1
|
Dong PP, Wang RR, Abduriyim S. Diversity and evolution of the MHC class II DRB gene in the Capra sibirica experienced a demographic fluctuation in China. Sci Rep 2023; 13:19352. [PMID: 37935954 PMCID: PMC10630338 DOI: 10.1038/s41598-023-46717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
The major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates, and their proteins play a critical role in adaptive immunity for defense against a variety of pathogens. MHC diversity was lost in many species after experiencing a decline in size. To understand the variation and evolution of MHC genes in the Siberian ibex, Capra sibirica, which has undergone a population decline, we analyzed the variation of the second exon of MHC class II DRB genes in samples collected from five geographic localities in Xinjiang, China, that belong to three diverged mitochondrial clades. Consequently, we identified a total of 26 putative functional alleles (PFAs) with 260 bp in length from 43 individuals, and found one (for 27 individuals) to three (for 5 individuals) PFAs per individual, indicating the presence of one or two DRB loci per haploid genome. The Casi-DRB1*16 was the most frequently occurring PFA, Casi-DRB1*22 was found in only seven individuals, 14 PFAs occurred once, 7 PFAs twice, implying high frequency of rare PFAs. Interestingly, more than half (15) of the PFAs were specific to clade I, only two and three PFAs were specific to clades II and III, respectively. So, we assume that the polygamy and sexual segregation nature of this species likely contributed to the allelic diversity of DRB genes. Genetic diversity indices showed that PFAs of clade II were lower in nucleotide, amino acid, and supertype diversity compared to those of the other two clades. The pattern of allele sharing and FST values between the three clades was to some extent in agreement with the pattern observed in mitochondrial DNA divergence. In addition, recombination analyses revealed no evidence for significant signatures of recombination events. Alleles shared by clades III and the other two clades diverged 6 million years ago, and systematic neighbor grids showed Trans-species polymorphism. Together with the PAML and MEME analyses, the results indicated that the DRB gene in C. sibirica evolved under balancing and positive selection. However, by comparison, it can be clearly seen that different populations were under different selective pressures. Our results are valuable in understanding the diversity and evolution of the DRB gene in a mountain living C. sibirica and in making decisions on future long-term protection strategies.
Collapse
Affiliation(s)
- Pei-Pei Dong
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Rui-Rui Wang
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shamshidin Abduriyim
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
3
|
Jeon HB, Won H, Suk HY. Polymorphism of MHC class IIB in an acheilognathid species, Rhodeus sinensis shaped by historical selection and recombination. BMC Genet 2019; 20:74. [PMID: 31519169 PMCID: PMC6743125 DOI: 10.1186/s12863-019-0775-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodeus sinensis is a bitterling species occurring throughout the numerous freshwater systems on the East Asia. Here, we analyzed the diversity of the MHC class IIB (DAB) genes from this species, which may offer meaningful insights into evolutionary processes in this species as well as other bitterlings. RESULTS Using cDNA and gDNA samples from 50 individuals, we discovered classical 140 allelic sequences that could be allocated into either DAB1 (Rhsi-DAB1) or DAB3 (Rhsi-DAB3). DAB sequences completely lacking the intron, but identical or similar to Rhsi-DAB1, were also discovered from our gDNA samples, and this intron loss likely originated from the retrotransposition events of processed mDNA. The β1 domain was the most polymorphic in both Rhsi-DAB1 and -DAB3. Putative peptide biding residues (PBRs) in Rhsi-DAB1, but not in Rhsi-DAB3, exhibited a significant dN/dS, presumably indicating that different selection pressures have acted on those two DABs. Recombination between different alleles seemed to have contributed to the increase of diversity in Rhsi-DABs. Upon phylogenetic analysis, Rhsi-DAB1 and -DAB3 formed independent clusters. Several alleles from other species of Cypriniformes were embedded in the clade of Rhsi-DAB1, whereas Rhsi-DAB3 clustered with alleles from the wider range of taxa (Cyprinodontiformes), indicating that these two Rhsi-DABs have taken different historical paths. CONCLUSIONS A great deal of MHC class IIB allelic diversity was found in R. sinensis, and gene duplication, selection and recombination may have contributed to this diversity. Based on our data, it is presumed that such historical processes have commonly or differently acted on the polymorphism of Rhsi-DAB1 and -DAB3.
Collapse
Affiliation(s)
- Hyung-Bae Jeon
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6 Canada
| | - Hari Won
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| |
Collapse
|
4
|
Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED, Poulakakis N, Hansson B. Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity (Edinb) 2019; 122:468-484. [PMID: 30258107 PMCID: PMC6460769 DOI: 10.1038/s41437-018-0146-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The major histocompatibility complex (MHC) has long served as a model for the evolution of adaptive genetic diversity in wild populations. Pathogen-mediated selection is thought to be a main driver of MHC diversity, but it remains elusive to what degree selection shapes MHC diversity in complex biogeographical scenarios where other evolutionary processes (e.g. genetic drift and introgression) may also be acting. Here we focus on two closely related green lizard species, Lacerta trilineata and L. viridis, to address the evolutionary forces acting on MHC diversity in populations with different biogeographic structure. We characterized MHC class I exon 2 and exon 3, and neutral diversity (microsatellites), to study the relative importance of selection, drift, and introgression in shaping MHC diversity. As expected, positive selection was a significant force shaping the high diversity of MHC genes in both species. Moreover, introgression significantly increased MHC diversity in mainland populations, with a primary direction of gene flow from L. viridis to L. trilineata. Finally, we found significantly fewer MHC alleles in island populations, but maintained MHC sequence and functional diversity, suggesting that positive selection counteracted the effect of drift. Overall, our data support that different evolutionary processes govern MHC diversity in different biogeographical scenarios: positive selection occurs broadly while introgression acts in sympatry and drift when the population sizes decrease.
Collapse
Affiliation(s)
- K Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece.
| | - A Runemark
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - A Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003, Heraklion, Crete, Greece
| | - P Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
| | - P Pafilis
- Department of Zoology and Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - E D Valakos
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - N Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, 71003, Heraklion, Crete, Greece
| | - B Hansson
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
5
|
Li C, Jiang J, Zhang Q, Wang X. Duplicated major histocompatibility complex class II genes in the tongue sole (Cynoglossus semilaevis
). Int J Immunogenet 2018; 45:210-224. [DOI: 10.1111/iji.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/25/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- C. Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - J. Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Q. Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - X. Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| |
Collapse
|
6
|
Linnenbrink M, Teschke M, Montero I, Vallier M, Tautz D. Meta-populational demes constitute a reservoir for large MHC allele diversity in wild house mice ( Mus musculus). Front Zool 2018; 15:15. [PMID: 29721030 PMCID: PMC5910556 DOI: 10.1186/s12983-018-0266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background The MHC class I and II loci mediate the adaptive immune response and belong to the most polymorphic loci in vertebrate genomes. In fact, the number of different alleles in a given species is often so large that it remains a challenge to provide an evolutionary model that can fully account for this. Results We provide here a general survey of MHC allele numbers in house mouse populations and two sub-species (M. m. domesticus and M. m. musculus) for H2 class I D and K, as well as class II A and E loci. Between 50 and 90% of the detected different sequences constitute new alleles, confirming that the discovery of new alleles is indeed far from complete. House mice live in separate demes with small effective population sizes, factors that were proposed to reduce, rather than enhance the possibility for the maintenance of many different alleles. To specifically investigate the occurrence of alleles within demes, we focused on the class II H2-Aa and H2-Eb exon 2 alleles in nine demes of M. m. domesticus from two different geographic regions. We find on the one hand a group of alleles that occur in different sampling regions and three quarters of these are also found in both sub-species. On the other hand, the larger group of different alleles (56%) occurs only in one of the regions and most of these (89%) only in single demes. We show that most of these region-specific alleles have apparently arisen through recombination and/or partial gene conversion from already existing alleles. Conclusions Demes can act as sources of alleles that outnumber the set of alleles that are shared across the species range. These findings support the reservoir model proposed for human MHC diversity, which states that large pools of rare MHC allele variants are continuously generated by neutral mutational mechanisms. Given that these can become important in the defense against newly emerging pathogens, the reservoir model complements the selection based models for MHC diversity and explains why the exceptional diversity exists. Electronic supplementary material The online version of this article (10.1186/s12983-018-0266-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Linnenbrink
- 3Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany
| | - Meike Teschke
- 1Present address: Deutsche Forschungsgemeinschaft, 53170 Bonn, Germany.,3Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany
| | - Inka Montero
- 2Present address: Medical Faculty, Eberhard Karls Universität Tübingen, Tübingen, Germany.,3Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany
| | - Marie Vallier
- 3Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany
| | - Diethard Tautz
- 3Max-Planck Institute for Evolutionary Biology, August-Thienemannstrasse 2, 24306 Plön, Germany
| |
Collapse
|
7
|
Lohman BK, Steinel NC, Weber JN, Bolnick DI. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System. Front Immunol 2017; 8:1071. [PMID: 28955327 PMCID: PMC5600903 DOI: 10.3389/fimmu.2017.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus) from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.
Collapse
Affiliation(s)
- Brian K Lohman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jesse N Weber
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Stutz WE, Bolnick DI. Natural selection on MHC IIβ in parapatric lake and stream stickleback: Balancing, divergent, both or neither? Mol Ecol 2017; 26:4772-4786. [PMID: 28437583 DOI: 10.1111/mec.14158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three-spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele-parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele-parasite combinations.
Collapse
Affiliation(s)
- William E Stutz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Hofmann MJ, Bracamonte SE, Eizaguirre C, Barluenga M. Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids. BMC Genet 2017; 18:15. [PMID: 28201988 PMCID: PMC5310070 DOI: 10.1186/s12863-017-0474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry.
Collapse
Affiliation(s)
- Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Seraina E Bracamonte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Christophe Eizaguirre
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
10
|
Luo W, Wang X, Qu H, Qin G, Zhang H, Lin Q. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:521-529. [PMID: 27697560 DOI: 10.1016/j.fsi.2016.09.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The major histocompatibility complex (MHC) genes are crucial in the adaptive immune system, and the gene duplication of MHC in animals can generally result in immune flexibility. In this study, we found that the lined seahorse (Hippocampus erectus) has only one gene copy number (GCN) of MHC IIα and IIβ, which is different from that in other teleosts. Together with the lack of spleen and gut-associated lymphatic tissue (GALT), the seahorse may be referred to as having a partial but natural "immunodeficiency". Highly variable amino acid residues were found in the IIα and IIβ domains, especially in the α1 and β1 domains with 9.62% and 8.43% allelic variation, respectively. Site models revealed seven and ten positively selected positions in the α1 and β1 domains, respectively. Real-time PCR experiments showed high expression levels of the MHC II genes in intestine (In), gill (Gi) and trunk kidney (TK) and medium in muscle (Mu) and brood pouch (BP), and the expression levels were significantly up-regulated after bacterial infection. Specially, relative higher expression level of both MHC IIα and IIβ was found in Mu and BP when compared with other fish species, in which MHC II is expressed negligibly in Mu. These results indicate that apart from TK, Gi and In, MU and BP play an important role in the immune response against pathogens in the seahorse. In conclusion, high allelic variation and strong positive selection in PBR and relative higher expression in MU and BP are speculated to partly compensate for the immunodeficiency.
Collapse
Affiliation(s)
- Wei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyue Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
11
|
MHC class II β exon 2 variation in pardalotes (Pardalotidae) is shaped by selection, recombination and gene conversion. Immunogenetics 2016; 69:101-111. [PMID: 27717988 DOI: 10.1007/s00251-016-0953-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022]
Abstract
The high levels of polymorphism and allelic diversity which characterise genes in the major histocompatibility complex (MHC) are thought to be generated and maintained through the combined effects of different evolutionary processes. Here, we characterised exon 2 of the MHC class II β genes in two congeneric passerine species, the spotted (Pardalotus punctatus) and striated pardalote (Pardalotus striatus). We estimated the levels of allelic diversity and tested for signatures of recombination, gene conversion and balancing selection to determine if these processes have influenced MHC variation in the two species. Both species showed high levels of polymorphism and allelic diversity, as well as evidence of multiple gene loci and putative pseudogenes based on the presence of stop codons. We found higher levels of MHC diversity in the striated pardalote than the spotted pardalote, based on the levels of individual heterozygosity, sequence divergence and number of polymorphic sites. The observed differences may reflect variable selection pressure on the species, resulting from differences in patterns of movement among populations. We identified strong signatures of historical balancing selection, recombination and gene conversion at the sequence level, indicating that MHC variation in the two species has been shaped by a combination of processes.
Collapse
|
12
|
Baltazar-Soares M, Bracamonte SE, Bayer T, Chain FJ, Hanel R, Harrod C, Eizaguirre C. Evaluating the adaptive potential of the European eel: is the immunogenetic status recovering? PeerJ 2016; 4:e1868. [PMID: 27077000 PMCID: PMC4830236 DOI: 10.7717/peerj.1868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
The recent increased integration of evolutionary theory into conservation programs has greatly improved our ability to protect endangered species. A common application of such theory links population dynamics and indices of genetic diversity, usually estimated from neutrally evolving markers. However, some studies have suggested that highly polymorphic adaptive genes, such as the immune genes of the Major Histocompatibility Complex (MHC), might be more sensitive to fluctuations in population dynamics. As such, the combination of neutrally- and adaptively-evolving genes may be informative in populations where reductions in abundance have been documented. The European eel (Anguilla anguilla) underwent a drastic and well-reported decline in abundance in the late 20th century and still displays low recruitment. Here we compared genetic diversity indices estimated from neutral (mitochondrial DNA and microsatellites) and adaptive markers (MHC) between two distinct generations of European eels. Our results revealed a clear discrepancy between signatures obtained for each class of markers. Although mtDNA and microsatellites showed no changes in diversity between the older and the younger generations, MHC diversity revealed a contemporary drop followed by a recent increase. Our results suggest ongoing gain of MHC genetic diversity resulting from the interplay between drift and selection and ultimately increasing the adaptive potential of the species.
Collapse
Affiliation(s)
- Miguel Baltazar-Soares
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Seraina E. Bracamonte
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Till Bayer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Chris Harrod
- Universidad de Antofagasta, Instituto de Ciencias Naturales Alexander von Humboldt, Antofagasta, Chile
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn PO. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion. Heredity (Edinb) 2016; 116:466-76. [PMID: 26860199 DOI: 10.1038/hdy.2016.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.
Collapse
Affiliation(s)
- P Minias
- Department of Teacher Training and Biodiversity Studies, University of Łódź, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Z W Bateson
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, TX, USA
| | - S Oyler-McCance
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | - P O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
14
|
Seifertová M, Jarkovský J, Šimková A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)? Parasitol Res 2015; 115:1401-15. [PMID: 26693717 DOI: 10.1007/s00436-015-4874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.
Collapse
Affiliation(s)
- Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
15
|
Bracamonte SE, Smith S, Hammer M, Pavey SA, Sunnucks P, Beheregaray LB. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations. FISH & SHELLFISH IMMUNOLOGY 2015; 46:468-476. [PMID: 26093210 DOI: 10.1016/j.fsi.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia; Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Steve Smith
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia; Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Michael Hammer
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide, South Australia 5000 and Curator of Fishes, Museum and Art Gallery of the Northern Territory, PO Box 4646, Darwin, Northern Territory 0801, Australia
| | - Scott A Pavey
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec QC G1V 0A6, Canada
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
16
|
Dearborn DC, Gager AB, Gilmour ME, McArthur AG, Hinerfeld DA, Mauck RA. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach’s storm-petrel. Immunogenetics 2014; 67:111-23. [DOI: 10.1007/s00251-014-0813-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
|
17
|
Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE. Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol 2014; 23:4831-45. [PMID: 24975397 DOI: 10.1111/mec.12846] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host-specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among-individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next-generation sequencing to genotype the sticklebacks' gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC-microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex-dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis-associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite-driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.
Collapse
Affiliation(s)
- Daniel I Bolnick
- Howard Hughes Medical Institute and Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | | | | | |
Collapse
|
18
|
Stutz WE, Bolnick DI. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One 2014; 9:e100587. [PMID: 25036866 PMCID: PMC4103772 DOI: 10.1371/journal.pone.0100587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022] Open
Abstract
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC)--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.
Collapse
Affiliation(s)
- William E. Stutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Daniel I. Bolnick
- Howard Hughes Medical Institute & Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
19
|
López C, Suárez CF, Cadavid LF, Patarroyo ME, Patarroyo MA. Characterising a microsatellite for DRB typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS One 2014; 9:e96973. [PMID: 24820773 PMCID: PMC4018467 DOI: 10.1371/journal.pone.0096973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Non-human primates belonging to the Aotus genus have been shown to be excellent experimental models for evaluating drugs and vaccine candidates against malaria and other human diseases. The immune system of this animal model must be characterised to assess whether the results obtained here can be extrapolated to humans. Class I and II major histocompatibility complex (MHC) proteins are amongst the most important molecules involved in response to pathogens; in spite of this, the techniques available for genotyping these molecules are usually expensive and/or time-consuming. Previous studies have reported MHC-DRB class II gene typing by microsatellite in Old World primates and humans, showing that such technique provides a fast, reliable and effective alternative to the commonly used ones. Based on this information, a microsatellite present in MHC-DRB intron 2 and its evolutionary patterns were identified in two Aotus species (A. vociferans and A. nancymaae), as well as its potential for genotyping class II MHC-DRB in these primates.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- MSc Microbiology Programme, Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Carlos F. Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
| | - Luis F. Cadavid
- Genetics Institute, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel E. Patarroyo
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- * E-mail:
| |
Collapse
|
20
|
Evolution of MHC class I in the order Crocodylia. Immunogenetics 2013; 66:53-65. [PMID: 24253731 DOI: 10.1007/s00251-013-0746-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.
Collapse
|
21
|
Khrustaleva AM, Gritsenko OF, Klovach NV. Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413110094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hablützel PI, Volckaert FAM, Hellemans B, Raeymaekers JAM. Differential modes of MHC class IIB gene evolution in cichlid fishes. Immunogenetics 2013; 65:795-809. [PMID: 23989891 DOI: 10.1007/s00251-013-0725-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Pascal I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat, 32, B-3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
23
|
Aguilar JRD, Schut E, Merino S, Martínez J, Komdeur J, Westerdahl H. MHC class II B diversity in blue tits: a preliminary study. Ecol Evol 2013; 3:1878-89. [PMID: 23919136 PMCID: PMC3728931 DOI: 10.1002/ece3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
Collapse
Affiliation(s)
- Juan Rivero-de Aguilar
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Elske Schut
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Javier Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de AlcaláAlcalá de Henares, E-28871, Madrid, Spain
| | - Jan Komdeur
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Ecology Building, Lund UniversitySölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
24
|
Šimková A, Civáňová K, Gettová L, Gilles A. Genomic Porosity between Invasive Chondrostoma nasus and Endangered Endemic Parachondrostoma toxostoma (Cyprinidae): The Evolution of MHC IIB Genes. PLoS One 2013; 8:e65883. [PMID: 23824831 PMCID: PMC3688810 DOI: 10.1371/journal.pone.0065883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/30/2013] [Indexed: 02/06/2023] Open
Abstract
Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic factors may contribute to MHC variation on a short time scale.
Collapse
Affiliation(s)
- Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Civáňová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Gettová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - André Gilles
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR Centre national de la recherche scientifique 7263, Evolution Génome Environnement, Marseille, France
| |
Collapse
|
25
|
Lenz TL, Eizaguirre C, Kalbe M, Milinski M. EVALUATING PATTERNS OF CONVERGENT EVOLUTION AND TRANS-SPECIES POLYMORPHISM AT MHC IMMUNOGENES IN TWO SYMPATRIC STICKLEBACK SPECIES. Evolution 2013; 67:2400-12. [DOI: 10.1111/evo.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias L. Lenz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
- Department of Evolutionary Ecology of Marine Fishes; GEOMAR
- Helmholtz Center for Ocean Research; Düsternbrooker Weg 20 24105 Kiel Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| |
Collapse
|
26
|
Natsopoulou ME, Pálsson S, Ólafsdóttir GÁ. Parasites and parallel divergence of the number of individual MHC alleles between sympatric three-spined stickleback Gasterosteus aculeatus morphs in Iceland. JOURNAL OF FISH BIOLOGY 2012; 81:1696-1714. [PMID: 23020569 DOI: 10.1111/j.1095-8649.2012.03430.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers.
Collapse
Affiliation(s)
- M E Natsopoulou
- Research Centre of the Westfjords, University of Iceland, Adalstraeti 21, 415 Bolungarvík, Iceland
| | | | | |
Collapse
|
27
|
Taylor SS, Jenkins DA, Arcese P. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions. PLoS One 2012; 7:e36748. [PMID: 22655029 PMCID: PMC3360046 DOI: 10.1371/journal.pone.0036748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.
Collapse
Affiliation(s)
- Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America.
| | | | | |
Collapse
|
28
|
Independent evolution of functional MHC class II DRB genes in New World bat species. Immunogenetics 2012; 64:535-47. [PMID: 22426641 DOI: 10.1007/s00251-012-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.
Collapse
|
29
|
Bahr A, Wilson AB. The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system. Gene 2012; 497:52-7. [PMID: 22301266 DOI: 10.1016/j.gene.2012.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Gene conversion, the unidirectional exchange of genetic material between homologous sequences, is thought to strongly influence patterns of genetic diversity. The high diversity of major histocompatibility complex (MHC) genes in many species is thought to reflect a long history of gene conversion events both within and among loci. Theoretical work suggests that intra- and interlocus gene conversion leave characteristic signatures of nucleotide diversity, but empirical studies of MHC variation have rarely been able to analyze the effects of conversion events in isolation, due to the presence of multiple gene copies in most species. The potbellied seahorse (Hippocampus abdominalis), a species with a single copy of the MH class II beta-chain gene (MHIIb), provides an ideal system in which to explore predictions on the effects of intralocus gene conversion on patterns of genetic diversity. The genetic diversity of the MHIIb peptide binding region (PBR) is high in the seahorse, similar to other vertebrate species. In contrast, the remainder of the gene shows a total absence of synonymous variation and low levels of intronic sequence diversity, concentrated in 3 short repetitive regions and 1-12 SNPs per intron. The distribution of substitutions across the gene results in a patchwork pattern of shared polymorphism between otherwise divergent sequences. The pattern of nucleotide diversity observed in the seahorse MHIIb gene is congruent with theoretical expectations for intralocus gene conversion, indicating that this evolutionary mechanism has played an important role in MHC gene evolution, contributing to both the high diversity in the PBR and the low diversity outside this region. Neutral variation at this locus may be further reduced due to biases in nucleotide composition and functional constraints.
Collapse
Affiliation(s)
- Angela Bahr
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
30
|
Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 2011; 20:5213-25. [PMID: 22106868 DOI: 10.1111/j.1365-294x.2011.05367.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Zhou X, Chen X. Characterization and evolution of MHC class II B genes in Ardeid birds. J Mol Evol 2011; 72:474-83. [PMID: 21590337 DOI: 10.1007/s00239-011-9446-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 04/29/2011] [Indexed: 01/18/2023]
Abstract
Major histocompatibility complex (MHC) is a multi-gene family that is very suitable to investigate a wide range of open questions in evolutionary ecology. In this study, we characterized two expressed MHC class II B genes (DAB1 and DAB2) in the Grey Heron (Aves: Ardea cinerea). We further developed the primer pairs to amplify and sequence two MHC class II B loci in ten ardeid birds. Phylogenetic analysis revealed that different parts of the genes showed different evolutionary patterns. The exon 2 sequences tended to cluster two gene-specific lineages. In each lineage, exon 2 sequences from several species showed closer relationships than sequences within species, and two shared identical alleles were found between species (Egretta sacra and Nycticorax nycticorax; Egretta garzetta and Bubulcus ibis), supporting the hypothesis of trans-species polymorphism. In contrast, the species-specific intron 2 plus partial exon 3 tree suggested that DAB1 and DAB2 were subject to concerted evolution. GENECONV analyses showed the gene exchange played an important role in the ardeid MHC evolution.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems School of Life Sciences, Xiamen University, Siming, China
| | | | | |
Collapse
|
32
|
Bahr A, Wilson AB. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis). BMC Evol Biol 2011; 11:121. [PMID: 21569286 PMCID: PMC3117728 DOI: 10.1186/1471-2148-11-121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/10/2011] [Indexed: 11/24/2022] Open
Abstract
Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation.
Collapse
Affiliation(s)
- Angela Bahr
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
33
|
Gomez-Uchida D, Seeb JE, Smith MJ, Habicht C, Quinn TP, Seeb LW. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations. BMC Evol Biol 2011; 11:48. [PMID: 21332997 PMCID: PMC3049142 DOI: 10.1186/1471-2148-11-48] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 02/18/2011] [Indexed: 01/17/2023] Open
Abstract
Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.
Collapse
|
34
|
Contrasting responses to selection in class I and class IIα major histocompatibility-linked markers in salmon. Heredity (Edinb) 2011; 107:143-54. [PMID: 21266985 DOI: 10.1038/hdy.2010.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Comparison of levels and patterns of genetic variation in natural populations either across loci or against neutral expectation can yield insight into locus-specific differences in the strength and direction of evolutionary forces. We used both approaches to test the hypotheses on patterns of selection on major histocompatibility (MH)-linked markers. We performed temporal analyses of class I and class IIα MH-linked markers and eight microsatellite loci in two Atlantic salmon populations in Ireland on two temporal scales: over six decades and 9 years in the rivers Burrishoole and Delphi, respectively. We also compared contemporary Burrishoole and Delphi samples with nearby populations for the same loci. On comparing patterns of temporal and spatial differentiation among classes of loci, the class IIα MH-linked marker was consistently identified as an outlier compared with patterns at the other microsatellite loci or neutral expectation. We found higher levels of temporal and spatial heterogeneity in heterozygosity (but not in allelic richness) for the class IIα MH-linked marker compared with microsatellites. Tests on both within- and among-population differentiation are consistent with directional selection acting on the class IIα-linked marker in both temporal and spatial comparisons, but only in temporal comparisons for the class I-linked marker. Our results indicate a complex pattern of selection on MH-linked markers in natural populations of Atlantic salmon. These findings highlight the importance of considering selection on MH-linked markers when using these markers for management and conservation purposes.
Collapse
|
35
|
Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan J. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher. BMC Evol Biol 2010; 10:395. [PMID: 21194449 PMCID: PMC3024992 DOI: 10.1186/1471-2148-10-395] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/31/2010] [Indexed: 11/24/2022] Open
Abstract
Background Because of their functional significance, the Major Histocompatibility Complex (MHC) class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective, genotyping of MHC systems of virtually any complexity.
Collapse
|
36
|
McCairns RJS, Bourget S, Bernatchez L. Putative causes and consequences of MHC variation within and between locally adapted stickleback demes. Mol Ecol 2010; 20:486-502. [PMID: 21134013 DOI: 10.1111/j.1365-294x.2010.04950.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genes of the major histocompatibility complex (MHC) have been a source of considerable research interest, owing in large part to the growing body of evidence that they may be subject to both natural and sexual selection. However, much remains to be learned about the dynamics of MHC genes in subdivided populations, particularly those characterized by divergent ecological pressures. In this study, we attempt to disentangle the relative roles of both parasite-mediated selection and MHC-mediated mate choice in an open estuarine system inhabited by two parapatric, adaptively divergent threespine stickleback (Gasterosteus aculeatus) demes. We sequenced the putative peptide-binding region (PBR) of an estimated four Class IIβ loci from 127 individuals, identifying 329 sequence variants (276 translated amino acid sequences). Demes differed significantly both in the frequency of MHC alleles and in the communities of helminth parasites infecting resident sticklebacks. Strong signatures of natural selection were inferred from analyses of codon substitutions, particularly in the derived (freshwater) rather than the ancestral (marine) deme. Relationships between parasite load and MHC diversity were indicative of balancing selection, but only within the freshwater deme. Signals of MHC-mediated mate choice were weak and differed significantly between demes. Moreover, MHC-mediated mate choice was significantly influenced by environmental salinity and appeared of secondary importance to tendencies towards assortative mating. We discuss the implications of these findings in respect to ecological adaptation and the potential demographic consequences of possible outcomes of MHC-mediated mate choice.
Collapse
|
37
|
Seifertová M, Šimková A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics 2010; 63:167-81. [DOI: 10.1007/s00251-010-0495-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/03/2010] [Indexed: 11/30/2022]
|
38
|
Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 2010; 62:613-22. [PMID: 20661731 DOI: 10.1007/s00251-010-0466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/08/2010] [Indexed: 12/31/2022]
Abstract
Genes of the major histocompatibility complex (MHC) mainly code for proteins of the immune system of jawed vertebrates. In particular, MHC class I and II cell surface proteins are crucial for the self/non-self discrimination of the adaptive immune system and are the most polymorphic genes in vertebrates. Positive selection, gene duplications and pseudogenes shape the face of the MHC and reflect a highly dynamic evolution. Here, we present for the first time data of the highly polymorphic MHC class II DRB exon 2 of a representative of the mammalian order scandentia, the northern tree shrew Tupaia belangeri. We found up to eight different alleles per individual and determined haplotype constitution by intensively studying their inheritance. The alleles were assigned to four putative loci, all of which were polymorphic. Only the most polymorphic locus was subject to positive selection within the antigen binding sites and only alleles of this locus were transcribed.
Collapse
|
39
|
Matthews B, Harmon LJ, M'Gonigle L, Marchinko KB, Schaschl H. Sympatric and allopatric divergence of MHC genes in threespine stickleback. PLoS One 2010; 5:e10948. [PMID: 20585386 PMCID: PMC2886830 DOI: 10.1371/journal.pone.0010948] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022] Open
Abstract
Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatibility Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.
Collapse
Affiliation(s)
- Blake Matthews
- Aquatic Ecology Department, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Bollmer JL, Dunn PO, Whittingham LA, Wimpee C. Extensive MHC Class II B Gene Duplication in a Passerine, the Common Yellowthroat (Geothlypis trichas). J Hered 2010; 101:448-60. [PMID: 20200139 DOI: 10.1093/jhered/esq018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jennifer L Bollmer
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.
| | | | | | | |
Collapse
|
41
|
Lenz TL, Eizaguirre C, Scharsack JP, Kalbe M, Milinski M. Disentangling the role of MHC-dependent 'good genes' and 'compatible genes' in mate-choice decisions of three-spined sticklebacks Gasterosteus aculeatus under semi-natural conditions. JOURNAL OF FISH BIOLOGY 2009; 75:2122-2142. [PMID: 20738677 DOI: 10.1111/j.1095-8649.2009.02410.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To investigate and disentangle the role of major histocompatibility complex (MHC)-based 'good genes' and 'compatible genes' in mate choice, three-spined sticklebacks Gasterosteus aculeatus with specific MHC IIB genotypes were allowed to reproduce in an outdoor enclosure system. Here, fish were protected from predators but encountered their natural parasites. Mate choice for an intermediate genetic distance between parental MHC genotypes was observed, which would result in intermediate diversity in the offspring, but no mate choice based on good genes was found under the current semi-natural conditions. Investigation of immunological variables revealed that the less-specific innate immune system was more active in individuals with a genetically more divergent MHC allele repertoire. This suggests the need to compensate for an MHC-diminished T-cell repertoire and potentially explains the observed mate choice for intermediate MHC genetic distance. The present findings support a general pattern of mate choice for intermediate MHC diversity (i.e. compatible genes). In addition, the potentially dynamic role of MHC good genes in mate choice under different parasite pressures is discussed in the light of present and previous results.
Collapse
Affiliation(s)
- T L Lenz
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| | | | | | | | | |
Collapse
|
42
|
Diversity and evolution of MHII β genes in a non-model percid species—The Eurasian perch (Perca fluviatilis L.). Mol Immunol 2009; 46:3399-410. [DOI: 10.1016/j.molimm.2009.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022]
|
43
|
Glaberman S, Moreno MA, Caccone A. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:939-947. [PMID: 19454336 DOI: 10.1016/j.dci.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/10/2009] [Accepted: 03/14/2009] [Indexed: 05/27/2023]
Abstract
Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.
Collapse
Affiliation(s)
- Scott Glaberman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105, United States.
| | | | | |
Collapse
|
44
|
Kalbe M, Eizaguirre C, Dankert I, Reusch TBH, Sommerfeld RD, Wegner KM, Milinski M. Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proc Biol Sci 2009; 276:925-34. [PMID: 19033141 PMCID: PMC2664370 DOI: 10.1098/rspb.2008.1466] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Individual diversity at the major histocompatibility complex (MHC) is predicted to be optimal at intermediate rather than at maximal levels. We showed previously in sticklebacks that an intermediate MHC diversity is predominant in natural populations and provides maximal resistance in experimental multiple parasite infections in the laboratory. However, what counts ultimately is the lifetime reproductive success (LRS). Here, we measured LRS of six laboratory-bred sib-groups-to minimize the influence of non-MHC genes-three-spined sticklebacks (Gasterosteus aculeatus) during their entire breeding period, each in a seminatural enclosure in the lake of their parents, where they were exposed to the natural spectrum of parasites. We collected developing clutches at regular intervals and determined parenthood for a representative number of eggs (2279 in total) per clutch with 18 microsatellites. Both males and females with an intermediate MHC class IIB variant number had the highest LRS. The mechanistic link of MHC diversity and LRS differed between the sexes: in females, we found evidence for a trade-off between number of eggs and immunocompentence, whereas in males this correlation was concealed by different timing strategies of reproduction.
Collapse
Affiliation(s)
- Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lenz TL, Eizaguirre C, Becker S, Reusch TBH. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evol Biol 2009; 9:57. [PMID: 19291291 PMCID: PMC2662802 DOI: 10.1186/1471-2148-9-57] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
46
|
Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT. Introduction. Ecological immunology. Philos Trans R Soc Lond B Biol Sci 2009; 364:3-14. [PMID: 18926970 DOI: 10.1098/rstb.2008.0249] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An organism's fitness is critically reliant on its immune system to provide protection against parasites and pathogens. The structure of even simple immune systems is surprisingly complex and clearly will have been moulded by the organism's ecology. The aim of this review and the theme issue is to examine the role of different ecological factors on the evolution of immunity. Here, we will provide a general framework of the field by contextualizing the main ecological factors, including interactions with parasites, other types of biotic as well as abiotic interactions, intraspecific selective constraints (life-history trade-offs, sexual selection) and population genetic processes. We then elaborate the resulting immunological consequences such as the diversity of defence mechanisms (e.g. avoidance behaviour, resistance, tolerance), redundancy and protection against immunopathology, life-history integration of the immune response and shared immunity within a community (e.g. social immunity and microbiota-mediated protection). Our review summarizes the concepts of current importance and directs the reader to promising future research avenues that will deepen our understanding of the defence against parasites and pathogens.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, University of Kiel, Am Botanischen Garten, 24098 Kiel, Germany.
| | | | | | | |
Collapse
|
47
|
Lenz TL, Becker S. Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci — Implications for evolutionary analysis. Gene 2008; 427:117-23. [PMID: 18848974 DOI: 10.1016/j.gene.2008.09.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/21/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
|
48
|
Barbisan F, Savio C, Bertorelle G, Patarnello T, Congiu L. Duplication polymorphism at MHC class II DRB1 locus in the wild boar (Sus scrofa). Immunogenetics 2008; 61:145-51. [DOI: 10.1007/s00251-008-0339-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|
49
|
Busch JD, Waser PM, DeWoody JA. Characterization of expressed class II MHC sequences in the banner-tailed kangaroo rat (Dipodomys spectabilis) reveals multiple DRB loci. Immunogenetics 2008; 60:677-88. [DOI: 10.1007/s00251-008-0323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/16/2008] [Indexed: 11/24/2022]
|
50
|
Divergent patterns of selection on the DAB and DXB MHC class II loci in Xiphophorus fishes. Genetica 2008; 135:379-90. [DOI: 10.1007/s10709-008-9284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|