1
|
Bohg C, Öster C, Türkaydin B, Lisurek M, Sanchez-Carranza P, Lange S, Utesch T, Sun H, Lange A. The opening dynamics of the lateral gate regulates the activity of rhomboid proteases. SCIENCE ADVANCES 2023; 9:eadh3858. [PMID: 37467320 PMCID: PMC10355837 DOI: 10.1126/sciadv.adh3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.
Collapse
Affiliation(s)
- Claudia Bohg
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Berke Türkaydin
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michael Lisurek
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Pascal Sanchez-Carranza
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Tillmann Utesch
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Han Sun
- Research Unit Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
2
|
Luenenschloss A, Ter Veld F, Albaum SP, Neddermann TM, Wendisch VF, Poetsch A. Functional Genomics Uncovers Pleiotropic Role of Rhomboids in Corynebacterium glutamicum. Front Microbiol 2022; 13:771968. [PMID: 35265054 PMCID: PMC8899591 DOI: 10.3389/fmicb.2022.771968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
The physiological role of ubiquitous rhomboid proteases, membrane-integral proteins that cleave their substrates inside the lipid bilayer, is still ill-defined in many prokaryotes. The two rhomboid genes cg0049 and cg2767 of Corynebacterium glutamicum were mutated and it was the aim of this study to investigate consequences in respect to growth phenotype, stress resistance, transcriptome, proteome, and lipidome composition. Albeit increased amount of Cg2767 upon heat stress, its absence did not change the growth behavior of C. glutamicum during exponential and stationary phase. Quantitative shotgun mass spectrometry was used to compare the rhomboid mutant with wild type strain and revealed that proteins covering diverse cellular functions were differentially abundant with more proteins affected in the stationary than in the exponential growth phase. An observation common to both growth phases was a decrease in ribosomal subunits and RNA polymerase, differences in iron uptake proteins, and abundance changes in lipid and mycolic acid biosynthesis enzymes that suggested a functional link of rhomboids to cell envelope lipid biosynthesis. The latter was substantiated by shotgun lipidomics in the stationary growth phase, where in a strain-dependent manner phosphatidylglycerol, phosphatidic acid, diacylglycerol and phosphatidylinositol increased irrespective of cultivation temperature.
Collapse
Affiliation(s)
| | - Frank Ter Veld
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefan P Albaum
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias M Neddermann
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany.,Department of Marine Biology, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, Kuo T, Kandel R, Amaro RE, Neal SE. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep 2021; 37:109840. [PMID: 34686332 PMCID: PMC8641752 DOI: 10.1016/j.celrep.2021.109840] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023] Open
Abstract
Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane, where they are correctly folded and then delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) moves these clients from the ER membrane to the cytosol, a process known as retrotranslocation. Our recent work in Saccharomyces cerevisiae reveals a derlin rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study, we identify conserved residues of Dfm1 that are critical for retrotranslocation. We find several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 possesses lipid thinning function to facilitate in the removal of ER membrane substrates, and this feature is conserved in its human homolog, Derlin-1, further implicating that derlin-mediated retrotranslocation is a well-conserved process.
Collapse
Affiliation(s)
- Anahita Nejatfard
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Satarupa Bhaduri
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Conn
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saroj Gourkanti
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Narinderbir Singh
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tiffany Kuo
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Pucadyil T, Kulkarni K, Sengupta D. Molecular Interplay at the Membrane and Impact on Cellular Physiology. J Membr Biol 2021; 254:239-242. [PMID: 34041579 PMCID: PMC8153518 DOI: 10.1007/s00232-021-00183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Kiran Kulkarni
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|