1
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Balandina AN, Koltsova EM, Shibeko AM, Kuprash AD, Budkova VA, Demina IA, Ignatova AA, Fadeeva OA, Vijay R, Nair SC, Srivastava A, Shi Q, Ataullakhanov FI, Panteleev MA. Platelets provide robustness of spatial blood coagulation to the variation of initial conditions. Thromb Res 2023; 230:133-143. [PMID: 37717370 DOI: 10.1016/j.thromres.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Activated platelets provide phospholipid surface and secrete coagulation factors, enhancing blood clotting. We investigated the role of platelets in the regulation of blood coagulation spatial dynamics. We activated blood clotting with tissue factor-bearing (TF) surface in platelet-rich plasma (PRP) or platelet-free plasma (PFP). When blood coagulation was initiated by high TF density, clot growth rate (V) in PRP (2 × 105/μL platelets) was only 15 % greater than in PFP. Spatial distribution of thrombin in PRP had a peak-like shape in the area of the fibrin clot edge, while in PFP thrombin was distributed in the shape of descending plateau. Platelet inhibition with prostaglandin E1 or cytochalasin D made spatial thrombin distribution look like in the case of PFP. Inhibition of blood coagulation by natural endogenous inhibitor heparin was diminished in PRP, while the effect of the exogenous or artificial inhibitors (rivaroxaban, nitrophorin, hirudin) remained undisturbed in the presence of platelets. Ten times decrease of the TF surface density greatly depressed blood coagulation in PFP. In PRP only clotting initiation phase was, while the propagation phase remained intact. Coagulation factor deficiency greatly reduced amount of thrombin and decreased V in PFP rather than in PPR. Thus, platelets were redundant for clotting in normal plasma under physiological conditions but provided robustness of the coagulation system to the changes in initial conditions.
Collapse
Affiliation(s)
- Anna N Balandina
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.
| | - Ekaterina M Koltsova
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Alexey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Anna D Kuprash
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Valentina A Budkova
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia
| | - Irina A Demina
- Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | | | | | | | | | | | - Qiang Shi
- Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Fazoil I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia; Lomonosov Moscow State University, Moscow 119234, Russia; Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russia; Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia; Lomonosov Moscow State University, Moscow 119234, Russia; Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
3
|
Chakraborty H, Sengupta D. Preface to Special Issue on Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:633-635. [PMID: 36367553 DOI: 10.1007/s00232-022-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| | - Durba Sengupta
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|