1
|
Peng L, Li K, Li D, Zuo X, Zhan L, Chen M, Gong M, Sun W, Xu E. The p75 neurotrophin receptor attenuates secondary thalamic damage after cortical infarction by promoting angiogenesis. CNS Neurosci Ther 2024; 30:e14875. [PMID: 39072998 DOI: 10.1111/cns.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Angiogenesis is crucial in neuroprotection of secondary thalamic injury after cortical infarction. The p75 neurotrophin receptor (p75NTR) plays a key role in activating angiogenesis. However, the effects of p75NTR on angiogenesis in the thalamus after cortical infarction are largely unknown. Herein we investigate whether p75NTR facilitates angiogenesis to attenuate secondary thalamic damage via activating hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway mediated by Von Hippel-Lindau (VHL) after distal middle cerebral artery occlusion (dMCAO). METHODS The male rat model of dMCAO was established. The effects of p75NTR on the angiogenesis was evaluated using RNA-sequencing, immunohistochemistry, western blot, quantitative real-time polymerase chain reaction, magnetic resonance imaging, behavior tests, viral and pharmacological interventions. RESULTS We found that the p75NTR and vessel density were decreased in ipsilateral thalamus after dMCAO. The p75NTR-VHL interaction was reduced, which promoted the ubiquitination degradation of HIF-1α and reduced VEGF expression after dMCAO. Notably, p75NTR overexpression restrained the ubiquitination degradation of HIF-1α by inhibiting VHL-HIF-1α interaction, further promoted angiogenesis, increased cerebral blood flow of ipsilateral thalamus and improved neurological function after dMCAO. CONCLUSION For the first time, we highlighted that the enhancement of p75NTR-VHL interaction promoted angiogenesis in attenuating secondary thalamic damage after dMCAO.
Collapse
Affiliation(s)
- Linhui Peng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kongping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Neurology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xialin Zuo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Lee H, Lee K, Kim YD, Nam HS, Lee HS, Cho S, Heo JH. Association between substantia nigra degeneration and functional outcome in patients with basal ganglia infarction. Eur J Neurol 2024; 31:e16111. [PMID: 37903090 PMCID: PMC10841447 DOI: 10.1111/ene.16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral infarction in the basal ganglia may cause secondary and delayed neuronal degeneration in the substantia nigra (SN). However, the clinical significance of SN degeneration remains poorly understood. METHODS This retrospective observational study included patients with acute ischemic stroke in the basal ganglia on initial diffusion-weighted imaging who underwent follow-up diffusion-weighted imaging between 4 and 30 days after symptom onset. SN degeneration was defined as a hyperintensity lesion in the SN observed on diffusion-weighted imaging. We compared functional outcomes at 3 months between patients with and without SN degeneration. A poor outcome was defined as a score of 3-6 (functional dependence or death) on the modified Rankin Scale. RESULTS Of 350 patients with basal ganglia infarction (median age = 74.0 years, 53.7% male), 125 (35.7%) had SN degeneration. The proportion of functional dependence or death was 79.2% (99/125 patients) in patients with SN degeneration, which was significantly higher than that in those without SN degeneration (56.4%, 127/225 patients, p < 0.001). SN degeneration was more frequent in patients with functional dependence or death (99/226 patients, 43.8%) than in those with functional independence (26/124 patients, 21.0%, p < 0.001). Multivariable logistic regression analysis showed a significant association between SN degeneration and functional dependence or death (odds ratio = 2.91, 95% confidence interval = 1.17-7.21, p = 0.021). CONCLUSIONS The study showed that patients with degeneration of SN were associated with functional dependence or death at 3 months, suggesting that secondary degeneration is a predictor of poor stroke outcomes and a potential therapeutic target.
Collapse
Affiliation(s)
- Hyungwoo Lee
- Department of NeurologyYonsei University College of MedicineSeoulKorea
- Department of Neurology, Seoul HospitalEwha Womans University College of MedicineSeoulKorea
| | - Kijeong Lee
- Department of NeurologyYonsei University College of MedicineSeoulKorea
| | - Young Dae Kim
- Department of NeurologyYonsei University College of MedicineSeoulKorea
- Integrative Research Center for Cerebrovascular and Cardiovascular DiseasesSeoulKorea
| | - Hyo Suk Nam
- Department of NeurologyYonsei University College of MedicineSeoulKorea
- Integrative Research Center for Cerebrovascular and Cardiovascular DiseasesSeoulKorea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research AffairsYonsei University College of MedicineSeoulKorea
| | - Sunghee Cho
- Burke Neurological InstituteWhite PlainsNew YorkUSA
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ji Hoe Heo
- Department of NeurologyYonsei University College of MedicineSeoulKorea
- Integrative Research Center for Cerebrovascular and Cardiovascular DiseasesSeoulKorea
| |
Collapse
|
3
|
Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, Collins-Praino LE, Walker FR, Nilsson M, Ong LK. Leakage beyond the primary lesion: A temporal analysis of cerebrovascular dysregulation at sites of hippocampal secondary neurodegeneration following cortical photothrombotic stroke. J Neurochem 2023; 167:733-752. [PMID: 38010732 DOI: 10.1111/jnc.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023]
Abstract
We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Rebecca J Hood
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Daniel J Beard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Renée J Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon M Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
4
|
Brunelli S, Giannella E, Bizzaglia M, De Angelis D, Sancesario GM. Secondary neurodegeneration following Stroke: what can blood biomarkers tell us? Front Neurol 2023; 14:1198216. [PMID: 37719764 PMCID: PMC10502514 DOI: 10.3389/fneur.2023.1198216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Stroke is one of the leading causes of death and the primary source of disability in adults, resulting in neuronal necrosis of ischemic areas, and in possible secondary degeneration of regions surrounding or distant to the initial damaged area. Secondary neurodegeneration (SNDG) following stroke has been shown to have different pathogenetic origins including inflammation, neurovascular response and cytotoxicity, but can be associated also to regenerative processes. Aside from focal neuronal loss, ipsilateral and contralateral effects distal to the lesion site, disruptions of global functional connectivity and a transcallosal diaschisis have been reported in the chronic stages after stroke. Furthermore, SNDG can be observed in different areas not directly connected to the primary lesion, such as thalamus, hippocampus, amygdala, substantia nigra, corpus callosum, bilateral inferior fronto-occipital fasciculus and superior longitudinal fasciculus, which can be highlighted by neuroimaging techniques. Although the clinical relevance of SNDG following stroke has not been well understood, the identification of specific biomarkers that reflect the brain response to the damage, is of paramount importance to investigate in vivo the different phases of stroke. Actually, brain-derived markers, particularly neurofilament light chain, tau protein, S100b, in post-stroke patients have yielded promising results. This review focuses on cerebral morphological modifications occurring after a stroke, on associated cellular and molecular changes and on state-of-the-art of biomarkers in acute and chronic phase. Finally, we discuss new perspectives regarding the implementation of blood-based biomarkers in clinical practice to improve the rehabilitation approaches and post stroke recovery.
Collapse
Affiliation(s)
- Stefano Brunelli
- NeuroRehabilitation Unit 4, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emilia Giannella
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mirko Bizzaglia
- Radiology and Diagnostic Imaging Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
5
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
6
|
Sanchez-Bezanilla S, Hood RJ, Collins-Praino LE, Turner RJ, Walker FR, Nilsson M, Ong LK. More than motor impairment: A spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J Cereb Blood Flow Metab 2021; 41:2439-2455. [PMID: 33779358 PMCID: PMC8393292 DOI: 10.1177/0271678x211005877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is emerging evidence suggesting that a cortical stroke can cause delayed and remote hippocampal dysregulation, leading to cognitive impairment. In this study, we aimed to investigate motor and cognitive outcomes after experimental stroke, and their association with secondary neurodegenerative processes. Specifically, we used a photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Motor function was assessed using the cylinder and grid walk tasks. Changes in cognition were assessed using a mouse touchscreen platform. Neuronal loss, gliosis and amyloid-β accumulation were investigated in the peri-infarct and ipsilateral hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed persistent impairment in cognitive function post-stroke, whilst there was a modest spontaneous motor recovery over the investigated period of 84 days. In the peri-infarct region, we detected a reduction in neuronal loss and decreased neuroinflammation over time post-stroke, which potentially explains the spontaneous motor recovery. Conversely, we observed persistent neuronal loss together with concomitant increased neuroinflammation and amyloid-β accumulation in the hippocampus, which likely accounts for the persistent cognitive dysfunction. Our findings indicate that cortical stroke induces secondary neurodegenerative processes in the hippocampus, a region remote from the primary infarct, potentially contributing to the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renée J Turner
- Department of Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia.,LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
7
|
Onufriev MV, Moiseeva YV, Volobueva MN, Kvichansky AA, Tret’yakova LV, Gulyaeva NV. Neuroplastic Changes in Rat Hippocampus after Ischemic Stroke in the Neocortex: The Involvement of the Hypothalamic-Pituitary-Adrenal Axis System and the Neurotrophin System. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
9
|
Baudat C, Maréchal B, Corredor-Jerez R, Kober T, Meuli R, Hagmann P, Michel P, Maeder P, Dunet V. Automated MRI-based volumetry of basal ganglia and thalamus at the chronic phase of cortical stroke. Neuroradiology 2020; 62:1371-1380. [PMID: 32556424 PMCID: PMC7568697 DOI: 10.1007/s00234-020-02477-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Purpose We aimed at assessing the potential of automated MR morphometry to assess individual basal ganglia and thalamus volumetric changes at the chronic phase after cortical stroke. Methods Ninety-six patients (mean age: 65 ± 18 years, male 55) with cortical stroke at the chronic phase were retrospectively included. Patients were scanned at 1.5 T or 3 T using a T1-MPRAGE sequence. Resulting 3D images were processed with the MorphoBox prototype software to automatically segment basal ganglia and thalamus structures, and to obtain Z scores considering the confounding effects of age and sex. Stroke volume was estimated by manual delineation on T2-SE imaging. Z scores were compared between ipsi- and contralateral stroke side and according to the vascular territory. Potential relationship between Z scores and stroke volume was assessed using the Spearman correlation coefficient. Results Basal ganglia and thalamus volume Z scores were lower ipsilaterally to MCA territory stroke (p values < 0.034) while they were not different between ipsi- and contralateral stroke sides in non-MCA territory stroke (p values > 0.37). In MCA territory stroke, ipsilateral caudate nucleus (rho = − 0.34, p = 0.007), putamen (rho = − 0.50, p < 0.001), pallidum (rho = − 0.44, p < 0.001), and thalamus (rho = − 0.48, p < 0.001) volume Z scores negatively correlated with the cortical stroke volume. This relation was not influenced by cardiovascular risk factors or time since stroke. Conclusion Automated MR morphometry demonstrated atrophy of ipsilateral basal ganglia and thalamus at the chronic phase after cortical stroke in the MCA territory. The atrophy was related to stroke volume. These results confirm the potential role for automated MRI morphometry to assess remote changes after stroke.
Collapse
Affiliation(s)
- Cindy Baudat
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Ricardo Corredor-Jerez
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Tobias Kober
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Reto Meuli
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Patrik Michel
- Stroke Center, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Maeder
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
10
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Cao Z, Harvey SS, Bliss TM, Cheng MY, Steinberg GK. Inflammatory Responses in the Secondary Thalamic Injury After Cortical Ischemic Stroke. Front Neurol 2020; 11:236. [PMID: 32318016 PMCID: PMC7154072 DOI: 10.3389/fneur.2020.00236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is one of the major causes of chronic disability worldwide and increasing efforts have focused on studying brain repair and recovery after stroke. Following stroke, the primary injury site can disrupt functional connections in nearby and remotely connected brain regions, resulting in the development of secondary injuries that may impede long-term functional recovery. In particular, secondary degenerative injury occurs in the connected ipsilesional thalamus following a cortical stroke. Although secondary thalamic injury was first described decades ago, the underlying mechanisms still remain unclear. We performed a systematic literature review using the NCBI PubMed database for studies that focused on the secondary thalamic degeneration after cortical ischemic stroke. In this review, we discussed emerging studies that characterized the pathological changes in the secondary degenerative thalamus after stroke; these included excitotoxicity, apoptosis, amyloid beta protein accumulation, blood-brain-barrier breakdown, and inflammatory responses. In particular, we highlighted key findings of the dynamic inflammatory responses in the secondary thalamic injury and discussed the involvement of several cell types in this process. We also discussed studies that investigated the effects of blocking secondary thalamic injury on inflammatory responses and stroke outcome. Targeting secondary injuries after stroke may alleviate network-wide deficits, and ultimately promote stroke recovery.
Collapse
Affiliation(s)
- Zhijuan Cao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Sean S Harvey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Kluge MG, Abdolhoseini M, Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J Cereb Blood Flow Metab 2019; 39:2456-2470. [PMID: 30204044 PMCID: PMC6893987 DOI: 10.1177/0271678x18797346] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke. We confirmed the highly specific nature of non-responsive microglia processes to sites of SND. Non-responsiveness was at no time observed at the peri-infarct but started in the thalamus seven days post-stroke and persisted for 56 days. Loss of directed process extension is not a reflection of general functional paralysis as phagocytic function continued to increase over time. Additionally, we identified that somal P2Y12 was present on non-responsive microglia in the first two weeks after stroke but not at later time points. Finally, both classical microglia activation and loss of process extension are highly correlated with neuronal damage. Our findings highlight the importance of microglia, specifically microglia dynamic functions, to the progression of SND post-stroke, and their potential relevance as modulators or therapeutic targets during stroke recovery.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| |
Collapse
|
13
|
Kinoshita F, Kinoshita T, Toyoshima H, Shinohara Y. Ipsilateral atrophy of the mammillary body and fornix after thalamic stroke: evaluation by MRI. Acta Radiol 2019; 60:1512-1522. [PMID: 30909707 DOI: 10.1177/0284185119839166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fumiko Kinoshita
- Research Institute for Brain and Blood Vessels-Akita, Akita, Japan
| | | | - Hideto Toyoshima
- Research Institute for Brain and Blood Vessels-Akita, Akita, Japan
| | - Yuki Shinohara
- Research Institute for Brain and Blood Vessels-Akita, Akita, Japan
| |
Collapse
|
14
|
Liu G, Tan X, Dang C, Tan S, Xing S, Huang N, Peng K, Xie C, Tang X, Zeng J. Regional Shape Abnormalities in Thalamus and Verbal Memory Impairment After Subcortical Infarction. Neurorehabil Neural Repair 2019; 33:476-485. [PMID: 31081462 DOI: 10.1177/1545968319846121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Subcortical infarcts can result in verbal memory impairment, but the potential underlying mechanisms remain unknown. Objective. We investigated the spatiotemporal deterioration patterns of brain structures in patients with subcortical infarction and identified the regions that contributed to verbal memory impairment. Methods. Cognitive assessment and structural magnetic resonance imaging were performed 1, 4, and 12 weeks after stroke onset in 28 left-hemisphere and 22 right-hemisphere stroke patients with subcortical infarction. Whole-brain volumetric analysis combined with a further-refined shape analysis was conducted to analyze longitudinal morphometric changes in brain structures and their relationship to verbal memory performance. Results. Between weeks 1 and 12, significant volume decreases in the ipsilesional basal ganglia, inferior white matter, and thalamus were found in the left-hemisphere stroke group. Among those 3 structures, only the change rate of the thalamus volume was significantly correlated with that in immediate recall. For the right-hemisphere stroke group, only the ipsilesional basal ganglia survived the week 1 to week 12 group comparison, but its change rate was not significantly correlated with the verbal memory change rate. Shape analysis of the thalamus revealed atrophies of the ipsilesional thalamic subregions connected to the prefrontal, temporal, and premotor cortices in the left-hemisphere stroke group and positive correlations between the rates of those atrophies and the change rate in immediate recall. Conclusions. Secondary damage to the thalamus, especially to the left subregions connected to specific cortices, may be associated with early verbal memory impairment following an acute subcortical infarct.
Collapse
Affiliation(s)
- Gang Liu
- 1 The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoqing Tan
- 2 Southern University of Science and Technology, Shenzhen, Guangdong, China.,3 Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chao Dang
- 1 The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuangquan Tan
- 1 The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shihui Xing
- 1 The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nianwei Huang
- 2 Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kangqiang Peng
- 4 Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chuanmiao Xie
- 4 Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaoying Tang
- 2 Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinsheng Zeng
- 1 The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Yanev P, Seevinck PR, Rudrapatna US, Bouts MJ, van der Toorn A, Gertz K, Kronenberg G, Endres M, van Tilborg GA, Dijkhuizen RM. Magnetic resonance imaging of local and remote vascular remodelling after experimental stroke. J Cereb Blood Flow Metab 2017; 37:2768-2779. [PMID: 27798270 PMCID: PMC5536787 DOI: 10.1177/0271678x16674737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pattern of vascular remodelling in relation to recovery after stroke remains largely unclear. We used steady-state contrast-enhanced magnetic resonance imaging to assess the development of cerebral blood volume and microvascular density in perilesional and exofocal areas from (sub)acutely to chronically after transient stroke in rats. Microvascular density was verified histologically after infusion with Evans Blue dye. At day 1, microvascular cerebral blood volume and microvascular density were reduced in and around the ischemic lesion (intralesional borderzone: microvascular cerebral blood volume = 72 ± 8%; microvascular density = 76 ± 8%) (P < 0.05), while total cerebral blood volume remained relatively unchanged. Perilesional microvascular cerebral blood volume and microvascular density subsequently normalized (day 7) and remained relatively stable (day 70). In remote ipsilateral areas in the thalamus and substantia nigra - not part of the ischemic lesion - microvascular density gradually increased between days 1 and 70 (thalamic ventral posterior nucleus: microvascular density = 119 ± 9%; substantia nigra: microvascular density = 122 ± 8% (P < 0.05)), which was confirmed histologically. Our data indicate that initial microvascular collapse, with maintained collateral flow in larger vessels, is followed by dynamic revascularization in perilesional tissue. Furthermore, progressive neovascularization in non-ischemic connected areas may offset secondary neuronal degeneration and/or contribute to non-neuronal tissue remodelling. The complex spatiotemporal pattern of vascular remodelling, involving regions outside the lesion territory, may be a critical endogenous process to promote post-stroke brain reorganization.
Collapse
Affiliation(s)
- Pavel Yanev
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Umesh S Rudrapatna
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Jrj Bouts
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette van der Toorn
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Gertz
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany.,5 German Center for Neurodegenerative Diseases (DZNE), Universitaetsmedizin Berlin, Berlin, Germany.,6 Berlin Institute of Health (BIH), Berlin, Germany
| | - Geralda A van Tilborg
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Ong LK, Zhao Z, Kluge M, Walker FR, Nilsson M. Chronic stress exposure following photothrombotic stroke is associated with increased levels of Amyloid beta accumulation and altered oligomerisation at sites of thalamic secondary neurodegeneration in mice. J Cereb Blood Flow Metab 2017; 37:1338-1348. [PMID: 27342322 PMCID: PMC5453455 DOI: 10.1177/0271678x16654920] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exposure to severe stress following stroke is recognised to complicate the recovery process. We have identified that stress can exacerbate the severity of post-stroke secondary neurodegeneration in the thalamus. In this study, we investigated whether exposure to stress could influence the accumulation of the neurotoxic protein Amyloid-β. Using an experimental model of focal cortical ischemia in adult mice combined with exposure to chronic restraint stress, we examined changes within the contra- and ipsilateral thalamus at six weeks post-stroke using Western blotting and immunohistochemical approaches. Western blotting analysis indicated that stroke was associated with a significant enhancement of the 25 and 50 kDa oligomers within the ipsilateral hemisphere and the 20 kDa oligomer within the contralateral hemisphere. Stroked animals exposed to stress exhibited an additional increase in multiple forms of Amyloid-beta oligomers. Immunohistochemistry analysis confirmed that stroke was associated with a significant accumulation of Amyloid-beta within the thalami of both hemispheres, an effect that was exacerbated in stroke animals exposed to stress. Given that Amyloid-beta oligomers, most notably the 30-40 and 50 kDa oligomers, are recognised to correlate with accelerated cognitive decline, our results suggest that monitoring stress levels in patients recovering from stroke may merit consideration in the future.
Collapse
Affiliation(s)
- Lin Kooi Ong
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Zidan Zhao
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murielle Kluge
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Frederick R Walker
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Michael Nilsson
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| |
Collapse
|
17
|
Kooi Ong L, Rohan Walker F, Nilsson M. Is Stroke a Neurodegenerative Condition? A Critical Review of Secondary Neurodegeneration and Amyloid-beta Accumulation after Stroke. AIMS MEDICAL SCIENCE 2017. [DOI: 10.3934/medsci.2017.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Weishaupt N, Zhang A, Deziel RA, Tasker RA, Whitehead SN. Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions. Front Neurosci 2016; 10:81. [PMID: 26973455 PMCID: PMC4773446 DOI: 10.3389/fnins.2016.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents.
Collapse
Affiliation(s)
- Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Angela Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Robert A Deziel
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| |
Collapse
|
19
|
Secondary parenchymal and vascular changes after middle cerebral artery stroke in children. Neuroradiology 2013; 55:1259-66. [DOI: 10.1007/s00234-013-1248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
20
|
Lipsanen A, Kalesnykas G, Pro-Sistiaga P, Hiltunen M, Vanninen R, Bernaudin M, Touzani O, Jolkkonen J. Lack of secondary pathology in the thalamus after focal cerebral ischemia in nonhuman primates. Exp Neurol 2013; 248:224-7. [PMID: 23810737 DOI: 10.1016/j.expneurol.2013.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Remote regions such as the thalamus undergo secondary degeneration after cerebral ischemia. In rodents, the pathology in the thalamus is characterized by a robust inflammatory reaction, β-amyloid (Aβ) accumulation and calcification. Here we studied whether nonhuman primates subjected to middle cerebral artery occlusion (MCAO) display a similar pathology. Common marmosets (n=4) were subjected to transient MCAO for 3 h. Two sham-operated animals served as controls. All animals underwent MRI examination (T2) on postoperative day 7 to assess the location of the infarct. After a 45-day follow-up period, the animals were perfused for histology to evaluate β-amyloid and calcium load in the peri-infarct regions and the thalamus. There was no Aβ or calcium staining in the sham-operated marmosets. The contralateral hemisphere was devoid of Aβ and calcium staining in MCAO animals, except calcium staining in one animal. In the ipsilateral cortex, patchy groups of Aβ-positive cells were observed. Occasional calcium staining was observed in the peri-infarct regions, lesion core, and remote regions such as the substantia nigra. The most important, the thalamus was devoid of any sign of Aβ and calcium aggregation in MCAO animals. Staining for glial fibrillary acidic protein (GFAP) showed marked astrogliosis in the ipsilateral cortex and thalamus. In conclusion, our preliminary study in marmosets did not identify Aβ and calcium pathology in the thalamus following cerebral ischemia as shown in rodents.
Collapse
Affiliation(s)
- Anu Lipsanen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Geisler S, Willuweit A, Schroeter M, Zilles K, Hamacher K, Galldiks N, Shah NJ, Coenen HH, Langen KJ. Detection of remote neuronal reactions in the Thalamus and Hippocampus induced by rat glioma using the PET tracer cis-4-[¹⁸F]fluoro-D-proline. J Cereb Blood Flow Metab 2013; 33:724-31. [PMID: 23385199 PMCID: PMC3652687 DOI: 10.1038/jcbfm.2013.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/03/2013] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
After cerebral ischemia or trauma, secondary neurodegeneration may occur in brain regions remote from the lesion. Little is known about the capacity of cerebral gliomas to induce secondary neurodegeneration. A previous study showed that cis-4-[(18)F]fluoro-D-proline (D-cis-[(18)F]FPro) detects secondary reactions of thalamic nuclei after cortical infarction with high sensitivity. Here we investigated the potential of D-cis-[(18)F]FPro to detect neuronal reactions in remote brain areas in the F98 rat glioma model using ex vivo autoradiography. Although the tumor tissue of F98 gliomas showed no significant D-cis-[(18)F]FPro uptake, we observed prominent tracer uptake in 7 of 10 animals in the nuclei of the ipsilateral thalamus, which varied with the specific connectivity with the cortical areas affected by the tumor. In addition, strong D-cis-[(18)F]FPro accumulation was noted in the hippocampal area CA1 in two animals with ipsilateral F98 gliomas involving hippocampal subarea CA3 rostral to that area. Furthermore, focal D-cis-[(18)F]FPro uptake was present in the necrotic center of the tumors. Cis-4-[(18)F]fluoro-D-proline uptake was accompanied by microglial activation in the thalamus, in the hippocampus, and in the necrotic center of the tumors. The data suggest that brain tumors induce secondary neuronal reactions in remote brain areas, which may be detected by positron emission tomography (PET) using D-cis-[(18)F]FPro.
Collapse
Affiliation(s)
- Stefanie Geisler
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine, INM-1—Structural and Functional Organization of the Brain, Research Centre Jülich, Jülich, Germany
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Kurt Hamacher
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-5—Nuclear Chemistry, Research Centre Jülich, Jülich, Germany
| | - Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Heinz H Coenen
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-5—Nuclear Chemistry, Research Centre Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| |
Collapse
|
22
|
Kamiya K, Sato N, Nakata Y, Ito K, Kimura Y, Ota M, Takahashi A, Mori H, Kunimatsu A, Ohtomo K. Postoperative transient reduced diffusion in the ipsilateral striatum and thalamus. AJNR Am J Neuroradiol 2012; 34:524-32. [PMID: 22899787 DOI: 10.3174/ajnr.a3242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Restriction of diffusion has been reported in the early phase of secondary neuronal degeneration, such as wallerian degeneration. The purpose of this study was to investigate postoperative transient reduced diffusion in the ipsilateral striatum and thalamus as a remote effect of surgery. MATERIALS AND METHODS Six hundred two postoperative MR imaging examinations in 125 patients after cerebral surgery were retrospectively reviewed, focusing on the presence of reduced diffusion in the striatum and/or thalamus. The distribution of reduced diffusion in the striatum was classified into 3 groups: anterior, central, and posterior. Reduced diffusion in the thalamus was also classified on the basis of the anatomic locations of the thalamic nuclei. Further follow-up MRI was available in all patients with postoperative reduced diffusion, and acute infarctions were excluded. The patient medical records were reviewed to evaluate neurologic status. RESULTS Restriction of diffusion was observed in the striatum and/or thalamus ipsilateral to the surgical site in 17 patients (13.6%). The distribution of signal abnormality correlated with the location of the operation, in concordance with the architecture of the striatocortical and thalamocortical connections. Reduced diffusion was observed from days 7 to 46 after the operation, especially during days 8-21. The signal abnormalities completely resolved on follow-up examinations. The median follow-up period was 202 days (interquartile range, 76-487 days). CONCLUSIONS Postoperative transient reduced diffusion in the ipsilateral striatum and/or thalamus likely represents an early phase of secondary neuronal degeneration based on its characteristic distribution and time course. Clinically, this reduced diffusion should not be mistaken for postoperative ischemic injury.
Collapse
Affiliation(s)
- K Kamiya
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Martín A, San Sebastián E, Gómez-Vallejo V, Llop J. Positron emission tomograghy with [¹³N]ammonia evidences long-term cerebral hyperperfusion after 2h-transient focal ischemia. Neuroscience 2012; 213:47-53. [PMID: 22521831 DOI: 10.1016/j.neuroscience.2012.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE It is well known that after cerebral ischemia, brain suffers blood flow changes over time that have been correlated with inflammation, angiogenesis and functional recovery processes. Nevertheless, post-ischemic spatiotemporal changes of brain perfusion have not been fully investigated to date. Here we tested whether PET with [¹³N]ammonia would evidence the perfusion changes presented by different brain regions in an experimental model of brain ischemia. EXPERIMENTAL PROCEDURES Seven rats were subjected to a 2-h transient middle cerebral artery occlusion with reperfusion. PET studies were performed longitudinally using [¹³N]ammonia at 1, 3, 7, 14, 21 and 28 days after cerebral ischemia. RESULTS In vivo PET imaging showed a significant increase in [¹³N]ammonia uptake at 7 days after cerebral ischemia with respect to one day after the occlusion in the cerebral territory irrigated by the MCA in both the ischemic and contralateral hemispheres. This increase was followed by a return to control values at day 28 after ischemia onset. Brain regions located both inside and outside the primary infarct areas showed similar perfusion changes after cerebral ischemia. CONCLUSIONS [¹³N]ammonia shows hemodynamic changes after stroke involving hyperperfusion that might be related to angiogenesis and functional recovery. Long-term blood hyperperfusion is found both in ischemic and remote areas to infarction. These results may contribute to a better understanding of the evolution of cerebral ischemic lesion in animal models.
Collapse
Affiliation(s)
- A Martín
- Molecular Imaging Unit, CIC biomaGUNE, Spain.
| | | | | | | |
Collapse
|
24
|
Zhang J, Zhang Y, Xing S, Liang Z, Zeng J. Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 2012; 43:1700-5. [PMID: 22492515 DOI: 10.1161/strokeaha.111.632448] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jian Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | | | | | | | | |
Collapse
|
25
|
Li JJ, Xing SH, Zhang J, Hong H, Li YL, Dang C, Zhang YS, Li C, Fan YH, Yu J, Pei Z, Zeng JS. Decrease of tight junction integrity in the ipsilateral thalamus during the acute stage after focal infarction and ablation of the cerebral cortex in rats. Clin Exp Pharmacol Physiol 2011; 38:776-82. [DOI: 10.1111/j.1440-1681.2011.05591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Volumetric MRI and 1H MRS study of hippocampus in unilateral MCAO patients: relationship between hippocampal secondary damage and cognitive disorder following stroke. Eur J Radiol 2011; 81:2788-93. [PMID: 21945401 DOI: 10.1016/j.ejrad.2011.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/26/2011] [Accepted: 08/28/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. MATERIALS AND METHODS [corrected] Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ((1)H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. RESULTS The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini-Mental State Examination (MMSE) score. CONCLUSION Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and (1)H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment.
Collapse
|
27
|
Hayward NMEA, Yanev P, Haapasalo A, Miettinen R, Hiltunen M, Gröhn O, Jolkkonen J. Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab 2011; 31:1119-32. [PMID: 21081957 PMCID: PMC3070972 DOI: 10.1038/jcbfm.2010.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral blood flow (CBF) is disrupted after focal ischemia in rats. We examined long-term hemodynamic and cerebrovascular changes in the rat thalamus after focal cerebral ischemia. Cerebral blood flow quantified by arterial spin labeling magnetic resonance imaging was decreased in the ipsilateral and contralateral thalamus 2 days after cerebral ischemia. Partial thalamic CBF recovery occurred by day 7, then the ipsilateral thalamus was chronically hyperperfused at 30 days and 3 months compared with its contralateral side. This contrasted with permanent hypoperfusion in the ipsilateral cortex. Angiogenesis was indicated by endothelial cell (RECA-1) immunohistochemistry that showed increased blood vessel branching in the ipsilateral thalamus at the end of the 3-month follow-up. Only transient thalamic IgG extravasation was observed, indicating that the blood-brain barrier was intact after day 2. Angiogenesis was preceded by transiently altered expression levels of cadherin family adhesion molecules, cadherin-7, protocadherin-1, and protocadherin-17. In conclusion, thalamic pathology after focal cerebral ischemia involved long-term hemodynamic changes and angiogenesis preceded by altered expression of vascular adhesion factors. Postischemic angiogenesis in the thalamus represents a novel type of remote plasticity, which may support removal of necrotic brain tissue and aid functional recovery.
Collapse
Affiliation(s)
- Nick M E A Hayward
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Viscomi M, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M. The endocannabinoid system: A new entry in remote cell death mechanisms. Exp Neurol 2010; 224:56-65. [DOI: 10.1016/j.expneurol.2010.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
29
|
Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J Cereb Blood Flow Metab 2010; 30:273-85. [PMID: 19794396 PMCID: PMC2949113 DOI: 10.1038/jcbfm.2009.209] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using multimodal magnetic resonance imaging (MRI), behavioral, and immunohistochemical analyses, we examined pathological changes at the acute, sub-acute, and chronic stages, induced by permanent or temporary ischemia in the common marmoset. Animals underwent either permanent (pMCAO) or 3-h transient (tMCAO) occlusion of the middle cerebral artery (MCAO) by the intraluminal thread approach. MRI scans were performed at 1 h, 8, and 45 days after MCAO. Sensorimotor deficits were assessed weekly up to 45 days after MCAO. Immunohistological studies were performed to examine neuronal loss, astrogliosis, and neurogenesis. Remote lesions were analyzed using retrograde neuronal tracers. At day 8 (D8), the lesion defined on diffusion tensor imaging (DTI)-MRI and T2-MRI was significantly larger in pMCAO as compared with that in the tMCAO group. At D45, the former still displayed abnormal signals in T2-MRI. Post-mortem analyses revealed widespread neuronal loss and associated astrogliosis to a greater extent in the pMCAO group. Neurogenesis was increased in both groups in the vicinity of the lesion. Disconnections between the caudate and the temporal cortex, and between the parietal cortex and the thalamus, were observed. Sensorimotor impairments were more severe and long-lasting in pMCAO relative to tMCAO. The profile of brain damage and functional deficits seen in the marmoset suggests that this model could be suitable to test therapies against stroke.
Collapse
|
30
|
Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, Enomoto M, Kugino K. Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in Cynomolgus monkeys. ACTA ACUST UNITED AC 2007; 59:9-16. [PMID: 17596924 DOI: 10.1016/j.etp.2007.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
A monkey model (Cynomolgus) was established to evaluate the delayed neurological damage evident at areas distant from ischemic cerebral foci. In addition to proton magnetic resonance spectroscopy (MRS) monitoring in life, histological examinations of specimens of the brain was conducted on lesions produced 6h and 1, 2, 4 and 8 weeks after unilateral (left) permanent middle cerebral artery occlusion (pMCO) on five monkeys. In addition to the typical images evident at primary ischemic foci around the middle cerebral artery, MRS revealed and enhanced, clearer region, due to edema extending into the reticular and compact area of the left substantia nigra one week after pMCO, inducing right hemiparesis caused by focal cerebral ischemia. Similar histological lesions were also induced in the left thalamus 4 weeks after pMCO. Thereafter, a variety of histological findings including astrocytic activation, reduced number of nerve cells and gliosis were found in the above described areas far apart from the original ischemic cerebral foci. Our monkey model should be suitable for studies elucidating the pathological process in cerebral ischemia as well as for investigating therapeutic strategies involving ischemic stroke in humans.
Collapse
|
31
|
Block F, Dihné M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 2005; 75:342-65. [PMID: 15925027 DOI: 10.1016/j.pneurobio.2005.03.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/15/2005] [Accepted: 03/31/2005] [Indexed: 11/22/2022]
Abstract
Focal brain lesions can lead to metabolic and structural changes in areas distant from but connected to the lesion site. After focal ischemic or excitotoxic lesions of the cortex and/or striatum, secondary changes have been observed in the thalamus, substantia nigra pars reticulata, hippocampus and spinal cord. In all these regions, inflammatory changes characterized by activation of microglia and astrocytes appear. In the thalamus, substantia nigra pars reticulata and hippocampus, an expression of proinflammatory cytokine like tumor necrosis factor-alpha and interleukin-1beta is induced. However, time course of expression and cellular localisation differ between these regions. Neuronal damage has consistently been observed in the thalamus, substantia nigra and spinal cord. It can be present in the hippocampus depending on the procedure of induction of focal cerebral ischemia. This secondary neuronal damage has been linked to antero- and retrograde degeneration. Anterograde degeneration is associated with somewhat later expression of cytokines, which is localised in neurons. In case of retrograde degeneration, the expression of cytokines is earlier and is localised in astrocytes. Pharmacological intervention aiming at reducing expression of tumor necrosis factor-alpha leads to reduction of secondary neuronal damage. These first results suggest that the inflammatory changes in remote areas might be involved in the pathogenesis of secondary neuronal damage.
Collapse
Affiliation(s)
- F Block
- Department of Neurology UK Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|