Sciences (Biomedical Engineering), India
| | - Ashutosh Mishra
- Indian Institute of Information Technology Allahabad, Department of Applied Sciences (Biomedical Engineering), India
| |
Collapse
|
5
|
De Angelis A, Denzi A, Merla C, Andre FM, Mir LM, Apollonio F, Liberti M. Confocal Microscopy Improves 3D Microdosimetry Applied to Nanoporation Experiments Targeting Endoplasmic Reticulum. Front Bioeng Biotechnol 2020; 8:552261. [PMID: 33072718 PMCID: PMC7537786 DOI: 10.3389/fbioe.2020.552261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
In the last years, microdosimetric numerical models of cells including intracellular compartments have been proposed, aiming to investigate the poration induced by the application of nanosecond pulsed electric fields (nsPEFs). A limitation of such models was the extremely approximate cell and organelle shapes, leading to an incorrect estimation of the electric field or transmembrane potential distribution in the studied domain. In order to obtain a reliable model of in vitro experiments and a one-to-one comparison between experimental and simulated results, here, a realistic model of 12 human mesenchymal stem cells was built starting from their optical microscopy images where different cell compartments were highlighted. The microdosimetric analysis of the cells group was quantified in terms of electric field and transmembrane potentials (TMPs) induced by an externally applied 10-ns trapezoidal pulse with rise and fall times of 2 ns, with amplitudes ranging from 2 to 30 MV/m. The obtained results showed that the plasma and endoplasmic reticulum (ER) membrane of each cell respond in a different way to the same electric field amplitude, depending on differences in shape, size, and position of the single cell with respect to the applied electric field direction. Therefore, also the threshold for an efficient electroporation is highly different from cell to cell. This difference was quantitatively estimated through the cumulative distribution function of the pore density for the plasma and ER membrane of each cell, representing the probability that a certain percentage of membrane has reached a specific value of pore density. By comparing the dose-response curves resulted from the simulations and those from the experimental study of De Menorval et al. (2016), we found a very good matching of results for plasma and ER membrane when 2% of the porated area is considered sufficient for permeabilizing the membrane. This result is worth of noting as it highlights the possibility to effectively predict the behavior of a cell (or of a population of cells) exposed to nsPEFs. Therefore, the microdosimetric realistic model described here could represent a valid tool in setting up more efficient and controlled electroporation protocols.
Collapse
Affiliation(s)
- Annalisa De Angelis
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Agnese Denzi
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy
| | - Caterina Merla
- National Italian Agency for Energy, New Technologies and Sustainable Economic Development - Department of Sustainability (ENEA, SSPT) - Division of Health Protection Technologies, Rome, Italy
| | - Frank M Andre
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis, Villejuif, France
| | - Lluis M Mir
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis, Villejuif, France
| | - Francesca Apollonio
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Micaela Liberti
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
6
|
De Angelis A, Denzi A, Merla C, Andre FM, Garcia-Sanchez T, Mir LM, Apollonio F, Liberti M. Microdosimetric Realistic Model of a Cell with Endoplasmic Reticulum. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:134-137. [PMID: 31945862 DOI: 10.1109/embc.2019.8857540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When investigating the biophysical effects induced by the interaction between electromagnetic fields and biological cells, it is crucial to estimate the electromagnetic field intensity at the microscopic scale (microdosimetry). This information allows to find a connection between the external applied field and the observed biological event required to establish related biomedical applications. Here, authors present a microdosimetric study based on a 2D realistic model of a cell and its endoplasmic reticulum. The microdosimetric analysis of the cell and endoplasmic reticulum was quantified in terms of electric field and transmembrane potential induced by an externally applied high amplitude 10-ns pulsed electric field. In addition, electroporated local membrane sites and pore densities were also evaluated. This study opens the way to numerically assist experimental applications of nanosecond pulsed electric fields for controlled bio-manipulation of cells and subcellular organelles.
Collapse
|
7
|
Merla C, Liberti M, Consales C, Denzi A, Apollonio F, Marino C, Benassi B. Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1446-1457. [DOI: 10.1016/j.bbamem.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
|
8
|
Chiapperino MA, Bia P, Caratelli D, Gielis J, Mescia L, Dermol‐Černe J, Miklavčič D. Nonlinear Dispersive Model of Electroporation for Irregular Nucleated Cells. Bioelectromagnetics 2019; 40:331-342. [DOI: 10.1002/bem.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pietro Bia
- Department of Design SolutionElettronica S.p.ARome Italy
| | - Diego Caratelli
- Antenna Division, the Antenna CompanyHigh Tech CampusEindhoven The Netherlands
| | - Johan Gielis
- Department of BioengineeringUniversity of AntwerpAntwerp Belgium
| | - Luciano Mescia
- Department of Electrical and Information EngineeringPolytechnic University of BariBari Italy
| | - Janja Dermol‐Černe
- Department of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana Slovenia
| | - Damijan Miklavčič
- Department of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana Slovenia
| |
Collapse
|
9
|
Abstract
Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a space–time (x,y,t) multiphysics model based on quasi-static Maxwell’s equations and nonlinear Smoluchowski’s equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Collapse
|
10
|
Merla C, Liberti M, Marracino P, Muscat A, Azan A, Apollonio F, Mir LM. A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells. Sci Rep 2018; 8:5044. [PMID: 29568067 PMCID: PMC5864909 DOI: 10.1038/s41598-018-23301-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
The analytical and numerical design, implementation, and experimental validation of a new grounded closed coplanar waveguide for wide-band electromagnetic exposures of cells and their optical detection in real-time is reported. The realized device fulfills high-quality requirements for novel bioelectromagnetic experiments, involving elevated temporal and spatial resolutions. Excellent performances in terms of matching bandwidth (less than -10 dB up to at least 3 GHz), emission (below 1 × 10-6 W/m2) and efficiency (around 1) have been obtained as revealed by both numerical simulations and experimental measurements. A low spatial electric field inhomogeneity (coefficient of variation of around 10 %) has been achieved within the cell solutions filling the polydimethylsiloxane reservoir of the conceived device. This original bio-chip based on the grounded closed coplanar waveguide concept opens new possibilities for the development of controlled experiments combining electromagnetic exposures and sophisticated imaging using optical spectroscopic techniques.
Collapse
Affiliation(s)
- Caterina Merla
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France. .,National Italian Agency for New Technology Energy and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, via Anguillarese 301, 00123, Rome, Italy.
| | - Micaela Liberti
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Paolo Marracino
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Adeline Muscat
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| | - Antoine Azan
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| | - Francesca Apollonio
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Lluis M Mir
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| |
Collapse
|
11
|
Merla C, Pakhomov AG, Semenov I, Vernier PT. Frequency spectrum of induced transmembrane potential and permeabilization efficacy of bipolar electric pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1282-1290. [DOI: 10.1016/j.bbamem.2017.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022]
|
12
|
Technological and Theoretical Aspects for Testing Electroporation on Liposomes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5092704. [PMID: 28393078 PMCID: PMC5368396 DOI: 10.1155/2017/5092704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Abstract
Recently, the use of nanometer liposomes as nanocarriers in drug delivery systems mediated by nanoelectroporation has been proposed. This technique takes advantage of the possibility of simultaneously electroporating liposomes and cell membrane with 10-nanosecond pulsed electric fields (nsPEF) facilitating the release of the drug from the liposomes and at the same time its uptake by the cells. In this paper the design and characterization of a 10 nsPEF exposure system is presented, for liposomes electroporation purposes. The design and the characterization of the applicator have been carried out choosing an electroporation cuvette with 1 mm gap between the electrodes. The structure efficiency has been evaluated at different experimental conditions by changing the solution conductivity from 0.25 to 1.6 S/m. With the aim to analyze the influence of device performances on the liposomes electroporation, microdosimetric simulations have been performed considering liposomes of 200 and 400 nm of dimension with different inner and outer conductivity (from 0.05 to 1.6 S/m) in order to identify the voltage needed for their poration.
Collapse
|
13
|
Denzi A, Escobar JAA, Nasta C, Merla C, Benassi B, Consales C, Apollonio F, Liberti M. A microdosimetry study for a realistic shaped nucleus. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4189-4192. [PMID: 28269206 DOI: 10.1109/embc.2016.7591650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last decades, the effects of ultrashort pulsed electric fields have been investigated demonstrating their capability to be involved in a great number of medical applications (e.g. cancer, gene electrotransfer, drug delivery, electrofusion). In particular, experiments in literature demonstrate that internal structures can be involved when pulse duration is reduced. Up to now, the mechanism that permits the electroporation phenomenon has not been completely understood and hence atomistic, microdosimetry and dosimetry models have been developed to help in this field. Aim of this work is to demonstrate the importance of realistically model also the internal organelles to obtain predictive results of effects at sub-cellular level with a microdosimetry model.
Collapse
|