1
|
Lu H, Jing D, Chen Y, Cui C, Gao R, Wang L, Liang Z, Chen K, Wu L. Metabolic Changes Detected by 18F-FDG PET in the Preclinical Stage of Familial Creutzfeldt-Jakob Disease. J Alzheimers Dis 2021; 77:1513-1521. [PMID: 32925055 DOI: 10.3233/jad-200576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pathologic processes in Creutzfeldt-Jakob disease (CJD) are not fully understood. Familial CJD (fCJD) gives opportunities to discover pathologic changes in the preclinical stage. OBJECTIVE To investigate cerebral glucose metabolism in the preclinical stage via 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in fCJD. METHODS Seven asymptomatic carriers of G114V mutation and six family members without PRNP mutation from the same fCJD kindred were included, and were followed for 2 years. Ten symptomatic CJD patients were also recruited. All subjects underwent standardized clinical examinations and 18F-FDG PET scans. Results were compared in three groups: baseline carriers against non-carriers (baseline analysis), changes after 2 years in carriers (follow-up analysis), and differences between symptomatic CJD patients and healthy controls (CJD patients analysis). RESULTS No carriers developed any neurological symptoms during 2-year follow-up. Baseline analysis: carriers demonstrates decreased metabolism (p < 0.001) in left and right postcentral, left fusiform, left superior temporal, left lingual, left superior parietal, and left Heschl gyrus. Follow-up analysis shows metabolic decline (p < 0.001) in right inferior temporal, left supra-marginal and left postcentral lobe, and increased metabolism (p < 0.001) in left fusiform, left angular, left thalamus, left Heschl's, right Rolandic operculum, and left superior parietal gyrus. CJD patients demonstrates decreased metabolism in right inferior triangularis frontal gyrus, right middle occipital gyrus, right putamen, right thalamus, and right middle temporal gyrus. CONCLUSION Hypo-metabolism of parietal and temporal lobe can be detected by 18F-FDG PET in the preclinical stage of CJD. Subcortical area might compensate in the preclinical stage and decompensate in the symptomatic stage.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chunlei Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Liang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
In Vivo Longitudinal (1)H MRS Study of Transgenic Mouse Models of Prion Disease in the Hippocampus and Cerebellum at 14.1 T. Neurochem Res 2015. [PMID: 26202424 DOI: 10.1007/s11064-015-1643-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vivo (1)H MR spectroscopy allows the non invasive characterization of brain metabolites and it has been used for studying brain metabolic changes in a wide range of neurodegenerative diseases. The prion diseases form a group of fatal neurodegenerative diseases, also described as transmissible spongiform encephalopathies. The mechanism by which prions elicit brain damage remains unclear and therefore different transgenic mouse models of prion disease were created. We performed an in vivo longitudinal (1)H MR spectroscopy study at 14.1 T with the aim to measure the neurochemical profile of Prnp -/- and PrPΔ32-121 mice in the hippocampus and cerebellum. Using high-field MR spectroscopy we were able to analyze in details the in vivo brain metabolites in Prnp -/- and PrPΔ32-121 mice. An increase of myo-inositol, glutamate and lactate concentrations with a decrease of N-acetylaspartate concentrations were observed providing additional information to the previous measurements.
Collapse
|
3
|
Hu R, Huang D, Tong J, Liao Q, Hu Z, Ouyang W. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction. Neural Regen Res 2014; 9:143-52. [PMID: 25206795 PMCID: PMC4146156 DOI: 10.4103/1673-5374.125343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 12/25/2022] Open
Abstract
This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.
Collapse
Affiliation(s)
- Rong Hu
- Department of Anesthesia, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dong Huang
- Department of Anesthesia, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianbin Tong
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Qin Liao
- Department of Anesthesia, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhonghua Hu
- Department of Anesthesia, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen Ouyang
- Department of Anesthesia, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
McDade EM, Boeve BF, Fields JA, Kumar N, Rademakers R, Baker MC, Knopman BDS, Petersen RC, Jack CR, Kantarci K. MRS in early and presymptomatic carriers of a novel octapeptide repeat insertion in the prion protein gene. J Neuroimaging 2013; 23:409-13. [PMID: 22612156 PMCID: PMC3480551 DOI: 10.1111/j.1552-6569.2012.00717.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To evaluate the proton magnetic resonance (MR) spectroscopy ((1) H MRS) changes in carriers of a novel octapeptide repeat insertion in the prion protein gene (PRNP) and family history of frontotemporal dementia with ataxia. Four at-risk mutation carriers and 13 controls were compared using single voxel, short TE, (1) H MRS from the posterior cingulate gyrus. The mutation carriers had an increased choline/creatine, P = .003 and increased myoinositol/creatine ratio, P = .003. (1) H MRS identified differences in markers of glial activity and choline metabolism in pre- and early-symptomatic carriers of a novel PRNP gene octapeptide insertion. These findings expand the possible diagnostic utility of (1) H MRS in familial prion disorders.
Collapse
Affiliation(s)
- Eric M McDade
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ortega-Cubero S, Luquín M, Domínguez I, Arbizu J, Pagola I, Carmona-Abellán M, Riverol M. Structural and functional neuroimaging in human prion diseases. NEUROLOGÍA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.nrleng.2011.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Letourneau-Guillon L, Wada R, Kucharczyk W. Imaging of prion diseases. J Magn Reson Imaging 2012; 35:998-1012. [PMID: 22499277 DOI: 10.1002/jmri.23504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prion diseases are caused by self-replicating proteins that induce lethal neurodegenerative disorders. In the last decade, the understanding of the different clinical, pathological, and neuroimaging phenotypes of this group of disorders has evolved paralleling the advances in prion molecular biology. From an imaging standpoint, the implementation of diffusion-weighted imaging in routine practice has markedly facilitated the detection of prion diseases, especially Creutzfeldt-Jakob. Less frequent prion-related disorders, including genetic diseases, may also benefit from progresses in the field of quantitative diffusion-weighted imaging, MR spectroscopy or molecular imaging. Herein, we present a review of the neuroimaging features of the prion disorders known to affect humans emphasizing the important contribution of MRI in the diagnosis of this group of disorders.
Collapse
Affiliation(s)
- Laurent Letourneau-Guillon
- Department of Diagnostic Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
8
|
Structural and functional neuroimaging in human prion diseases. Neurologia 2011; 28:299-308. [PMID: 21621879 DOI: 10.1016/j.nrl.2011.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/26/2011] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Prion diseases are neurodegenerative disorders resulting from the accumulation of a misfolded isoform of the cellular prion protein (PrPc). They can occur as acquired, sporadic, or hereditary forms. Although prion diseases show a wide range of phenotypic variations, pathological features and clinical evolution, they are all characterised by a common unfavourable course and a fatal outcome. REVIEW SUMMARY Some variants, such as kuru, have practically disappeared, while others, for example the variant Creutzfeldt-Jakob (vCJD) or those attributable to iatrogenic causes, are still in force and pose a challenge to current medicine. There are no definitive pre-mortem diagnostic tests, except for vCJD, where a tonsil biopsy detects 100% of the cases. For this reason, diagnostic criteria dependent on statistical probability have had to be created. These require complementary examinations, such as an electroencephalogram (EEG) or the detection of 14-3-3 protein in cerebrospinal fluid (CSF). Only the pulvinar sign in magnetic resonance imaging (MRI) has been included as a vCJD diagnostic criterion. The present review discusses neuroimaging findings for each type of prion disease in patients with a definitive histopathological diagnosis. CONCLUSIONS The aim is to define the usefulness of these complementary examinations as a tool for the diagnosis of this family of neurodegenerative diseases.
Collapse
|
9
|
Fujita K, Harada M, Yuasa T, Sasaki M, Izumi Y, Kaji R. Temporal evolution of sporadic Creutzfeldt–Jakob disease monitored by 3-Tesla MR spectroscopy. J Neurol 2011; 258:1368-70. [DOI: 10.1007/s00415-011-5939-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 02/07/2023]
|
10
|
Kantarci K, Boeve BF, Wszolek ZK, Rademakers R, Whitwell JL, Baker MC, Senjem ML, Samikoglu AR, Knopman DS, Petersen RC, Jack CR. MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology 2010; 75:771-8. [PMID: 20805522 PMCID: PMC2938968 DOI: 10.1212/wnl.0b013e3181f073c7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine the proton magnetic resonance spectroscopy ((1)H MRS) changes in carriers of microtubule-associated protein (MAPT) mutations in a case-control study. METHODS Patients with MAPT mutations (N279K, V337M, R406W, IVS9-10G>T, P301L) from 5 different families (n = 24) underwent MRI and single voxel (1)H MRS from the posterior cingulate gyrus inferior precuneus at 3 T. Ten of the patients were symptomatic with median Clinical Dementia Rating sum of boxes score (CDR-SOB) of 6.5 and 14 patients were presymptomatic with CDR-SOB of 0. Age- and sex-matched controls (n = 24) were recruited. RESULTS Symptomatic MAPT mutation carriers were characterized by decreased N-acetylaspartate/creatine (NAA/Cr) ratio, an index of neuronal integrity, increased myoinositol (mI)/Cr ratio, a possible marker for glial activity, decreased NAA/mI, and hippocampal atrophy (p < 0.001). Whereas presymptomatic MAPT mutation carriers had elevated mI/Cr and decreased NAA/mI (p < 0.001), NAA/Cr levels and hippocampal volumes were not different from controls. Decrease in NAA/Cr (R(2) = 0. 22; p = 0.021) and hippocampal volumes (R(2) = 0.46; p < 0.001) were associated with proximity to the expected or actual age at symptom onset in MAPT mutation carriers. CONCLUSION (1)H MRS metabolite abnormalities characterized by an elevated mI/Cr and decreased NAA/mI are present several years before the onset of symptoms in MAPT mutation carriers. The data suggest an ordered sequencing of the (1)H MRS and MRI biomarkers. MI/Cr, a possible index of glial proliferation, precedes the decrease in neuronal integrity marker NAA/Cr and hippocampal atrophy. (1)H MRS may be a useful inclusion biomarker for preventive trials in presymptomatic carriers of MAPT mutations and possibly other proteinopathies.
Collapse
Affiliation(s)
- K Kantarci
- Departmentsof Radiology, Mayo Clinic, Rochester, MN 55905, USA. kantarci.kejal@mayo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 2010; 40:3-30. [PMID: 19937238 DOI: 10.1007/s00247-009-1450-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/01/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ((1)H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.
Collapse
|
12
|
Ioannides P, Karacostas D. Neuroimaging in human prion disease: Searching in the mist. World J Radiol 2009; 1:45-9. [PMID: 21160720 PMCID: PMC2999305 DOI: 10.4329/wjr.v1.i1.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 02/06/2023] Open
Abstract
Human prion disease is a rare, uniformly fatal neurodegenerative disorder.Its precise pathogenesis is obscure. The clinical profile of the disease differs among its various forms. There are no definitive diagnostic tests (except for brain biopsy) or proven treatment. To increase the clinical diagnostic sensitivity and specificity, three laboratory tests, including electroencephalogram, cerebrospinal fluid testing for 14-3-3 protein, and magnetic resonance imaging, are currently used. Additionally, proton magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography can provide interesting and novel results in the research of human prion disease.
Collapse
|
13
|
Lodi R, Parchi P, Tonon C, Manners D, Capellari S, Strammiello R, Rinaldi R, Testa C, Malucelli E, Mostacci B, Rizzo G, Pierangeli G, Cortelli P, Montagna P, Barbiroli B. Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain 2009; 132:2669-79. [PMID: 19755520 PMCID: PMC2759338 DOI: 10.1093/brain/awp210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intra vitam diagnosis of prion disease is challenging and a definite diagnosis still requires neuropathological examination in non-familial cases. Magnetic resonance imaging has gained increasing importance in the diagnosis of prion disease. The aim of this study was to compare the usefulness of different magnetic resonance imaging sequences and proton magnetic resonance spectroscopy in the differential diagnosis of patients with rapidly progressive neurological signs compatible with the clinical diagnosis of sporadic prion disease. Twenty-nine consecutive patients with an initial diagnosis of possible or probable sporadic prion disease, on the basis of clinical and electroencephalography features, were recruited. The magnetic resonance protocol included axial fluid-attenuated inversion recovery-T2- and diffusion-weighted images, and proton magnetic resonance spectroscopy of the thalamus, striatum, cerebellum and occipital cortex. Based on the clinical follow-up, genetic studies and neuropathology, the final diagnosis was of prion disease in 14 patients out of 29. The percentage of correctly diagnosed cases was 86% for diffusion-weighted imaging (hyperintensity in the striatum/cerebral cortex), 86% for thalamic N-acetyl-aspartate to creatine ratio (cutoff </=1.21), 90% for thalamic N-acetyl-aspartate to myo-inositol (mI) ratio (cutoff </=1.05) and 86% for cerebral spinal fluid 14-3-3 protein. All the prion disease patients had N-acetyl-aspartate to creatine ratios </=1.21 (100% sensitivity and 100% negative predictive value) and all the non-prion patients had N-acetyl-aspartate to myo-inositol ratios >1.05 (100% specificity and 100% positive predictive value). Univariate logistic regression analysis showed that the combination of thalamic N-acetyl-aspartate to creatine ratio and diffusion-weighted imaging correctly classified 93% of the patients. The combination of thalamic proton magnetic resonance spectroscopy (10 min acquisition duration) and brain diffusion-weighted imaging (2 min acquisition duration) may increase the diagnostic accuracy of the magnetic resonance scan. Both sequences should be routinely included in the clinical work-up of patients with suspected prion disease.
Collapse
Affiliation(s)
- Raffaele Lodi
- MR Spectroscopy Unit, Department of Internal Medicine, Aging and Nephrology, University of Bologna, Azienda Universitario-Ospedaliera di Bologna, Via Massarenti 9, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pocchiari M, Poleggi A, Principe S, Graziano S, Cardone F. Genomic and post-genomic analyses of human prion diseases. Genome Med 2009; 1:63. [PMID: 19566915 PMCID: PMC2703872 DOI: 10.1186/gm63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prion diseases share common features of neurodegenerative disorders, infectious diseases and pathologies linked to misfolded proteins. Whether these aspects are independently and fortuitously present in prion diseases or are somewhat linked together remains unsettled, but the contribution of genomic, proteomic, metabolomic and spectroscopic techniques might give insights into this puzzle, and likely give hope for therapy to patients. Although the prion protein gene (PRNP) governs most of the clinical and pathological features of prion diseases and plays a pivotal role in determining host susceptibility, there are still many uncertainties and unknown risk factors that need to be clarified and identified. Several genes, other than PRNP, have recently been found to be associated with a risk of developing sporadic or variant Creutzfeldt-Jakob disease, but these novel data have been produced in a relatively small number of patients and controls and, therefore, need further confirmation. The same criticism applies to the identification of the over 20 new cerebrospinal fluid or plasma markers of disease. Some of these markers seem related to the massive brain damage that occurs, rather than being specific to prion infection. Nevertheless, genomic and post-genomic approaches have shown that these techniques are very powerful, and the best way to overcome the scantiness of samples would be to encourage strong collaboration between different centers of excellence in prion diseases. In this review, we describe the most recent and outstanding advances offered by genomics and post-genomics analyses in the field of human prion diseases.
Collapse
Affiliation(s)
- Maurizio Pocchiari
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
15
|
|