1
|
Hubley R, Wheeler TJ, Smit AFA. Accuracy of multiple sequence alignment methods in the reconstruction of transposable element families. NAR Genom Bioinform 2022; 4:lqac040. [PMID: 35591887 PMCID: PMC9112768 DOI: 10.1093/nargab/lqac040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The construction of a high-quality multiple sequence alignment (MSA) from copies of a transposable element (TE) is a critical step in the characterization of a new TE family. Most studies of MSA accuracy have been conducted on protein or RNA sequence families, where structural features and strong signals of selection may assist with alignment. Less attention has been given to the quality of sequence alignments involving neutrally evolving DNA sequences such as those resulting from TE replication. Transposable element sequences are challenging to align due to their wide divergence ranges, fragmentation, and predominantly-neutral mutation patterns. To gain insight into the effects of these properties on MSA accuracy, we developed a simulator of TE sequence evolution, and used it to generate a benchmark with which we evaluated the MSA predictions produced by several popular aligners, along with Refiner, a method we developed in the context of our RepeatModeler software. We find that MAFFT and Refiner generally outperform other aligners for low to medium divergence simulated sequences, while Refiner is uniquely effective when tasked with aligning high-divergent and fragmented instances of a family.
Collapse
Affiliation(s)
- Robert Hubley
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Travis J Wheeler
- Department of Computer Science, University of Montana, Missoula, MT 59801, USA
| | | |
Collapse
|
2
|
Somvanshi VS, Dash M, Bhat CG, Budhwar R, Godwin J, Shukla RN, Patrignani A, Schlapbach R, Rao U. An improved draft genome assembly of Meloidogyne graminicola IARI strain using long-read sequencing. Gene 2021; 793:145748. [PMID: 34077775 DOI: 10.1016/j.gene.2021.145748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
The rice root-knot nematode Meloidogyne graminicola is a major biotic stress for the rice crop under upland, rain-fed lowland and irrigated cultivation conditions. Here, we present an improved draft genome assembly of M. graminicola IARI strain using the long-read sequencing approach (PacBio Sequel platform). The assembled genome size was 36.86 Mb with 514 contigs and N50 value of 105 kb. BUSCO estimated the genome to be 88.6% complete. Meloidogyne graminicola genome contained 17.83% repeat elements and showed 14,062 protein-coding gene models, 4,974 conserved orthologous genes, 561 putative secreted proteins, 49 RNAi pathway genes, 1,853 proteins involved in pathogen-host interactions, 1,575 carbohydrate-active enzymes, and 32,138 microsatellites. Five of the carbohydrate-active enzymes were found only in M. graminicola genome and were not present in any other analysed root-knot nematode genome. Together with the previous two genome assemblies, this improved genome assembly would facilitate comparative and functional genomics for M. graminicola.
Collapse
Affiliation(s)
- Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012, India
| | - Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012, India
| | - Chaitra G Bhat
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043, India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560043, India
| | - Andrea Patrignani
- Functional Genomics Center Zurich, Winterthurerstr. 190, Y32H52, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Winterthurerstr. 190, Y32H52, 8057 Zurich, Switzerland
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012, India.
| |
Collapse
|
3
|
Darnet S, Fliesler SJ, Schaller H. Worming our way toward multiple evolutionary origins of convergent sterol pathways. J Lipid Res 2019; 61:129-132. [PMID: 31871066 DOI: 10.1194/jlr.c119000600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sylvain Darnet
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY.,Research Service, Veterans Administration Western NY Healthcare System, Buffalo, NY
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
5
|
Abstract
Direct pulp capping helps extend the life of a diseased tooth by maintaining tooth vitality. Nowadays, lasers are more frequently used during direct pulp capping in the clinic, but their use has not been previously reviewed. This review presents the basic properties of currently available lasers, scientific evidence on the effects of laser application on direct pulp capping, and future directions for this technology. An extensive literature search was conducted in various databases for articles published up to January 2015. Original in vitro, in vivo, and clinical studies, reviews, and book chapters published in English were included. Various laser systems have been increasingly and successfully applied in direct pulp capping. Lasers offer excellent characteristics in terms of hemostasis and decontamination for field preparation during direct pulp capping treatment; however, the sealing of exposed pulp with one of the dental materials, such as calcium hydroxide, mineral trioxide aggregates, and bonded composite resins, is still required after laser treatment. Clinicians should consider the characteristics of each wavelength, the emission mode, irradiation exposure time, power, type of laser tip, and the distance between the laser tip and the surface being irradiated.
Collapse
|
6
|
Wallau GL, Capy P, Loreto E, Hua-Van A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 2014; 15:727. [PMID: 25163909 PMCID: PMC4161770 DOI: 10.1186/1471-2164-15-727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes. RESULTS We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies. CONCLUSIONS This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all "life cycle" stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós-Graduaíão em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | |
Collapse
|
7
|
Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One 2014; 9:e92220. [PMID: 24651821 PMCID: PMC3961327 DOI: 10.1371/journal.pone.0092220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/19/2014] [Indexed: 01/27/2023] Open
Abstract
Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.
Collapse
|
8
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
9
|
Zou M, Wang G, He S. Evolutionary patterns of RNA-based gene duplicates in Caenorhabditis nematodes coincide with their genomic features. BMC Res Notes 2012; 5:398. [PMID: 22853807 PMCID: PMC3532220 DOI: 10.1186/1756-0500-5-398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-based gene duplicates (retrocopies) played pivotal roles in many physiological processes. Nowadays, functional retrocopies have been systematically identified in several mammals, fruit flies, plants, zebrafish and other chordates, etc. However, studies about this kind of duplication in Caenorhabditis nematodes have not been reported. FINDINGS We identified 43, 48, 43, 9, and 42 retrocopies, of which 6, 15, 18, 3, and 13 formed chimeric genes in C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. At least 5 chimeric types exist in Caenorhabditis species, of which retrocopy recruiting both N and C terminus is the commonest one. Evidences from different analyses demonstrate many retrocopies and almost all chimeric genes may be functional in these species. About half of retrocopies in each species has coordinates in other species, and we suggest that retrocopies in closely related species may be helpful in identifying retrocopies for one certain species. CONCLUSIONS A number of retrocopies and chimeric genes exist in Caenorhabditis genomes, and some of them may be functional. The evolutionary patterns of these genes may correlate with their genomic features, such as the activity of retroelements, the high rate of mutation and deletion rate, and a large proportion of genes subject to trans-splicing.
Collapse
Affiliation(s)
- Ming Zou
- The key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
| | - Shunping He
- The key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
10
|
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, USA.
| | | |
Collapse
|
11
|
Weber KP, De S, Kozarewa I, Turner DJ, Babu MM, de Bono M. Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans. PLoS One 2010; 5:e13922. [PMID: 21085631 PMCID: PMC2978686 DOI: 10.1371/journal.pone.0013922] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/14/2010] [Indexed: 11/18/2022] Open
Abstract
Defining the mutational landscape when individuals of a species grow separately and diverge over many generations can provide insights into trait evolution. A specific example of this involves studying changes associated with domestication where different lines of the same wild stock have been cultivated independently in different standard environments. Whole genome sequence comparison of such lines permits estimation of mutation rates, inference of genes' ancestral states and ancestry of existing strains, and correction of sequencing errors in genome databases. Here we study domestication of the C. elegans Bristol strain as a model, and report the genome sequence of LSJ1 (Bristol), a sibling of the standard C. elegans reference wild type N2 (Bristol). The LSJ1 and N2 lines were cultivated separately from shortly after the Bristol strain was isolated until methods to freeze C. elegans were developed. We find that during this time the two strains have accumulated 1208 genetic differences. We describe phenotypic variation between N2 and LSJ1 in the rate at which embryos develop, the rate of production of eggs, the maturity of eggs at laying, and feeding behavior, all the result of post-isolation changes. We infer the ancestral alleles in the original Bristol isolate and highlight 2038 likely sequencing errors in the original N2 reference genome sequence. Many of these changes modify genome annotation. Our study provides a starting point to further investigate genotype-phenotype association and offers insights into the process of selection as a result of laboratory domestication.
Collapse
Affiliation(s)
- Katherine P. Weber
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Subhajyoti De
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | - M. Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mario de Bono
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Komabayashi T, Zhu Q. Innovative endodontic therapy for anti-inflammatory direct pulp capping of permanent teeth with a mature apex. ACTA ACUST UNITED AC 2010; 109:e75-81. [PMID: 20416524 DOI: 10.1016/j.tripleo.2009.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
Direct pulp capping is treatment of an exposed vital pulp with a dental material to facilitate the formation of reparative dentin and maintenance of vital pulp. It has been studied as an alternate way to avoid vital pulp extirpation. However, the success rate of pulp capping is much lower than that of vital pulp extirpation. Therefore, direct pulp capping is currently considered controversial by many clinicians. To increase the success rate, a critical need exists to develop new biologically based therapeutics that reduce pulp inflammation, promote the continued formation of new dentin-pulp complex, and restore vitality by stimulating the regrowth of pulpal tissue. Bioengineered anti-inflammatory direct pulp-capping materials, together with adhesive materials for leakage prevention, have great potential to improve the condition of the existing pulp from an inflamed to a noninflamed status and lead to a high rate of long-term success.
Collapse
Affiliation(s)
- Takashi Komabayashi
- Department of Endodontics, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX, USA.
| | | |
Collapse
|
13
|
Maydan JS, Lorch A, Edgley ML, Flibotte S, Moerman DG. Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans. BMC Genomics 2010; 11:62. [PMID: 20100350 PMCID: PMC2822765 DOI: 10.1186/1471-2164-11-62] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.
Collapse
Affiliation(s)
- Jason S Maydan
- Department of Zoology, University of British Columbia, British Columbia, Canada
| | | | | | | | | |
Collapse
|
14
|
Rouault JD, Casse N, Chénais B, Hua-Van A, Filée J, Capy P. Automatic classification within families of transposable elements: Application to the mariner Family. Gene 2009; 448:227-32. [DOI: 10.1016/j.gene.2009.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
15
|
A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci U S A 2009; 106:16310-4. [PMID: 19805298 DOI: 10.1073/pnas.0904895106] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular organisms. We applied two high-throughput DNA sequencing technologies to identify and characterize hundreds of spontaneously arising base-substitution mutations in 10 Caenorhabditis elegans mutation-accumulation (MA)-line nuclear genomes. C. elegans mutation rate estimates were similar to previous calculations based on smaller numbers of mutations. Mutations were distributed uniformly within and among chromosomes and were not associated with recombination rate variation in the MA lines, suggesting that intragenomic variation in genetic hitchhiking and/or background selection are primarily responsible for the chromosomal distribution patterns of polymorphic nucleotides in C. elegans natural populations. A strong mutational bias from G/C to A/T nucleotides was detected in the MA lines, implicating oxidative DNA damage as a major endogenous mutagenic force in C. elegans. The observed mutational bias also suggests that the C. elegans nuclear genome cannot be at equilibrium because of mutation alone. Transversions dominate the spectrum of spontaneous mutations observed here, whereas transitions dominate patterns of allegedly neutral polymorphism in natural populations of C. elegans and many other animal species; this observation challenges the assumption that natural patterns of molecular variation in noncoding regions of the nuclear genome accurately reflect underlying mutation processes.
Collapse
|
16
|
Lampe DJ. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 2009; 138:499-508. [PMID: 19711186 DOI: 10.1007/s10709-009-9401-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.
Collapse
Affiliation(s)
- David J Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15116, USA.
| |
Collapse
|
17
|
Gómez-Valero L, Latorre A, Gil R, Gadau J, Feldhaar H, Silva FJ. Patterns and rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants Blochmannia floridanus. Mol Ecol 2009; 17:4382-92. [PMID: 19378410 DOI: 10.1111/j.1365-294x.2008.03912.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genome reduction is a general process that has been studied in numerous symbiotic bacteria associated with insects. We investigated the last stages of genome degradation in Blochmannia floridanus, a mutualistic bacterial endosymbiont of the ant Camponotus floridanus. We determined the tempo (rates of insertion and deletion) and mode (size and number of insertion-deletion events) of the process in the last 200,000 years by analysing a total of 16 intergenic regions in several strains of this endosymbiont from different ant populations. We provide the first calculation of the reduction rate for noncoding DNA in this endosymbiont (2.2 x 10(-8) lost nucleotides/site/year) and compare it with the rate of loss in other species. Our results confirm, as it has been observed in other organisms like Buchnera aphidicola or Rickettsia spp., that deletions larger than one nucleotide can still appear in advanced stages of genome reduction and that a substitutional deletion bias exists. However, this bias is not due to a higher proportion of deletion over insertion events but to a few deletion events being larger than the rest. Moreover, we detected a substitutional AT bias that is probably responsible for the increase in the number of the small and moderate indel events in the last stages of genome reduction. Accordingly, we found intrapopulational polymorphisms for the detected microsatellites in contrast to the stability associated with these in free-living bacteria such as Escherichia coli.
Collapse
Affiliation(s)
- L Gómez-Valero
- Biologie des bactéries intracellulaires, Institute Pasteur, 28 Rue du Dr Roux, 75724 Paris, France.
| | | | | | | | | | | |
Collapse
|
18
|
Vergara IA, Mah AK, Huang JC, Tarailo-Graovac M, Johnsen RC, Baillie DL, Chen N. Polymorphic segmental duplication in the nematode Caenorhabditis elegans. BMC Genomics 2009; 10:329. [PMID: 19622155 PMCID: PMC2728738 DOI: 10.1186/1471-2164-10-329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/21/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans was the first multicellular organism to have its genome fully sequenced. Over the last 10 years since the original publication in 1998, the C. elegans genome has been scrutinized and the last gaps were filled in November 2002, which present a unique opportunity for examining genome-wide segmental duplications. RESULTS Here, we performed analysis of the C. elegans genome in search for segmental duplications using a new tool -- OrthoCluster -- we have recently developed. We detected 3,484 duplicated segments -- duplicons -- ranging in size from 234 bp to 108 Kb. The largest pair of duplicons, 108 kb in length located on the left arm of Chromosome V, was further characterized. They are nearly identical at the DNA level (99.7% identity) and each duplicon contains 26 putative protein coding genes. Genotyping of 76 wild-type strains obtained from different labs in the C. elegans community revealed that not all strains contain this duplication. In fact, only 29 strains carry this large segmental duplication, suggesting a very recent duplication event in the C. elegans genome. CONCLUSION This report represents the first demonstration that the C. elegans laboratory wild-type N2 strains has acquired large-scale differences.
Collapse
Affiliation(s)
- Ismael A Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Allan K Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jim C Huang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Maja Tarailo-Graovac
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
19
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
20
|
Phillips N, Salomon M, Custer A, Ostrow D, Baer CF. Spontaneous mutational and standing genetic (co)variation at dinucleotide microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans. Mol Biol Evol 2008; 26:659-69. [PMID: 19109257 DOI: 10.1093/molbev/msn287] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding the evolutionary processes responsible for shaping genetic variation within and between species requires separating the effects of mutation and selection. Differences between the patterns of genetic variation observed in nature and when mutations are allowed to accumulate in the relative absence of selection can reveal biases imposed by selection. We characterize the genetic variation at dinucleotide microsatellite repeats in four sets of 250-generation mutation accumulation (MA) lines, two in the species Caenorhabditis briggsae and two in Caenorhabditis elegans, and compare the mutational variation with the standing variation in those species. We also compare the mutational properties of microsatellites with the cumulative effects of mutations on fitness in the same lines. Integrated over the whole genome, we infer that the mutation rate of C. briggsae is about twice that of C. elegans, consistent with the cumulative mutational effects on fitness. The mutational spectrum (ratio of insertions to deletions) differs between repeat types and, in some cases, between species. The per-locus mutation rate is significantly positively correlated with the standing genetic variation at the same locus in both species, providing justification for the common practice of using the standing genetic variance as a surrogate for the mutation rate.
Collapse
|
21
|
Wagner A, de la Chaux N. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences. Mol Genet Genomics 2008; 280:397-408. [PMID: 18751731 DOI: 10.1007/s00438-008-0373-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biochemistry, University of Zurich, Bldg. Y27, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | | |
Collapse
|
22
|
Laha T, Loukas A, Wattanasatitarpa S, Somprakhon J, Kewgrai N, Sithithaworn P, Kaewkes S, Mitreva M, Brindley PJ. The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite. PLoS Negl Trop Dis 2007; 1:e35. [PMID: 17989781 PMCID: PMC2041818 DOI: 10.1371/journal.pntd.0000035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/01/2007] [Indexed: 11/19/2022] Open
Abstract
Background An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes. Methodology/Principal Findings A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms. Conclusions/Significance A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts. Because of its importance to public health, the hookworm parasite has become the focus of increased research over the past decade—research that will ultimately decipher its genetic code. We now report a gene from hookworm chromosomes known as a transposon. Transposons are genes that can move around in the genome and even between genomes of different species. We named the hookworm transposon bandit because hookworms are “thieves” that steal the blood of their hosts, leading to protein deficiency anemia. The bandit transposon is a close relative of a well studied assemblage of transposons, the mariner-like elements, known from the chromosomes of many other organisms. The founding member of this group—the mariner transposon—was isolated originally from a fruit fly; mariner has been harnessed in the laboratory as a valuable gene therapy tool. Likewise, it may be feasible to employ the bandit transposon for genetic manipulation of hookworms and functional genomics to investigate the importance of hookworm genes as new intervention targets. Finally, bandit may have transferred horizontally from primates to hookworm or vice versa in the relatively recent evolutionary history of the hookworm–human host–parasite relationship.
Collapse
Affiliation(s)
- Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jensen VL, Albert PS, Riddle DL. Caenorhabditis elegans SDF-9 enhances insulin/insulin-like signaling through interaction with DAF-2. Genetics 2007; 177:661-6. [PMID: 17660545 PMCID: PMC2013707 DOI: 10.1534/genetics.107.076703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SDF-9 is a modulator of Caenorhabditis elegans insulin/IGF-1 signaling that may interact directly with the DAF-2 receptor. SDF-9 is a tyrosine phosphatase-like protein that, when mutated, enhances many partial loss-of-function mutants in the dauer pathway except for the temperature-sensitive mutant daf-2(m41). We propose that SDF-9 stabilizes the active phosphorylated state of DAF-2 or acts as an adaptor protein to enhance insulin-like signaling.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
24
|
Abstract
The genomes of unicellular species, particularly prokaryotes, are greatly reduced in size and simplified in terms of gene structure relative to those of multicellular eukaryotes. Arguments proposed to explain this disparity include selection for metabolic efficiency and elevated rates of deletion in microbes, but the evidence in support of these hypotheses is at best equivocal. An alternative explanation based on fundamental population-genetic principles is proposed here. By increasing the mutational target sizes of associated genes, most forms of nonfunctional DNA are opposed by weak selection. Free-living microbial species have elevated effective population sizes, and the consequent reduction in the power of random genetic drift appears to be sufficient to enable natural selection to inhibit the accumulation of excess DNA. This hypothesis provides a potentially unifying explanation for the continuity in genomic scaling from prokaryotes to multicellular eukaryotes, the divergent patterns of mitochondrial evolution in animals and land plants, and various aspects of genomic modification in microbial endosymbionts.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
25
|
Gilleard JS. Understanding anthelmintic resistance: The need for genomics and genetics. Int J Parasitol 2006; 36:1227-39. [PMID: 16889782 DOI: 10.1016/j.ijpara.2006.06.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/09/2006] [Accepted: 06/19/2006] [Indexed: 11/21/2022]
Abstract
Anthelmintic resistance is a major problem for the control of many parasitic nematode species and has become a major constraint to livestock production in many parts of the world. In spite of its increasing importance, there is still a poor understanding of the molecular and genetic basis of resistance. It is unclear which mutations contribute most to the resistance phenotype and how resistance alleles arise, are selected and spread in parasite populations. The main strategy used to identify mutations responsible for anthelmintic resistance has been to undertake experimental studies on candidate genes. These genes have been chosen predominantly on the basis of our knowledge of drug mode-of-action and the identification of mutations that can confer resistance in model organisms. The application of these approaches to the analysis of benzimidazole and ivermectin resistance is reviewed and the reasons for their relative success or failure are discussed. The inherent limitation of candidate gene studies is that they rely on very specific and narrow assumptions about the likely identity of resistance-associated genes. In contrast, forward genetic and functional genomic approaches do not make such assumptions, as illustrated by the successful application of these techniques in the study of insecticide resistance. Although there is an urgent need to apply these powerful approaches to anthelmintic resistance research, the basic methodologies and resources are still lacking. However, these are now being developed for the trichostrongylid nematode Haemonchus contortus and the current progress and research priorities in this area are discussed.
Collapse
Affiliation(s)
- John Stuart Gilleard
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, Strathclyde G61 1QH, UK.
| |
Collapse
|
26
|
Wang J, Ren X, Miller TA, Park Y. piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius). INSECT MOLECULAR BIOLOGY 2006; 15:435-43. [PMID: 16907830 DOI: 10.1111/j.1365-2583.2006.00653.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We identified two different groups of piggyBac-like elements (PLE) in the tobacco budworm, Heliothis virescens, and named them HvPLE1 and HvPLE2. An intact copy of HvPLE1 revealed the characteristics of PLE: inverted terminal repeats, inverted subterminal repeats, and an open reading frame encoding transposase, whereas other HvPLE1 copies and all the HvPLE2 copies carried disruptive mutations in the region encoding transposase. We also identified none to two bands per genome hybridized to a probe of Trichoplusia ni piggyBac in genomic Southern blotting, which are different from HvPLE1 or HvPLE2. Analysis of the sequences of multiple copies of HvPLE1 and HvPLE2 suggests that the PLEs are closely related to the T. ni piggyBac, of relatively young age, and independently entered the H. virescens genome.
Collapse
Affiliation(s)
- J Wang
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
27
|
Sinzelle L, Chesneau A, Bigot Y, Mazabraud A, Pollet N. The mariner Transposons Belonging to the irritans Subfamily Were Maintained in Chordate Genomes by Vertical Transmission. J Mol Evol 2006; 62:53-65. [PMID: 16408242 DOI: 10.1007/s00239-005-0013-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Mariner-like elements (MLEs) belong to the Tc1-mariner superfamily of DNA transposons, which is very widespread in animal genomes. We report here the first complete description of a MLE, Xtmar1, within the genome of a poikilotherm vertebrate, the amphibian Xenopus tropicalis. A close relative, XlMLE, is also characterized within the genome of a sibling species, Xenopus laevis. The phylogenetic analysis of the relationships between MLE transposases reveals that Xtmar1 is closely related to Hsmar2 and Bytmar1 and that together they form a second distinct lineage of the irritans subfamily. All members of this lineage are also characterized by the 36- to 43-bp size of their imperfectly conserved inverted terminal repeats and by the -8-bp motif located at their outer extremity. Since XlMLE, Xlmar1, and Hsmar2 are present in species located at both extremities of the vertebrate evolutionary tree, we looked for MLE relatives belonging to the same subfamily in the available sequencing projects using the amino acid consensus sequence of the Hsmar2 transposase as an in silico probe. We found that irritans MLEs are present in chordate genomes including most craniates. This therefore suggests that these elements have been present within chordate genomes for 750 Myr and that the main way they have been maintained in these species has been via vertical transmission. The very small number of stochastic losses observed in the data available suggests that their inactivation during evolution has been very slow.
Collapse
Affiliation(s)
- Ludivine Sinzelle
- Transgenèse et Génétique des Amphibiens, CNRS UMR 8080, IBAIC, Université Paris-Sud, Bâtiment 447, Orsay Cedex, F-91405, France
| | | | | | | | | |
Collapse
|
28
|
Arkhipova IR, Meselson M. Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci U S A 2005; 102:11781-6. [PMID: 16081532 PMCID: PMC1188004 DOI: 10.1073/pnas.0505333102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We surveyed the diversity, structural organization, and patterns of evolution of DNA transposons in rotifers of the class Bdelloidea, a group of basal triploblast animals that appears to have evolved for millions of years without sexual reproduction. Representatives of five superfamilies were identified: ITm (IS630/Tc/mariner), hAT, piggyBac, helitron, and foldback. Except for mariners, no fully intact copies were found. Mariners, both intact and decayed, are present in high copy number, and those described here may be grouped in several closely related lineages. Comparisons across lineages show strong evidence of purifying selection, whereas there is little or no evidence of such selection within lineages. This pattern could have resulted from repeated horizontal transfers from an exogenous source, followed by limited intragenomic proliferation, or, less plausibly, from within-host formation of new lineages under host- or element-based selection for function, in either case followed by eventual inactivation and decay. Unexpectedly, the flanking sequences surrounding the majority of mariners are very similar, indicating either insertion specificity or proliferation as part of larger DNA segments. Members of all superfamilies are present near chromosome ends, associated with the apparently domesticated retroelement Athena, in large clusters composed of diverse DNA transposons, often inserted into each other, whereas the examined gene-rich regions are nearly transposon-free.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2019, USA.
| | | |
Collapse
|
29
|
Bigot Y, Brillet B, Augé-Gouillou C. Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements. J Mol Biol 2005; 351:108-16. [PMID: 15946679 DOI: 10.1016/j.jmb.2005.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/14/2005] [Accepted: 05/02/2005] [Indexed: 11/24/2022]
Abstract
The transposase of the mariner-like elements (MLEs) specifically binds as a dimer to the inverted terminal repeat of the transposon that encodes it. Two binding-motifs located within the inverted terminal sequences (ITR) are therefore recognized, as previously indicated, by biochemical data obtained with the Mos1 and Himar1 transposases. Here, we define the motifs that are involved in the binding of a MLE transposase to its ITR by analyzing the nucleic acid properties of the 5' and 3' ITR sequences from 45 MLEs, taking into account the fact that the transposase binds to the ITR, using its CRO binding domains and the general characteristics of the cro binding sites so far investigated. Our findings show that in all the MLE ITRs, the outer half was better conserved than the inner half. More interestingly, they allowed us to characterize conserved palindromic and mirror motifs specific to each "MLE species". The presence of the palindromic motifs was correlated to the binding of the transposase dimer, whereas the properties of the mirror motifs were shown to be responsible for the bend in each ITR that helps to stabilize transposase-ITR interactions.
Collapse
Affiliation(s)
- Yves Bigot
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais, E.A.3868, UFR des Sciences et Techniques, Parc de Grandmont, Avenue Monge, 37200 Tours, France.
| | | | | |
Collapse
|
30
|
Rouleux-Bonnin F, Petit A, Demattei MV, Bigot Y. Evolution of Full-Length and Deleted Forms of the Mariner-LikeElement, Botmar1, in the Genome of the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). J Mol Evol 2005; 60:736-47. [PMID: 15931496 DOI: 10.1007/s00239-004-0195-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
Mariner-like elements (MLE) are Class II transposable elements that are very widespread among eukaryotic genomes. One MLE belonging to the mauritiana subfamily, named Botmar1, has been identified in the genome of the bumble bee, Bombus terrestris. gDNA hybridization with the Botmar1 transposase ORF revealed that about 230 elements are present in each haploid genome of B. terrestris that consist entirely of 1.3- and 0.85-kbp elements. The analysis of their sequences revealed that there are two Botmar1 subfamilies of similar ages in the Bombus terrestris genome: one is composed entirely of 1.3-kpb elements, whereas the second comprises both completed and deleted elements. Our previous data indicated that the internally deleted form, which correspond to the 0.85-kbp Botmar1-related elements occur in other distantly related hymenopteran genomes. Because the presence of similar 1.3- and 0.85-kbp Botmar1-related elements in some distantly related hymenopteran species cannot be explained by horizontal transfers, the nucleic acid sequence properties of these elements were further investigated. We found that certain structural properties in their nucleic acid sequence might explain the occurrence of 0.85-kbp Botmar1-related elements presenting similarly located internal deletions in hymenopteran genomes.
Collapse
Affiliation(s)
- Florence Rouleux-Bonnin
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais, UFR des Sciences et Techniques, Bâtiment L, Parc de Grandmont, 37200 Tours, France
| | | | | | | |
Collapse
|
31
|
Halaimia-Toumi N, Casse N, Demattei MV, Renault S, Pradier E, Bigot Y, Laulier M. The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J Mol Evol 2005; 59:747-60. [PMID: 15599507 DOI: 10.1007/s00239-004-2665-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/06/2004] [Indexed: 11/25/2022]
Abstract
Mariner-like elements (MLEs) are classII transposons with highly conserved sequence properties and are widespread in the genome of animal species living in continental environments. We describe here the first full-length MLE found in the genome of a marine crustacean species, the deep-sea hydrothermal crab Bythograea thermydron (Crustacea), named Bytmar1. A comparison of its sequence features with those of the MLEs contained in the genomes of continental species reveals several distinctive characteristics. First, Bytmar1 elements contains an ORF that may encode three transposase isoforms 349, 379, and 398 amino acids (aa) in long. The two biggest proteins are due to the presence of a 30- and 49-aa flag, respectively, at the N-terminal end of the 349-aa cardinal MLE transposase. Their GC contents are also significantly higher than those found in continental MLEs. This feature is mainly due to codon usage in the transposase ORF and directly interferes with the curvature propensities of the Bytmar1 nucleic acid sequence. Such an elevated GC content may interfere with the ability of Bytmar 1 to form an excision complex and, in consequence, with its efficiency to transpose. Finally, the origin of these characteristics and their possible consequences on transposition efficiency are discussed.
Collapse
Affiliation(s)
- N Halaimia-Toumi
- Laboratoire de Biologie et Génétique Evolutive, E.A. 3565, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Barry EG, Witherspoon DJ, Lampe DJ. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 2004; 166:823-33. [PMID: 15020471 PMCID: PMC1470758 DOI: 10.1534/genetics.166.2.823] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.
Collapse
Affiliation(s)
- Elizabeth G Barry
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
33
|
Stewart MK, Clark NL, Merrihew G, Galloway EM, Thomas JH. High genetic diversity in the chemoreceptor superfamily of Caenorhabditis elegans. Genetics 2004; 169:1985-96. [PMID: 15520260 PMCID: PMC1449585 DOI: 10.1534/genetics.104.035329] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated genetic polymorphism in the Caenorhabditis elegans srh and str chemoreceptor gene families, each of which consists of approximately 300 genes encoding seven-pass G-protein-coupled receptors. Almost one-third of the genes in each family are annotated as pseudogenes because of apparent functional defects in N2, the sequenced wild-type strain of C. elegans. More than half of these "pseudogenes" have only one apparent defect, usually a stop codon or deletion. We sequenced the defective region for 31 such genes in 22 wild isolates of C. elegans. For 10 of the 31 genes, we found an apparently functional allele in one or more wild isolates, suggesting that these are not pseudogenes but instead functional genes with a defective allele in N2. We suggest the term "flatliner" to describe genes whose functional vs. pseudogene status is unclear. Investigations of flatliner gene positions, d(N)/d(S) ratios, and phylogenetic trees indicate that they are not readily distinguished from functional genes in N2. We also report striking heterogeneity in the frequency of other polymorphisms among these genes. Finally, the large majority of polymorphism was found in just two strains from geographically isolated islands, Hawaii and Madeira. This suggests that our sampling of wild diversity in C. elegans is narrow and that identification of additional strains from similarly isolated regions will greatly expand the diversity available for study.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Genome Sciences, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
34
|
Denver DR, Morris K, Lynch M, Thomas WK. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 2004; 430:679-82. [PMID: 15295601 DOI: 10.1038/nature02697] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/01/2004] [Indexed: 11/09/2022]
Abstract
Mutations have pivotal functions in the onset of genetic diseases and are the fundamental substrate for evolution. However, present estimates of the spontaneous mutation rate and spectrum are derived from indirect and biased measurements. For instance, mutation rate estimates for Caenorhabditis elegans are extrapolated from observations on a few genetic loci with visible phenotypes and vary over an order of magnitude. Alternative approaches in mammals, relying on phylogenetic comparisons of pseudogene loci and fourfold degenerate codon positions, suffer from uncertainties in the actual number of generations separating the compared species and the inability to exclude biases associated with natural selection. Here we provide a direct and unbiased estimate of the nuclear mutation rate and its molecular spectrum with a set of C. elegans mutation-accumulation lines that reveal a mutation rate about tenfold higher than previous indirect estimates and an excess of insertions over deletions. Because deletions dominate patterns of C. elegans pseudogene variation, our observations indicate that natural selection might be significant in promoting small genome size, and challenge the prevalent assumption that pseudogene divergence accurately reflects the spontaneous mutation spectrum.
Collapse
Affiliation(s)
- Dee R Denver
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
35
|
Barry EG, Witherspoon DJ, Lampe DJ. A Bacterial Genetic Screen Identifies Functional Coding Sequences of the Insect mariner Transposable Element Famar1 Amplified From the Genome of the Earwig, Forficula auricularia. Genetics 2004. [DOI: 10.1093/genetics/166.2.823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Abstract
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.
Collapse
Affiliation(s)
- Elizabeth G Barry
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - David J Witherspoon
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - David J Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| |
Collapse
|